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ELASTIC WAVES IN TWO SOLIDS AS PROPAGATION
OF SINGULARITIES PHENOMENON

KAZUHIRO YAMAMOTO

In this paper we shall study elastic waves in two isotropic media
with different densities and Lamé’s constants. In seismology elastic waves
are studied when the border of two media is a hyperplane, however there
are no results on elastic waves in the non-flat border case. First in
Section 1 we shall show an existence theorem of the solutions of an
initial boundary value problem which is satisfied by the displacements of
two media. Next we shall discuss about propagation of singularities of
the solutions, for Hérmander and Lax-Nirenberg showed that an appear-
ance of propagation of singularities is similar to one of propagation of
waves.

As first part on singularities in Section 3 we shall show existence
of Stoneley waves as propagation of singularities, which is explained as
follows: if the boundary values cf the initial data of the solutions have
singularities, then there exist singularities of the solutions which start
from the singularities of the initial data and propagate in the elliptic
region of the border of two media according to the passage of time.

Second part on singularities is to study relations between incident
waves and reflected and refracted waves, which are stated in Sections 4, 5.
Under various conditions on the incident angle of singularities corre-
sponding to the fast waves or the slow waves we have interesting refrac-
tive phenomena. For example if we assume that densities and Lam?’s
constants satisfy some conditions, and that the incident angle of singu-
larities corresponding to the fast waves is not sharp, then the solutions
have only refracted singularities corresponding to the slow waves (see
Theorem 4.1). If the singularities corresponding to the slow waves make
incidence, the solutions have both refracted singularities corresponding
to the fast and slow waves or they have only refracted singularities cor-

Received September 22, 1987.

25

https://doi.org/10.1017/S0027763000001677 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001677

26 KAZUHIRO YAMAMOTO

responding to the slow waves (see Theorems 5.1, 5.2).

§1. Existence of solutions

In this section we shall show existence of the solutions of initial
boundary value problems in two solids. We suppose that there exist two
simply connected open subsets O, (i = 1,2) of R* with smooth boundaries
90, such that 90, is compact, or 90; is equal to a hyperplane in {x: |x| > R}
for some positive constant R. Then domains £, 2, of two solids are
defined as follows; 2, = O,N 0, and 2, = O,\O,. The strain tensors e(w)
(j, Bk =1,2,3) are (du,/ox, + ou,/ox,)/2 and in the stress tensors ¢{2(u) are
2,(div w)dy, + 2ue,(w), where u = “(u,, up, u;) and 2; and g, are Lame con-
stants such that g;, 32, 4+ 2y; and 2, + p, are positive. If the solids are
isotropic, then the displacements u,(x,t) = “(uy, Uy, u;;) in Q, satisfy the
following boundary value problem:

(1.1) pid* [0t — él AolR(u)ox, =0 in Q, X R,
(1.2) U, = U, on I' X R,

(1.3) ; n(x)eR(u,) = 2; n(x)o P (uy) on I' X R,
(1.4) ; n x)oR(u;) = 0 on I'; X R,

where p;, > 0 is the density of Q,, I' = 02,N02,, I'; = 02\, and n(x) =
{(ny(x), ny(x), ny(x)) is the unit normal vector of I" or I, (j =1, 2).
We consider an initial boundary value problem (1.1) to (1.4) with data

(1.5) uix, 0) = fx),  (Oufo)(x,0) = gfx)  in Q,.

We introduce a Hilbert space s# whose elements are equal to (L*0,)),

with the inner product (f, )., = o.(f, &)ren + 0:f, &)120n, and a subspace
D of o# such that f belongs to D if fe(H'Y0O,) and the distributions
L{f) = (06 2(fNox:)|0,) j=1,2,; belong to (LXR2,))*. The boundary condi-
tions (1.3) and (1.4) are represented as follows:

(16) fﬂ {L1(f)v -+ ]Zk Gl(clj)(f)al’k/axj}dx
+ L’ {L(f)-v + JZL] o@(f)ov,/ox}dx = 0

for any v = (v, vy, U;) € (H*(O,))’. The operator A on D, = {fe D: f satisfies
(1.6)} is defined by Afl,, = —L«f)/p.. We have the following
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THEOREM 1.1. A is a self-adjoint operator on .

Proof. Since a set of Cy(0,) functions which vanish in a neigh-
bourhood of 52, UdR, is a dense subset of #, D, is clearly a dense subset
of »#. If f belongs to Dy, from (1.6) we have that

w (Af, 8 = 33 [ 13 G + 2uden(Nen@dx

i 1=1

for any ge (HY(0,)). From the above equality and the assumption 32, +
2p; > 0 it follows that A € A* and A = 0. Thus in order to prove self-
adjointness of A we have to show that the range of I 4+ A is equal to 2.
Let #Y(0,) = (H¥(O,))* be a Hilbert space with the inner product (f, g),
defined by (f, 8), plus the right hand side of (1.7). By Korn’s inequality
on O, (see p.110 of [1]) it follows that ||f|fiw, < C(f,f),. This fact and
Riesz’s theorem imply that for any ge o there exists fe o#*(0,) such that
(8,v), = (f,v), for any ve H¥(O,). From (1.6) this implies that fe D, and
(I + A)f = g. The proof is completed.

Since the domain D(A) of A is a dense subset of s#(0,) and the domain
D(A') of AY* with the graph norm, we have the following

ProrosiTiON 1.2. The domain of A is equal to #*(0,) and
2
||A1/2fl|2 = Z‘{ (Zk: <2t5jk + 2,ui)Hejk(f)”2L$(Di)) .
1= Js

In (1.5) we assume that f=(f,f)eDy and g = (g, &, e #0,), then
u®(x, t) = u(x, t)|,,, where u(x, t) = (cos tAVY)f + A~Y*(sin tAV?)g, satisfies (1.1)
and (1.5) in the distribution sense. On (1.2) (1.3) and (1.4) we have the
following

ProposiTiON 1.3. We put I'v=I\(I",UTI,). Then ulx, t)|pxz¢c
C(R,: Hi(I), 22;n{®)a$d () |r <z € C(R.: HX(I',)) where h =0, i (i = 1, 2),
and these satisfy (1.2), (1.3) and (1.4).

Proof. Since u,(x, t) belongs to C(R,: H(R2))), it follows that u,(x, t)|r,xz
e C(R,: HYXI') and u(x,t) = u,(x,t) on Iy, X R. Let x, be a point of I,
and U be an open neighbourhood of x, such that U < O, and that there
exists a diffeomorphism £ from U to {y € R*: |y| < 8} which maps UN 2, to
{ye R*:|y|<4,y,>0}. For any ¢(x) e C5(U) we put v(y, ) = (pu)(x" (), ?).
Then from Theorem 4.3.1 of [2] we see that v(y,#) e C(R,: H, _,(R2)),
where H,, ,,(R%) is a function space denoted in Definition 2.5.1 of [2]. By
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the trace theorem (see Theorem 2.5.6) in [2] it follows that the trace of
2.in(x)eR(w,) on I'yX R belongs to C(R,: HiY"(I'). Put v.(y,0) =

e‘zf o((y" — 2)[ev(2’, ys, H)d2’, where a non-negative function p(y’) belongs to

Ce({y’ e R*:|y'|<1}) and Jp(y’)dy’ = 1. Then using Theorem 2.5.4 of [2], we

can easily prove that v,(y,?) e C(R,: Hy,(R%)), supp v, C{ye R*:|y| < 8}
if ¢ is sufficiently small, and v,.(y, t) converges to v,(y, ) in the topology
of C(R,: Hy, _,,(R%)). These facts imply that the divergence theorem is
valid for (3, (65R(@)V,)io1,05, Where v = (v, v;, v;) € (HY(O,))’. Similarly we
can prove the same fact for gu,. By (1.6) it follows that

[ Zn@onw) - g =0

for any uv(x) e (C3(U))®. The (1.3) is valid. Similarly we can prove (1.4).
The proof is completed.

Remark 1.4. The arguments used in this section are easily extended
for finite number of media which are not isotropic, whose displacements
satisfy the similar boundary value problem to (1.1) to (1.5).

§2. Reduction to first order systems and definition of rays

In this section in order to study propagation of singularities to the
solutions of (1.1) to (1.3) we shall reduce the considered boundary value
problem to the first order system. After that we shall define an incident
rays, a reflected ray, a transferred reflected ray, a refracted ray and a
transferred refracted ray, which are half null bicharacteristics of > — o}|&[
or <t — B} — BiI&L.

Let us consider a solution u,(x, ) of (1.1). Hereafter we assume that
u,; is an extensible distribution, that is, there exists a distribution Uy(x, ©)
on R* such that U, = u; on 2, x R. Thus by Theorem 4.3.1 of [2] the
traces of u;|rxz and ¢$2(uw,)|r,<r are distributions on I’y X R, and we can
suppose these distributions satisfy the conditions (1.2) and (1.3). From
now on we assume that n(x) appearing in (1.3) is the unit outer normal
vector of 2, at I',. Since the boundary value problem (1.1) to (1.3) is
rotation free, we may assume that the origin of R® belongs to I', and
n(0) = (0,0, —1). In a neighbourhood U, of 0 I'; is defined by x, = g(x’),
where x’ = (x,, x,). Making use of the coordinate transform x; y’ = x/,
¥y, = x, — g(x’) such that Q,N U, is tranformed into {y: y, > 0} and putting
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Uly, v = “AD,, D)'u,, D,'u;), where /A is a pseudo-differential operator
with the symbol A(7/,7) = (|5 + «* + 1)"%, the problem (1.1) to (1.3) is
reduced to the following boundary value problem (1.1) to (1.3) is reduced
to the following boundary value problem (see section 1.1 of [9])

DysUi = Mi(y,’ D'y’) Dt)Uz in (‘“1)“13’3 > 0’
2.1 L, 0)U, = (I, 0) U, on y;, =0,
Bl(y/, Dy" Dn)Ux = Bz(y,’ Dy’) Dt)UZ on y; = 0,

where I, is the 3 X 3 identity matrix and the principal symbol (B, B;)
(y/’ 77,’ T) of Bz = (Bil’ Bi2)(y,, Dy'} Dt) is

2.2) {Bil(y,’ 7, 1) = (zzGtﬁ + ﬂiﬁtG + lliG‘77)A1_1:
Btz(y,, 77/, T) = (Zi + ﬂi)GtG -+ /«‘i{GIZIa

with G =Y—Vg(y), 1) and 7 = (3, 5, 0). Here the principal symbol
M,(y,y,t) of My, D,., D,) satisfies that det(yI, — M,) = (3, — a)* +
p)((ps — @) + s, where a(y’,7) =4 -Vg()|GF, sy, 7/, 7) = (7} — /o
— O POIGPIGE and py(y, 7, o) = (7| — B — & VI GP/IG* with
o = #i/Pi and ﬁf = + 2#1)/.&‘-

We shall use notions of wave front set WF(G) for G(y/, {) € 2'(R}. )
defined in [3] and micro-local smoothness of Fe C=([0,5]: 2/(R: )U
C>([—5,0]: 2'(Ri.)) at pe T*(R: ,)\O, which means that there exists a
properly supported pseudo-differential operator A(y’, ¢, D,., D,) such that
A is elliptic at p and (AF)(y,?) e C~([0, =¢] X R:,,) for some ¢ > 0.

Let us consider a point (0, 7}, 7,) such that z,|7,|(p,p,,8,)(0, 7}, 7o) # O.
Put @z (y, 7, 1) = a £ (—=1)"*(—s)"* if 5,0, 7 7) >0 and put @:(y,7,7)
= a + (=1)"*'e(—s)"* if 540, 90, 7,) <O and ¢ = sgnr, where the branch of
(—s,)"* is taken like that (—1)"* is the imaginary unit. Similarly making
use of p, instead of s,, we define 57(y’,7,z). Then by Lemma 1.1 of [9]
a: and b are eigen values of M, (Y, 7', z) and there exist eigen vectors
st (k=1,2) and s of g and b, respectively, which are linearly inde-
pendent. By the argument of Sections 1.2 and 1.3 of [9] (see also Section
2 of [8]) we can reduce the boundary value problem (1.2) as follows:
There exists an elliptic pseudo-differential operator Sy, D,., D,) of order
0 defined in a conic neighbourhood of p, = (0, &, 7;, ,) € T*(R:, )\O with
the principal symbol (s}, s, Sis, Si, Sk, Si) such that the boundary value
problem (2.1) is micro-locally reduced to the following

https://doi.org/10.1017/S0027763000001677 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001677

30 KAZUHIRO YAMAMOTO

. DV~ ¥, |Vi=F, in(-Dty>0
. 0 b:

CIVI - CQVZ = G on y3 = 0,

where V, = S;'U, C(y, D,., Dl)=<]§3 %)Si, 0,2 WF(G) and F, is
il 12

smooth at p. Moreover the principal symbol of A#(y’, S,., D, is the di-

agonal matrix @z(y’, 7, t)I, and the principal symbol of bi(y’, D,., D,) is

bs(y', 7, 7). At y =0 the principal symbols of C, and C, are simplified
as follows:

LEMMA 2.1, If <o|75|(01p25:8)(0, 75, 7o) #+ 0, then we may assume that
at y' = 0 the principal symbol C;, = (C}, C;) of C(y, D, D,) is given by
C: =4C3%,'C%), where

aily' P4t 0 [y'Pdr

(2.4) Ci=| o0 ypar 0 |,
R R Y/
(pie® — 2p |y Py P A 0 20,05 | P AT
Ci= 0 paai |y PAT? 0
—2pa; |y PAT? 0 (o* — 2p| 9 DAT?

with ai(y, ) = @0, 7, ) and bx(y, ) = b (0, 7/, ).
Proof. In order to simplify the principal symbol of C\(y’, D,., D,) we

use an elliptic pseudo-differential operator Dy(D,., D,) = (g OD) of order

0, where the principal symbol d (i, r) of the components of 3 X 3 matrix
D(D'y’9 D) are d, =dy = 7]1/1;1(7]/, ), Ap = —dy = 2470y, ), dyy = 1 and
dy = dy = dy; = dy, = 0. By (1.8) of [9] we can take the principal symbol
of S, as follows; si = ‘(‘w§, @G5 A7 ‘w,y) with ‘wj = (@3 (y — azvg), — |y —
azVgP)Ar?, s = wp, @7 A7 'wy) with ‘wi = (—(p, — @30g8/0yy), 7 — dragloys,
047! and s = (w3, brA7'w3) with ‘wg = (5 — bV g, b)Ar". Since Vg =0
at » = 0, making use of (2.2), we can compute the principal symbol
D,C\(y', D,.,, D,), which is given by (2.4) at y’ = 0. The proof is completed.

Let us consider the incident P ray P,(») in 2, hitting on (0, {,) with
a direction o = (w,, wy, 0;) € S? such that 0 < n(0)-w < 1, which is the half
connected null bicharacteristic {(—p'wt, t, — t, —ew, ef,) € T*(2, X R):t > 0}
of z* — pi|&[* passing through p, = (0, {), —co, B,), where & = 1. Since
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the outer unit normal vector of 2, at 0 is (0,0, —1), the reflected P ray
P w) of P(w) is given by the connected ray {(fot, ¢+ t, —ew,, ef;) €
T*2, X R): t> 0}, where w, = (w;, w,, —w,). Hereafter we say that a ray
7(f) in 2, parametrized by time ¢ is outgoing (incoming) if (—1)*(dx,/dt)(0)
<0 (>0), where x,(¢) is the x, component of 7(f). The half connected
outgoing null bicharacteristic S,(w) of z* — &?|&f in T*(R, X R) passing
through p with 7(p) = n(p,) is called the transferred reflected ray of Pyw),
where z is the projection from T*(R:,) to T*(@2 X R). If there exists the
half connected outgoing null bicharacteristic P (0) (S,(»)) of <% — BilEP
(z* — a3|&P) in T*(f, X R) passing through with 7{p) = n(p,), we call it the
refracted P ray (the transferred refracted S ray) of P(v»). Similarly for
the incident S ray S,(w) passing through p, = (0, #, —ew, ca;), the reflected
S ray S,(w), the transferred reflected P ray P, (w), the refracted S ray §,(co)
and the transferred refracted P ray P.(w) are defined, if these rays exist.
The rays are concretely denoted as follows:

Lemma 2.2. i) Put oi = (o, = (Bifad — 1 + (n(0)-w)?)?), then S () =
{(ioit[py, t + 1, —ewi, efy) € T*(2, X R): t > 0}. A similar statement is valid
for P.(w), if 1 — ai/p} < (n(0)-w).

i) Put a7 = (o, £ BB — 1+ (m0)-0))"?), if 1— BB < (n(0)-0);
then P () = {(Brort/pu t + £y, —ed;, efy) € T*(Q, X R): t> 0}. Similarly S, ()
is defined, if 1 — /o << (n(0)- )%

iil) Put af = (o, = (Blai — 1 + (n(0)-0))"), if 1 — pilei < (n(0)-w),
then S (0) = {(c3@ort/Byy t + £y, —edi, efy) € T*(2, X R): t > 0}. Similarly B.(»)
is defined, if 1 — ai/p; < (n(0)-w)™

The proof of Lemma 2.2 is easily derived from the definitions of the
rays. For the incident P ray P,w) we also denote by S,.(»), P..(0) and
S,.(0) half connected incoming null bicharacteristics of * — a?|ul, % —
o3|&| and 7* — B3|&F passing through (0, &, —eoy, By, (0, &, —ea;, ¢By) and
0, t,, —edy,, epy), repsectively, if these rays exist. Similarly for the incident
S ray S,(0)P,(0), P.( ) and S,.(0) are defined.

§ 3. Singularities corresponding to Stonly waves

In this section we analyze singularities to a solution of (1.1) to (1.3)
near an elliptic point (0, ¢, 7, 7o), that is, s40, 75, 7,) >0 for i =1,2. In
[7] he proved that if I', is a hyperplane of R? there are surface waves
satisfying (1.1) to (1.3) and propagating on the boundary 7', X R. In this
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section without assuming the flatness of I'y, we shall show that there exist
rays belonging to the wave front set of a solution of (1.1) to (1.3) which
propagates in the elliptic region of the boundary I', X R.

We shall consider the Lopatinski matrix of the boundary value pro-
blem (2.3) in the elliptic region {(¥, ¢, 7/, 7): sy, 7/,z) > 0 i = 1, 2}, where
py,9,7)>0(G =1,2). We remark that if ' = 0, then the elliptic region
is {(0, ¢, %', ©): min (&, &) |7’ > %}

LemmA 3.1. We assume that ¢, = 0 and min («f, of) |9 > zi. Then the
necessary and sufficient condition that the determinant (C;i, C§) is zero is
given by F(*|\y'[)) = 0, where

F(s) = {(p:a1 () — p105(8))(0:b7(s) — 0:05(5)) + (o1 — p)s*
— 4 — p){oas b)) — el bi)(s) + o — pi}s
+ 4@, — (@i bia;bi)(s) + (a5b7)(s) + (asbi)(s) + 1}

with aj(s) = (—=1)*'(1 — s/a?)"* and bj(s) = (—1)'*4(1 — s/

Proof. By (2.4) the second and fifth column vectors of (Cj, C;) are
linearly independent to the other column vectors, and these two vectors
are linearly independent. Thus the condition det(C{, C;) = 0 is equivalent
to the condition det M, = 0, where M, is the 4 X 4 square matrix gen-
erated by eliminating the second and fifth column and line vectors of
(Cf, —Cy3). By simple calculations we can show that det M, = C|y/[F(<*/|7]),
where C is a non zero constant. The proof is completed.

If we assume the Wiechert condition in seismology, that is, «, = a,
and B, = fB,, then we can get informations on the roots of F(s) = 0.

LemmA 3.2. We assume a; = a, and B, = B, and put « = «; and = §,.
Then we have the following statements.

i) The roots of F(s) =0 in (0,a) are also the roots of f(x) =0 in
(0, 1) where x = s/o* and f(x) =7rx* — {r + 1+ 8rM}x* + {1 + 24rM + 8M
+ 8rM* — M* — 167" M*}x* — 8{rM* — 4r*M* + 3M + 2rM}x + 16(M + r*M)
with 1 = alp and M = (o, — pl(o, + po)-

i) f(x) has at least one root in (0, 1).

iii) If all roots f(x) = 0 in (0,1) are simple, then the set {y,t, 7/, 7):
det (Ci, CH)(Y', v/, ©) = 0} is locally given by v = h(y',7’), where Wy, 7) is
a positively homogeneous function of degree 1.

Proof. In F(s) put s/a® = x, then F(s) is equal to «'[(o, — p){x* +
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41— D@ — 70} — (o + )2 + 4o — (@ — DY — TH(L — )] =
a'[g(x) — g(x)], where g/(x) is defined by the last equality. Since g,(x) and
g.(x) are positive if xe(0, 1), the condition F(s) = 0 is equivalent to
8Yx) — gi(x) = (p, + p)**’f(x) = 0. The statement ii) is clear, for f(0) =
16M(1 — 7 > 0 and f(1) = (p, + p») *{gi(1) — gi(1)} = — M* < 0. The state-
ment iii) is a consequence of the implicit function theorem. The proof
is completed.

We shall check conditions that the polynomial f(x) has only simple
roots in (0, 1).

Remark 3.3. i) One of the equivalent conditions that a polynomial
f(x) has a double roots is that the discriminant of f(x) is zero. In this
case the discriminant of (p, + p,)’ff(x) is a polynomial with respect to
o1, o2 « and B. Thus for almost everywhere (p;, p;, @, §) the equation f(x)
= 0 has only simple roots.

i) A simple condition of simplicity of the roots in (0,1) of f(x) =0
is given as follows: If /(1) >0 and (r + 1+ 8M)/4r = 1, where x =
(7 + 1 4+ 8M)/4r is the symmetric axis of f”(x) = 0, then f”(x) > 0 in [0, 1].
This condition implies that f(x) = 0 has only one root in (0,1). Thus if
3r +8MGM + 1) = (1672 + D)M* + 2 and 8M 4+ 1 = 37, then f(x) = 0 has
only one simple root in (0, 1).

Let us consider the Lopatinski determinant of the boundary value
problem (2.3) in a conic neighbourhood of p, = (0, &, 7, 0).

LEmMA 3.4. If 7, = 0, then the Lopatinski determinant of (2.3), that is,
the determinat of the principal symbol (Ct, Cy) is not zero at p,.

Proof. In the case 7, =0, in Section 1.2 of [9] S,(0,7;,0) (¢ =1, 2)
is given as follows: Put S0, 75, 0) = (S, Sib S Si» Sim» Sw), then

'si = (= (—1)" ‘g, £(—=D"50l, BB — aw) 'y, £ (—1)**"i(B — Ber) DAY,
sty = (Wi, (=D wy,) with ‘we = (— 90, 70, 0047, and
t31f3 = (lwksy i(—l)kﬂi twk3) with twka = (877(/)’ + il%l)/ll_l.

Using S,(0, 75, 0) and (2.2) we can easily compute det(C;, C5)(0, 5, 0),
which is equal to C(/h + ) X {/«‘1(21 + 2#1) + #2(21 + 3#1)}{#2(22 + 2/12) +
w2, + 3p)} pip, With a non zero constant C. That is not zero. The proof
is completed.

For the solution u, of (1.1) we define WF,(u,) C (T*(2, x R)\0) U
(T*(I"y X R)\0) as follows: i) pe T*(2, X R) belongs to WF,(u,), if p belongs
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to WF(u,|,), ii) pe T*(I"y, X R) does not belong to WF,(u,), if u(x"(y), t)
has the property of micro-local smoothness at z(x*(p)), where n is the
projection from T*(Rj ) to T*({y, = 0} X R) and «* is the diffeomorphism
from T*(U, X R) to T*(R},) induced from &, that is,

5, 1, & 1) = (&, x, — g(x), 1, & + Tg)(x)&,, &, 7) -

This definition of WF,(u,) is invariant by the diffeomorphism x (see Pro-
position 1.2 in [6]). Let 3/ be an elliptic region on the boundary, i.e.,
2o={0\t g, vy e T*(RS O\O: s.(y',7,7) >0, i =1,2}, and 3; be a subset
of X} such that det (Cy, CH)(¥,7,7) =0. Put 3, = (zox*)"(2)) and I, =
(o £*¥)"(2}); Then we have the following

THEOREM 3.5. We assume that o, = a, and B, = B, and that f(x) of
Lemma 3.2 has only simple roots in (0,1). Then WF(u)N 2, < 2, where
X, is locally given by t — h(x, &) with C= homogeneous function h(x, &) on
T*(I"y) 0 of order 1, and WF,(u,) U WF,(u,) is invariant under the Hamilton
vector field H,_, on T*(I", X R) 0.

Proof. In (2.3) we denote V, =4V, 'V;). Then since V; and Vj
satisfy backward parabolic equations, p, does not belong to WF(V|,,-,) U
WF(V;|,,=0). It follows that WF(C{ Vil,,.o — C3V5l,,-0) does not contain
0~ By Hormander’s theorem on propagation of singularities (see Theo-
rem 6.1.1 of [4] we have the desired statement.

Remark 3.6. 1) Let {f, g} be the initial data of the solution u(x,?)
of (1.1) to (1.5). Assume that (x,, &) e WF(f.|;,) U WF(g,|,), Then by The-
orem 2.5.11" of [3] there exists 7, such that an element p, = (x,, 0, &, z,)
of T*(I'y X R) belongs to WF(u|;xz). If p, is an elliptic point, then by
Theorem 3.5 there exists a ray belonging to WF,(u) U WF,(u,), which
starts at p, and propagates on the border I’y X R.

ii) From the form of F(s), the null points of F(s) = 0 are roots of
some polynomial of degree 22 whose coefficients are polynomial of
(015 s 15 2 405 o). Thus for almost all (o4, 4y, 1, 02, 2, 1) With (F(8)/8)|s=0
F(min (¢, o)) < 0 Theorem 3.5 holds.

§4. Incident P singularities

In the case that «, < p, < B, and a, # «, there exist interesting reflec-
tive and refractive phenomena. Thus in this section we assume the
above condition. We shall consider incident P singularities and show
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the following theorems on reflective and refractive phenomena of singu-
larities.

THEOREM 4.1. i) We assume B < i1 — (n(0)-w)?). Then P.(0) and
P,() do not exist. Furthermore we suppose that Si(w) N WF(u,) = S,(w)
N WF(u,) = ¢ and PJw)C WF(u,). Then P o)U S (0) C WF(w,) and
Su(w) © WF(w).

ii) We assume pi> i1 — (n(0)-w)?). Then there exists a function
G\(s) whose null points are at most 30 such that if G,(8}/(1 — n(0)-w)?)) + 0,
Si(@) N WF(u,) = (Pi(0) U Sin(0) N WF(w) = ¢ and Pyw) C WF(w,), then
P(0) US.(0) © WF(w) and P (0) U 8..(0) © WF(u,).

The concrete form of G,(s) is given in Lemma 4.3. The idea of proving
the above theorem is as follows: First we shall look for an elliptic
pseudodifferential operator A such that some components of AC; (i =1, 2)
vanish. After that making use of the assumptions of WF(u,), we shall
check the conditions to the wave front sets of the components of V,|,,_,
(i =1, 2), which derive the statements of the theorem.

Let o, be (0, %, —cw, efy), where & =1,0<n(0)-0 <1 Then the
projected point p, of p, to T*(@R X R) is (0, ¢, —ew’, ef;). In a conic
neighbourhood I'; of p, in T*(R, )\O we may assume that at y = 0 the
principal symbols of Af, by in (2.3) are ai(y/, 0)l, = (Fe(z*/ad — |7/ PV,
6, O = (Fe(fad — [ DL, by, <) = £ellf — |7 and bi(y, <)
is iy [ — lp) if B < B(1 — (n(0)-w)) and is e(EE — [y P if Bt >
Bl — (n(0)-»)). The boundary operator C(y’, D,, D,) of (2.3) is also
defined by using these notations. We say that a pseudodifferential oper-
ator P(y,t,D,.,D,) belongs to L-=(I"), where I' is a conic open set of
T*(R: ), if the symbol of P is rapidly decreasing with respect to (y/, 7)
in I'. We have the following

LemMA 4.2. There exists a pseudo-differential operator A(y’, D,., D,
of order 0 defined in a conic neighbourhood I'; of p, such that the principal
symbol A\(y',7',t) of A is the identity matrix I, at y' = 0, and that the
1,2, 2,1, 23, 3,2, 4,2, 6,1), (5,3 and (6,2) components of
(AC;)(y', D,.,D,) (i =1,2) are 0 modulo L==(I")).

PrOOf. Put Cl_(y/9 Dy’, Dt) = (cly CZ’ Ca)(y/, Dv’) Dt)’ C2—(y/, Dy’; Dt) =
(cy €, )(y', D,y D,) and denote by a,y’, D,,D,) the j-th line vector of
A(y', D,., D,). Then the required conditions are

https://doi.org/10.1017/S0027763000001677 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000001677

36 KAZUHIRO YAMAMOTO

4.1) a;- ¢, =a;¢ =0 modulo L") (j =1, 3, 4, 6)
4.2) @, C, = Q;C=0a;C, =0q;C =0 modulo L-=(I") (j = 2,5).

We denote the symbol of a; by > r,a,(y, 7, ), where ay is of order —£&,
and the principal symbol of ¢, by c,(y’, 7', 7). Put a, = fi + %450 + %15Cs0,
where ‘f; = (1,0, ---,0)e R°. Then the condition {ay, cyy = (@, Csp = 0
is equivalent to

(4.3) <<czo, Co)  {Capy Czo>><x12> — _<<f1, Czo>) .
(Cas Cs0)  {Cs0, Co0)/ \Xy5 {fi ey

Since from (2.4) ¢, and c,, are linearly independent, we can solve the
equation (4.3) and x, and x;; are zero at y’ = 0. Similarly if we put
@y = XiaCoo + XisCoo, Where x,,(y/, 7'7) and x.(y’, 7/, z) are of order —k, we
can decide the required a,(y, 7, 7). Similarly in order to construct
a(y’,D,, D) which satisfies (4.2) we only check that c,, ¢y, ¢, and c
are linearly independent. This condition is equivelent to the condition
det M(y/, ) + 0, where M(y/, ) is the 4 X 4 square matrix which is gener-
ated by eliminating the second and fourth column and line vectors of
(C;, C;)(0, 7, 7). We have

(4.4) det M(y/, 7) = [{pdarbi + plas by — pipfarb; + azby) + (o0 — po)’|y [}t
+ 4 — o0 b — piazby — (o — eIy [y [*
+ 4(p — w)arbrasby + (arby + azbd)ly'F + |/ [Ny Py A7
If b;(y,7) is real valued, then |7/|*/4° X (4.4) is equal to {(p, — p)7* —
2 — W YT+ o + 20 — @y [Yarby + {oe® — 2(ps — wly/[Yas by
— pofarby + asbr)t + 4w — w)arbra;by|y’f, which is positive because
a;b; and a;b; are positive and a;b; and a;b; are negative. If b;(y/, 7)
is pure imaginary, then Re (det M(y/, 7)) is also positive. Thus ¢, ¢y, ¢,
and c, are linearly independent. The proof is completed.
Next we shall compute the principal symbol of (C-)-'C;, where
C-=(Cy, C;), which is elliptic from the proof of Lemma 4.2, Define
a,(s) = (s/la? — 1)* and b,(s) = (s/pgi — DV* ( = 1,2) and put

gi(8) = (0.8 + 2(ity — ) (02 — pIs + 20 — 1)
- 2(#1 - /lz)(ﬂls — 2(p — p))ay(8)by(s),
84(8) = piouab, — 0,a,)(5)s* + (0:8 + 2(uy — 12))*(;0,)(8)
- (P13 — 2(#1 - /Jz))z(azbz)(s) + 4(/1: - ﬂZ)z(alblazbZ)(s)
— (o — p)s — 20 — w))*,
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g48) = {(o, — p)" — 4 — w)*/(4BY)}s
— 4 — w{(oy — o) — (1o — p)a® + 877},

gﬁ(s) = (Pé/a? - P%/ag)sz + (P1 + P2){(P1 - {72) + 4(#1 - /42)(051_2 + 0[2—2)}3
+ 4 — (s — )0 — @3®) — (o, + p)}-

Then we have

LemMA 43. 1) If p, % oo, s # 1 and B < pi1 — (n(0)-w)?), then the
(1.3), (3.3) and (4.3) component of (C-)"'C;y are elliptic at p,, where C- =
(Cr, =C5).

) If gi> Bl — (n(0-0))) and g,(BI(1 — (n(0)-w))) # 0, then the (j, 3)
component of (C~)"*C{ is elliptic at p,, where j =1, 3,4, 6.

iil) If a; # o, then G(s) = (g.8,8.8.)(s) has at most 30 null points in
(Bi, ).

Proof. Let us denote by My, 7, ) = (¢, ¢, ¢, ¢,) the 4 X 4 square
matrix which is generated by eliminating the second and fourth column
and line vectors of the principal symbol of C-(y’, D,., D)) and put <(y, 7/, 7)
to be the column vector which is generated by eliminating the second
and fourth components of the principal symbol of the third column vector
of Ci(y’,D,., D). Then from Lemma 4.2 and Cramer’s formula we may
check that the determinant of (c, c,, iy, ¢;)), Where 1 < i, <4 and i, +# i,
if j # k, is not zero at p,. From (2.4) it follows that

(4'5) det (C, CZ’ CS’ C4)(0, 77/, T) = A![(pZTZ + 2(#1 - [12)177/ 12)
X ((oy — )7 — 201y — 7' P) + 2(p — )0t — 2(s — )l Plas b7],
(4.6) det (e, ¢, c5, €)(0, 77’, 7) = Az[Plpz(afb2_ + a7 b))t
— (o7® + 20 — w7’ PDParbs — (o® — 2(p — w)ly'Da; by
— ((os — p)7* — 20 — )y’ PV,
(4.7)  det(c,, e ¢, )0, 7/, 1) = Af(o: — p)7* — 20, — )7 — a7 b)),
(4.8) det(c, ¢ €, )0, 7', ) = A7’ + 20y — w7 Par
- (PlT2 e 2(}11 - ,az)l 77’ lz)az_} ’
where A7/, ) is not zero, if ' 0 and ¢ = 0. If p, # p,, u #+ 1. and b7
is pure imaginary, then the real part and the imaginary part of (4.5) do
not vanish at the same point and the imaginary parts of (4.6) and (4.7)

are not zero. It follows that the statement i) holds. (4.5) and (4.6) clearly
implies that the statement ii) holds for j = 1, 3, g(s) and gs) are equal
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to [((o, — p)s — 2 — ) — 4 — 1) (a7 b7)l/s and [{(o5 + 2(s — p))ar )
— {(0s8s — 2(py — w))a;¥[s. Thus when p, # p, and p, # p, g,(5), 8(s) and
g«s) are not identically zero and one of the equivalent conditions that
&) =0 is [{(PZS + 2(#1 - [»‘2))«(01 - Pz)s + 2(#1 - #2)}2 — 4y — /12)2{((713 -
— 2 — p)Xab)(8)Y1/s = 0. Tt follows that the null points of (g,8.8,)(s)
are at most 6. By the form of gy(s) the null points of g,(s) are roots of
some polynomial of degree 24. These show that the null points of G(s)
in (8}, o) are at most 30. The proof is completed.

The proof of Theorem 4.1. The proof of the statement i) is similar
to that of the statement ii). Thus we only prove the statement ii). In
(2.3) we put 'V, = (Vs 'V;) with Vi = {v}, vs, vs). The assumption
implies that p, ¢ WF(v}),,-0) U WF(5),,-0) UWF(v5 |,,-0) and p, € WF(vjl,,-0),
where o, = (0, £, —ew’, ¢f,). Thus the boundary condition in (2.3) is reduced
to the following

(4.9) (Vi Vi) = —(C)'epwi + G,

where cji(y’, D,., D,) is the third column vector of C{(y, D,,D,) and p,
does not belong to WF(G). From Lemma 4.3 and (4.9) we see the p, e
WF (@) N\ WF(u) N WE(vp)\ WF(vy;). Using Theorem 2.5.11 of [3], we
have the desired conclusions. The proof is completed.

§5. Incident S singularities

Let us consider incident S singularities. So all functions and pseudo-
differential operators are defined in I',, where I, is a conic neighbourhood
of p, = (0, ¢, —ew’, eer;). Under the assumption that o, < g, <, and &, # a,
we shall show the following

THEOREM 5.1. We assume that p; < ai/(1 — (n(0)-w)’) < B3. Then P, (»)
and P.(w) do not exist and there exists a function H(s) whose null points
are at most 48 such that if H(c?/(1 — (n(0)-w)?)) +# 0, Siw) € WF(u,) and
P, (w)N WE(u,) = S,(0) N WF(w,) = ¢, then one of the following two cases
occurs; a) S,(w) UP.(w)C WF(u) and S/(0)CWF(w,), b) S,(0)C WF(u,),
S, (w)c WF(u,) and P.(o)N WF(u,) = ¢.

THEOREM 5.2. We assume that p; < ai/(1 — (n(0)-w)?). There exists a
function Hy(s) whose null points are at most 49 such that if Hyo}/(1 —
(1(0)-0)?) # 0, P(@)N WF(w,) = (Pi(0) US,(@) N WF (1) = ¢ and Sfw) C
WF(u,), then one of the following two cases occurs: a) S o) WF(u,) and
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S.(0) UP (0)C WF (). b) S(0)C WF(u), S,(0)C WF(,) and P.(w) N\ WF(u,)
= ¢. In the above statement is not complete in the following sense: If we
suppose that the assumptions mentioned in the above hold and in a small
neighbourhood of 0 the border I'y is equal to a hyperplane in R®, then we
have one of the following two cases; a’) (S/{w)UP,(0)CWF(u,) and
(S.(@) UP () © WF(w,), V) Si(w)C WF(w,), Sw)C WF(u,) and P.(w)N
WF(w,) = P (0)N WF(u,) = ¢.

In order to prove the above theorems we need to change the com-
ponents of V, in (2.3) corresponding to S waves. Put

hx(s) = ((Pt - Pz)s - 2(/1 — #2))({)23 + 2(/11 - #2))
+ 2(#1 - #2)({713 - 2(#1 - /lz))(azbz)(S) ,

ho(s) = {(0, — 02" — 4ty — )" (Biad)ls
— 4, — )0y — 02) — (1 — )BT + )},

where a, = (s/aj — 1)"* and b, = (s/p; — 1)"%, then we have the following

Lemma 5.3. 1) If B < ai/(1 — (n(0)- w)*) < B3, then there exists a pseudo-
differential operator a(y’, D,., D,) of order 0 such that the principal symbol
of a is zero at ¥’ = 0 and that the (3, 2) component of (C-)"N(CH)(I, + A)
is 0 modulo L==(I";), where I, is the 3 X 3 identity matrix and A(y’, D,., D,)
is a 3 X 3 square matrix whose (1, 2) component is a and other components
are 0.

ii) We assume that o3/(1 — (n(0)-w)?) > pi. Then there exists a pseudo-
differential operator a(y’, D,., D,) such that if h,(e3/(1 — (n(0)-w)*) # 0, (3.2)
component of (C-)"{Ci)I, + A) is zero modulo L~~(I",), where A is a
similar pseudo-differential operator to that mentioned in i). The similar
property on the (6,2) component of (C-)"(Cy)I, + A) holds, if hy(aX(1 —
(n(0)- ))") = 0.

Proof. Define ¢; (j=1,---,6) and ¢/ (j = 1,2, 3) to be the j-th line
and column vector of the principal symbol of (C-)-! and C}, respectively.
If we can show that X = ‘c;-¢i or Y = ‘c,-c¢f is not zero at y = 0, we
have the statements of Lemma 5.3, by using the calculus on symbols of
pseudo-differential operators. Let f, be the first column vector of the
principal symbol of C-. Then X = ‘c,-(¢f — f1) is equal to 2a; |y 47 %(cs; —
2mey) at ' =0 and Y = ‘c;-(cf — f) is equal to 2af|y PAr*(ce — 2mcCy) at
y' =0, where ¢,, is the (i,j) component of the principal symbol of (C-)-.
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Using (2.4), we can easily derive that

s = |7/ AP {0 — )7 — 20 — )l Pot® — 2pl9'])
— 2105 b5 {(0, — )7 — 20, — w7’} — 2005 (ay — mar)<,

C3g = —lﬂ"4/11_8[{(P1 - Pz)fz - 2(,’»41 - #2)\7]/l2}(‘77/]2 + a;b;) - szz_(af — 02—)72] s
c = — |7 ["Ar{(0: — ) — 20 — w7y W ot — 2|9/ P)

+ 2pmar b {(oy — p)7* — 2(u — w7} + 20,67 (a7 — mar)e,
Co = =7 [ A7 (o1 — p2)7* — 2 — @y Py + arb) — pibiar — ai)e’].

Thus if b; is pure imaginary, ¢, — 2u,¢, does not vanish. When b; is
real, ¢; — 24,C4 is not zero at p,, if A(al/(1 — ((0)-w)?) # 0, and ¢y — 2p,C5
is not zero at p;, if A{a?/(1 — (n(0)-w)*) # 0. The proof is completed.

Next we shall check the ellipticity of the components of (C~)~(Cy).
Put

hy(s) = (1013 - 2[-‘1)(4023 - 2(/11 - llz))bz(s) + PlS(PZS + 2(#1 — ﬂz))bl(s)
+ 2#1(P13 — 2(/11 - /«‘2))02(3) + 4/11(/11 - ﬂz)(alb1)(3)(b2 — a,)(s),

where b,(s) is equal to ie (1 — s/gd)", if fi < a&i/(1 — (n(0)-w)") < B and is
equal to (s/p: — Y2 if B2 < &}/(1 — (n(0)-»)?). Then we have the following

Lemma 5.4. Let d,(y’, D,, D,) be the (i,j) component of (C~)"'Cy.

i) When 8 < at/(1 — (n(0)-0)?) < B3 dy, is elliptic at p, = (0, t,, —eo’,
eay) and (dy)izs -1, 18 also elliptic at p,, if hy(a,/(1 — (n(0)-w)) # 0.

ii) When 82 < a/(1 — m(0)-w)?), dy, is elliptic at p,, if h,(e3/(1 — (n(0)w)?)
+0,dy, is elliptic at o, if h(2/(1 — (n(0)-w)*) # 0, and (d;;))i-ss -1 IS
elliptic at p,, if hy(a,/(1 — (n(0)-w)?) =+ 0.

Proof. The ellipticity of d,, and d,, at p, proved in the proof of
Lemma 5.3. From (2.4) it follows that the principal symbols of d,, and
d;; are zero at p, and the one of d,, is not zero at p,. Thus we may
prove that the principal symbol of d,; is not zero. By the same way as
in the procf of Lemma 5.3, one of equivalent conditions of the ellipticity
of d, at p, is the principal symbol of f, — 2uf,; is not zero at p,, where f;;
is the (i,j) component of the principal symbol of (C-)-!. Making use of
(2.4), we can easily derive that f,, — 2u.f, is equal to — |y/[47 k(|7 [D)
at y' = 0. The proof is completed. To prove the theorems we need the
following function
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hys) = {(Pl - Pz)s — 2(/11 - #2)}2 - {st + 2(/11 - #z)}z(albx)(s)
+ {08 — 201 — )} (@:b:)(s) — pipe{(a:0,)(s) — (a,b,)(9)}s*
- 4(/11 - ﬂz)z(axb1a2b2)(s) ,

where a,(s) = (s/ad — 1)'* (0 =1, 2), b(s) = (s/p; — 1)"* and by(s) is ie(1 —
s/BYV* if Bt < ad/(1 — n(0)-w)®) < B3 and is (s/p; — 1 if B < ai/(1 — (n(0) - w)?).

Proof of Theorem 5.1. We shall use the same notations appeared in
the proof of Theorem 4.1 and H(s) = (h;h)(s). By Lemma 5.3 there exists
a pseudo-differential operator a(y’, D,., D,) such that the (3, 2) component
of (C-)'Cy(I, + A) is essentially zero. We shall put

N4 N+ 1 - N4 N+
WOy, Uf) = (0 z) @5, U8) .
Then they satisfy a hyperbolic equation (D,, — A7)!(®f, ¥5) = g in y, > 0,
where g is smooth at p, and the principal symbol Aj(y/, D,,D,) is
ar(y',v,7)l,. From the assumption the boundary condition in (2.3) is
reduced to

(5.1) (v) =Fo. D, D)(T) + G ony =0,
V; U5

where p, ¢ WF(G) and the first and second column vectors of the 6 X 2
matrix F' = (c,;;) are equal to these of — (C~)"'C{ (I, + A). The assumption
S{w)C WF(u,) is equivalent to p, € WF(D1;,,-0) U WF(035,,-0). From Lemma
5.4 it follows that p, ¢ WF(vz|,,-0) U WF(v3),,-0), which means S(0) C WF(w,).
If we assume that p, e WF(3}|,,-,), then from the third component of the
right hand side of (5.1) we see that p, € WF(vgl,,-0), that is P, (o) WF(u,).
On the other hand if p, ¢ WF(0},|,,-,), then by the same reason it follows
that o, ¢ WF(vy|,,-0), that is P, (w)N WF(u,) = ¢. Finally we shall show
that € WE(il,eo) UWF3],-0), if hel(l — (n(0)-)) # 0. We assume
o1 ¢ WF(vi,5-0) U WF(v5;),,-0), then from the assumptions it follows that
does not belong to the wave front set of F(y’, D,., D)0, U5, Vs, “ Vo) |ys=0s
where the first and second column vectors of F, are equal to these of
Ci(I; + A), the third column vector of F, is equal to one of Cy, and the
fourth, fifth and sixth column vectors of F, are equal to these of —C,.
If F, is elliptic at p,, we have p, does not belong to WF(0;],,-0) U WF(D5;],,-0)-
This is a contradiction. From (2.4) if A a?/(1 — (n(0)-w)*) is not zero, F,
is elliptic at p,. The proof is completed. Next we shall consider the
case f; < ai/(1 — (n(0)-w)?.
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Proof of Theorem 5.2. We put Hys) = (hhh)(s). Using Lemma 5.3,
we can prove the first part by the same way as in the proof of Theorem
5.1. If we assume that I', is flat near 0, then the reduced boundary
value problem (2.3) does not depend on y’. Thus the symbol of C#(D,., D,)
is given by (2.4). It follows that the (3,2) and (6,2) components of
(C-)'Cy is both zero. Using this fact, we can prove the later part of
Theorem 5.1.

In the statement of the first part of Theorem 5.2 we only consider
refracted singularities, however on reflected singularities we have the
following

Remark 5.5. In assumptions of Theorem 5.2 we assume (h;h;h,)(c?/(1 —
(n(0)-w))") #+ 0 instead of (hh.h)(@}/(1 — (n(0)-w))?) #= 0. Then making use
of the statement ii) of Lemma 5.3 we have the following two cases: a”)
S,(w) U P(w) © WF(u) and S,(0) C WF(w,). b"’) S(e) C WF(u,), S.(0) C
WF(u;) and P (0)N WF(w,) = ¢.
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