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This study proposes a machine-learning-based subgrid scale (SGS) model for very coarse-
grid large-eddy simulations (vLES). An issue with SGS modelling for vLES is that,
because the energy-containing eddies are not accurately resolved by the computational
grid, the resolved turbulence deviates from the physically accurate turbulence. This limits
the use of supervised machine-learning models commonly trained using pairs of direct
numerical simulation (DNS) and filtered DNS data. The proposed methodology utilises
both unsupervised learning (cycle-consistency generative adversarial network (GAN))
and supervised learning (conditional GAN) to construct a machine-learning pipeline. The
unsupervised learning part of the proposed method first transforms the non-physical vLES
flow field to resemble a physically accurate flow field. The second supervised learning part
employs super-resolution of turbulence to predict the SGS stresses. The proposed pipeline
is trained using a fully developed turbulent channel at the friction Reynolds number
of approximately 1000. The a priori validation shows that the proposed unsupervised–
supervised pipeline successfully learns to predict the accurate SGS stresses, while a
typical supervised-only model shows significant discrepancies. In the a posteriori test, the
proposed unsupervised–supervised-pipeline SGS model for vLES using a progressively
coarse grid yields good agreement of the mean velocity and Reynolds shear stress with
the reference data at both the trained Reynolds number 1000 and the untrained higher
Reynolds number 2000, showing robustness against varying Reynolds numbers. A budget
analysis of the Reynolds stresses reveals that the proposed unsupervised–supervised-
pipeline SGS model predicts a significant amount of SGS backscatter, which results in the
strengthened near-wall Reynolds shear stress and the accurate prediction of mean velocity.
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1. Introduction
Large eddy simulation (LES) is becoming an increasingly important technique for
the accurate prediction of turbulence and is regarded as one of the key techniques
for computational fluid dynamics in the coming years (e.g. NASA CFD Vision 2030
by Slotnick et al. (2014)). In LES, the energy-containing eddies are resolved by the
computational grid, while the effects of the smaller eddies which are not resolved by the
grid are modelled using a subgrid scale (SGS) model. While this methodology reduces the
number of grid points required, LES is still computationally expensive for use in industrial
applications, especially when applied to wall-bounded flows. For example, Tamaki &
Kawai (2023) performed an LES of the flow around an airfoil at a chord-based Reynolds
number of Rec = 107 using the state-of-the-art supercomputer Fugaku. This simulation
required approximately 38 × 109 grid points to resolve the dynamically important near-
wall turbulent eddies which become progressively small with increasing Reynolds
number. Such high-Reynolds-number flow simulations, while crucial for computer-aided
engineering, are only possible using top-performing supercomputers. For industries to
apply LES in their early design stages, the computational cost of the LES is desired to be
made more affordable. In this study, we consider using coarser computational grids than
the conventional well-resolved LES to reduce the number of grid points. In particular, we
target cases where even the energetic eddies are not sufficiently resolved.

With coarse computational grids, a larger fraction of the turbulent kinetic energy
must be modelled by the SGS model. An example for SGS modelling is the eddy-
viscosity style model, such as the Smagorinsky model (Smagorinsky 1963; Lilly 1966),
the dynamic Smagorinsky model (Germano et al. 1991) and selective mixed-scale model
(Lenormand et al. 2000). However, while they accurately model the average dissipation
of kinetic energy for typical well-resolved LES, they are known to perform poorly for
wall turbulence with coarse grids (Jimenez & Moser 2000). It is shown that the eddy-
viscosity approximation is unable to accurately predict the mean SGS stresses, which
becomes increasingly important for wall turbulence with coarse grids. This error occurs
because the eddy-viscosity approach expresses the SGS stresses as scalar multiples
of the velocity gradient tensor, which does not hold well in real turbulence. Another
approach, the scale similarity model (Bardina, Ferziger & Reynolds 1980), is able to
more accurately reproduce the exact SGS stress components. However, this approach
is shown to poorly predict the energy dissipation. Combining the eddy-viscosity and
scale similarity ideas, Abe (2013) showed that splitting the SGS stress tensor into
dissipative and non-dissipative components and modelling them separately significantly
improves the prediction of wall turbulence with coarse grids. Close analyses of this SGS-
modelling approach revealed that the newly included terms significantly contribute to the
redistribution of velocity fluctuations among the three directions, which are confirmed
by direct numerical simulation (DNS) data to be indispensable to the regeneration of
turbulence (Inagaki & Kobayashi 2022, 2023).

In these SGS models, the SGS stress components are calculated from the resolved grid-
scale quantities with the assumption that the resolved quantities are physically accurate.
With very coarse grids focused on in this study, however, even the energy-containing
turbulent structures are intended not to be sufficiently resolved, which results in the non-
physical turbulent structures and statistics (which will be shown later). In this regard,
the non-physical turbulence in the resolved scales prevent conventional SGS models
from accurate predictions of SGS components, resulting in inaccurate turbulent statistics
(Rezaeiravesh & Liefvendahl 2018).

Machine learning is known to successfully find relationships among data that are
difficult to identify, and has also been applied to fluid mechanics (cf. the review by
1013 A28-2
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Brunton, Noack & Koumoutsakos (2020)). Some studies have applied machine learning
to SGS modelling (Gamahara & Hattori 2017; Lapeyre et al. 2019; Subel et al. 2021).
In particular, based on machine-learning-based turbulence super-resolution, Bode et al.
(2021) modelled the SGS stresses as the difference between the filtered DNS data and the
reconstructed DNS flow field.

Most studies in the field of machine-learning-based turbulence super-resolution are
based on supervised machine learning (e.g. Fukami, Fukagata & Taira (2019), Deng et al.
(2019) and Liu et al. (2020); also see review by Fukami, Fukagata & Taira (2023)), in
which the input and its expected output are given in pairs as the training data. For the
training of SGS models, filtered DNS (fDNS) data are usually used as the input, and
the original DNS flow field is used as the output to extract the SGS stress components.
Generally, machine learning models make accurate super-resolution predictions within
the statistical distributions of their training data. In this regard, the typical training method
assumes that fDNS data and LES data have similar turbulent statistics, i.e. fDNS≈LES.
However, as mentioned above, very coarse-grid LES (vLES) flow fields have different
statistics from fDNS, i.e. fDNS �=vLES. In this case, typical SGS models based on the
supervised machine learning trained on fDNS data are expected to be inappropriate for
vLES. A similar problem is also discussed in a review paper by Duraisamy (2021).

The above argument requires that the machine learning model be trained using vLES
and DNS data. An issue with this approach is that because the LES and DNS flow fields
are obtained separately, it is not possible to obtain the corresponding pairs of instantaneous
DNS and LES data that are required for supervised machine learning. In the case of well-
resolved LES, this problem can be overcome by using the fDNS data as a substitute for
the LES data since fDNS≈LES. On the other hand, because vLES and fDNS data are
significantly different (fDNS�=vLES) as considered in this study, fDNS data cannot be
used as the substitute. Therefore, it is necessary to use an unsupervised machine-learning
architecture to train this machine learning model.

In the field of image transformation, Zhu et al. (2020) have proposed the cycle-
consistency generative adversarial network (GAN) (CycleGAN). The CycleGAN enables
one type of image to be transformed into another type of image without the need for paired
training data. For example, CycleGAN can be used to transform an image of a horse into
that of a zebra, without requiring a picture of a zebra at the same location as the horse.
This relationship between images of horses and zebras is similar to that of LES and fDNS.
In fact, Kim et al. (2021) showed that CycleGAN can be used to perform super-resolution
of wall-parallel slices from a conventional well-resolved LES of turbulent channel flow. In
this study, we employ the CycleGAN to construct a machine-learning-based SGS model
that enable accurate predictions on coarse computational grids. Specifically, we employ
CycleGAN to convert the erroneous vLES flow fields to be physically accurate LES flow
fields (i.e. fDNS-quality flow fields). Then, typical supervised methods may be used to
accurately super-resolve the fDNS-quality flow fields and extract the SGS stresses.

In this study, we propose an unsupervised and supervised machine learning pipeline
for SGS modelling of vLES utilising CycleGAN as its unsupervised part. The proposed
machine learning pipeline performs super-resolution of vLES flow fields to output DNS-
quality flow fields. The predicted high-wavenumber components in the DNS-quality flow
fields are then extracted as SGS stress components. The proposed method is tested in
a turbulent channel flow in both a priori and a posteriori tests at the friction Reynolds
number of Reτ ≈ 1000. For the a posteriori test, the method is also tested at a higher
Reynolds number Reτ ≈ 2000 which is outside of the training dataset.

We emphasise that a key distinguishing factor of the proposed unsupervised and
supervised machine learning pipeline is that it operates on the non-physical flow fields
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of vLES to physically consistent flow fields for SGS modelling. While previous research
on supervised super-resolution achieves super-resolution from extremely coarse input data
(e.g. up to 32-times coarser data (Fukami et al. 2019; Yousif, Yu & Lim 2021)), such
input data are typically taken from physically accurate fDNS and therefore assumed to be
physically accurate coarse data. Therefore, well-established and widely used supervised
methods have not been shown to be effective for the non-physical flow fields of vLES.
Additionally, the unsupervised super-resolution method demonstrated by Kim et al. (2021)
was only verified for well-resolved LES (four-times courser than DNS), and thus the
input data do not contain non-physical flow structures. This study explores in detail the
effectiveness of the proposed unsupervised–supervised method for super-resolution and
SGS modelling in both a priori and a posteriori manners.

We note that, as mentioned above, the coarse computational grid that is the target of this
study cannot fully resolve the most energetic eddies of turbulence. Therefore, in this paper,
our primary purpose is the accurate prediction of the mean streamwise velocity (first-order
statistics). Correspondingly, the shear stress balance in the boundary layer requires the
accurate prediction of the Reynolds shear stress. On the other hand, accurate predictions
of the Reynolds normal stresses and the higher-order statistics are not the primary purpose
of this study. However, the high-order statistics will also be investigated in this paper to
elucidate their effects on the prediction of the mean velocity and Reynolds shear stress.

This paper is structured as follows. In § 2, the theoretical basis of the LES and the
employed machine learning techniques are reviewed. In § 3, the architecture of our
proposed pipeline is discussed. The details of the tests performed on the proposed
pipeline are given in § 4. We validate that the proposed unsupervised and supervised
machine learning pipeline enables appropriate super-resolution and prediction of SGS
stresses in an a priori test in § 5. Section 6 tests the performance of the proposed
SGS modelling methodology in the LES using a very coarse grid and investigate the
turbulence mechanism that yields the change in the predicted statistics. The robustness
of the proposed methodology to a different Reynolds number from the training data are
discussed in § 7. We conclude our study in § 8.

2. Governing equations and machine learning

2.1. Large-eddy simulation
Large-eddy simulation is a method for turbulence simulation in which the large energy-
containing eddies are resolved by the computational grid, while the effects of the small
eddies are modelled using SGS models. The compressible LES is used in this study, and
the compressible Navier–Stokes equations are

∂ρ

∂t
+ ∂(ρu j )

∂x j
= 0, (2.1)

∂(ρui )

∂t
+ ∂(ρui u j )

∂x j
= −∂(pδi j )

∂x j
+ ∂τi j

∂x j
, (2.2)

∂(ρE)

∂t
+ ∂(ρEu j )

∂x j
= −∂(pu j )

∂x j
+ ∂(τ jkuk)

∂x j
− ∂q j

∂x j
, (2.3)

where ρ, u, p denote the density, velocity and pressure, respectively. Here E is the total
energy defined as

E = p

ρ(γ − 1)
+ 1

2
ukuk, (2.4)
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with the heat capacity ratio of γ = 1.4 (ideal gas). Here τi j are the components of the
viscous stress tensor defined as

τi j = μ(T )Si j , (2.5)

Si j = ∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk
, (2.6)

where μ(T ) denotes the molecular viscosity calculated as a function of the temperature T
by Sutherland’s law. Here qi is the heat flux vector defined as

qi = −κ(T )
∂T

∂xi
, (2.7)

where κ(T ) is the heat conductivity as a function of the temperature.
An arbitrary quantity f can be decomposed into its spatially filtered value f and

deviations f ′ as f = f + f ′. Applying the filtering operation (·) to (2.1)–(2.3) and
neglecting the insignificantly small terms yields the following spatially filtered Navier–
Stokes equations (i.e. the LES equations) (Vreman 1995):

∂ρ

∂t
+ ∂(ρũ j )

∂x j
= 0, (2.8)

∂(ρũi )

∂t
+ ∂(ρũi ũ j )

∂x j
= −∂(pδi j )

∂x j
+ ∂

�
τi j

∂x j
− ∂

∂x j

(
ρũi u j − ρũi ũ j

)
︸ ︷︷ ︸

SGS term

, (2.9)

∂(ρ Ĕ)

∂t
+ ∂(ρ Ĕ ũ j )

∂x j
= −∂(pũ j )

∂x j
+ ∂(

�
τ jk ũk)

∂x j
− ∂

�
q j

∂x j

−ũ j
∂

∂xk

(
ρũ j uk − ρũ j ũk

)− 1
γ − 1

∂(pu j − pũ j )

∂x j︸ ︷︷ ︸
SGS terms

−
(

p
∂u j

∂x j
− p

∂ ũ j

∂x j

)
+
(

τik
∂u j

∂xk
− τ jk

∂ ũ j

∂xk

)
︸ ︷︷ ︸

SGS terms

, (2.10)

where the operators (̃·), (·)′′ represent the density-weighted filtering operation,

f̃ = ρ f

ρ
, f ′′ = f − f̃ . (2.11)

Here

Ĕ = p

ρ(γ − 1)
+ 1

2
ũk ũk, (2.12)

�
τi j = μ(T̃ )S̃i j , (2.13)

S̃i j = ∂ ũi

∂x j
+ ∂ ũ j

∂xi
− 2

3
δi j

∂ ũk

∂xk
, (2.14)

�
qi = −κ(T̃ )

∂ T̃

∂xi
. (2.15)
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X

Top-hat

filter
G

D

Figure 1. Schematic of supervised cGAN architecture: G, generator model; D, discriminator model; X ,
training dataset.

The last term of (2.9) and the last four terms of (2.10) on the right-hand side are known
as the SGS terms and cannot be computed from the resolved quantities (i.e. f and f̃ ),
therefore must be modelled using SGS models. As we focus on a low Mach number flow
(M ≈ 0.1) with negligible SGS effects in (2.10) in this study, we focus on modelling the
SGS term in (2.9).

2.2. Machine learning
In this study, both supervised and unsupervised learning techniques are employed for the
proposed pipeline method, as will be discussed in § 3. Here, the theoretical background
for the GAN architectures that are employed in this study is discussed.

2.2.1. Conditional GAN
Conditional GAN (cGAN) (Mirza & Osindero 2014) learns to generate data (output) from
a given condition (input) from the annotated set of data. For the purposes of this study,
cGAN can be considered as a mapping function that transforms the input data to the output.
Numerous studies have extended cGAN for use in super-resolution (cf. the review by Tian
et al. (2022)), and is used in this study as the supervised machine learning model for
super-resolution from fDNS data to DNS-quality flows. In the following, the employed
formulation is described.

A schematic of the employed cGAN architecture is shown in figure 1. In cGAN used
in this study, the generator network takes the low-resolution flow fields as input and tries
to output the corresponding high-resolution flow fields. The discriminator takes either
the output of the generator or the high-resolution (e.g. DNS) flow fields and tries to
discern between the ‘real’ data in the training dataset (DNS data) and the generated ‘fake’
data (DNS-quality data generated by the generator). Because of the need to provide the
corresponding high-resolution flow data for each low-resolution data as the paired training
dataset, cGAN is classified as a supervised learning model.

To make the training procedure more stable, we employ Wasserstein GAN with gradient
penalty (Gulrajani et al. 2017). Therefore, the loss function used in this study is as follows:

LcGAN(G, D) =ExHR∼PX

[
D
(
xHR|xLR)− D

(
G
(
xLR)|xLR)]

− λGPEx̂∼PX̂

[(‖∇x̂ D(x̂)‖2 − 1
)2]

. (2.16)

Here G and D are the generator and discriminator represented as a mapping function.
Here D(xHR|xLR) represents the output of the discriminator for the input xHR, provided
the condition xLR, where the superscripts ‘HR’ and ‘LR’ represent ‘high resolution’ and
‘low resolution’ respectively. Here Ex∼PX [ f (x)] denotes the expected value of an arbitrary
function f (x) when x is sampled from distribution X . In this study, X represents the
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DX

DY

X

G

F

Y

Figure 2. Schematic of unsupervised CycleGAN architecture: F and G, generator models; DX and DY ,
discriminator models; X and Y , training datasets.

distribution of high-resolution data (DNS data), and xLR (filtered DNS data) is obtained
by applying a top-hat filter to xHR. The first term is known as the adversarial loss. This
loss encourages the discriminator to differentiate between real data and generated data
more accurately, while the generator is led to be more able to deceive the discriminator.
Here x̂ ∼ PX̂ represents random samples from a random distribution X̂ . Here ∇z f (z) is
the partial derivative of f (z) with respect to z, and ‖ · ‖2 is the L2 norm. Here λGP is the
constant weight coefficient for the last term, the gradient penalty loss, which constrains
the discriminator to be a 1-Lipschitz function as is required in the Wasserstein GAN
formulation. We found through preliminary experiments that for λGP = 1, 10, 100, the
results show no significant sensitivities, in which λGP = 10 (recommended in the original
paper (Gulrajani et al. 2017)) performs slightly better. Therefore, in this paper, λGP is set
to 10.

The process of learning the super-resolution mapping can be expressed as the following
optimisation problem:

arg min
G

max
D

LcGAN(G, D). (2.17)

The goal of this process is to obtain the super-resolution mapping G that, given low-
resolution data xLR, predicts the high-resolution data, i.e. G(xLR) ≈ xHR. This is solved
by iteratively updating the parameters of the networks according to the used optimiser
algorithm.

2.2.2. Cycle-consistency GAN
In this study, CycleGAN (Zhu et al. 2020) is employed for the unsupervised learning of
mappings between the vLES flows and fDNS flows. Figure 2 shows the schematic of a
CycleGAN architecture. Here X and Y indicate the domains of data. In this study, they
represent the vLES flow fields and fDNS flow fields, respectively. Unlike regular GAN
architectures, a CycleGAN architecture consists of two generator networks (F, G) and
two discriminator networks (DX , DY ). Each generator is encouraged to learn a mapping
that conserves the common characteristics between the two domains through the use of
the cycle consistency loss. Mathematically, this process is understood as an optimisation
problem of mapping functions F and G between data distributions X and Y .

The loss function used in this study is expressed as follows:

L(F, G, DX , DY ) =LGAN(F, DX ) +LGAN(G, DY ) + λcycLcyc(F, G). (2.18)
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The first two terms of (2.18) are the adversarial losses defined as follows:

LGAN(F, DX ) =Ex∼PX [DX (x)] −Ey∼PY

[
DX (F(y))

]
− λGPEx̂∼Px̂

[(‖∇x̂ DX (x̂)‖2 − 1
)2]

, (2.19)

LGAN(G, DY ) =Ey∼PY

[
DY (y)

]−Ex∼PX [DY (G(x))]

− λGPEŷ∼Pŷ

[(‖∇ŷ DY (ŷ)‖2 − 1
)2]

. (2.20)

The adversarial losses are similar to the loss function of cGAN (2.16) except that they are
not conditioned; i.e. the discriminators have only one input as opposed to two (input and
condition) in cGAN. The third term of (2.18) is the cycle consistency loss, with a constant
weight coefficient of λcyc = 1. The cycle consistency loss is defined as

Lcyc(F, G) =Ex∼PX [‖F(G(x)) − x‖2] +Ey∼PY [‖G(F(y)) − y‖2)]. (2.21)

This loss ensures that after data passes through the two generators, the original data
are recovered; that is, F(G(x)) ≈ x and G(F(y)) ≈ y. This incentivises each mapping
function F and G to retain the shared characteristics of the two datasets. The value of
the weight coefficient λcyc was determined based on the preliminary experiments in which
λcyc = 1 performed better than the originally recommended value of λcyc = 10 (Zhu et al.
2020). The objective of the training phase is to find the model parameters that meet the
following condition:

arg min
F,G

max
DX ,DY

L(F, G, DX , DY ). (2.22)

3. Methodology
The proposed machine-learning methodology to SGS modelling consists of mainly two
steps: the super-resolution of the input vLES flow field by the machine learning pipeline
and the extraction of SGS components from the super-resolved DNS-quality flow field.
Each step is described in the following subsections.

3.1. Machine-learning pipeline
Here we describe the proposed machine-learning-based super-resolution pipeline. The
pipeline consists of two parts: the vLES-to-fDNS model (GvLES−fDNS) that converts
vLES velocity data to the data of fDNS quality, and the super-resolution model (GSR)
that converts the fDNS-quality velocity data to the desired DNS quality data. Figure 3
illustrates the architecture of the pipeline. The vLES-to-fDNS model GvLES−fDNS (figure
3a) is obtained as one of the generators in the CycleGAN (G in § 2.2.2). Since the pairs
of instantaneous flow fields for vLES and fDNS are unobtainable, learning the mapping
between vLES and fDNS must be performed in an unsupervised manner, as discussed in
§ 1. Therefore, this model is trained and runs inference on vLES and fDNS data. The super-
resolution model GSR (figure 3b) is trained using fDNS flow fields to obtain the original
DNS flow fields that are before the filtering operation. In this study, the model is obtained
by cGAN. The proposed pipeline (figure 3c) combines the two constructed models. In the
pipeline, the fDNS-quality output of the vLES-to-fDNS model GvLES−fDNS is used as the
input to the super-resolution model GSR to accurately perform the super-resolution. To
summarise, the super-resolved flow field of DNS quality data are obtained by sequentially
processing the vLES data through the two models as

y = GSR(GvLES−fDNS(x)), (3.1)
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(a)  Unsupervised training

CycleGAN

(c)  Proposed pipeline

Very coarse

LES f low
GVLES–fDNS GSR

Filtered DNS-

quality flow

DNS-quality f low

(b)  Supervised training

Conditional GAN

Figure 3. Schematic of the proposed unsupervised–supervised machine learning pipeline (c). The first model
is taken from an unsupervisedly trained CycleGAN model (a), and the second model is from a supervisedly
trained conditional GAN model (b). Blue and green models, generators; orange models, discriminators; grey
squares, training data.

where x represents the input velocity data of the vLES and y represents the output DNS-
quality velocity data.

It should be noted that we have first attempted to train a single model to achieve the
above super-resolution problem, that is, we train a vLES-to-DNS model using CycleGAN
with vLES and DNS data as the training data. However the training did not properly
converge, and the resulting model’s performance was unsatisfactory. We believe that the
difficulty originates from the training process of the CycleGAN architecture, in which the
four constituent machine-learning models (shown in figure 2) must learn at a similar pace
for the duration of the training process. When vLES and DNS are used as the training
data for the CycleGAN, the different numbers of grid points in the two datasets lead to
an unbalanced training process which degrades the convergence of the trained models.
Similar findings regarding using multiple models were also reported in other studies, such
as unsupervised super-resolution of natural images (Lugmayr, Danelljan & Timofte 2019),
and spatiotemporal super-resolution of fluid flow (Fukami, Fukagata & Taira 2021).

We stress that for SGS modelling in vLES, the unsupervised vLES-to-fDNS model is
crucial for accurate predictions of SGS stresses. The idea stems from the fact that because
vLES does not sufficiently resolve the energetic eddies, the resolved scales of turbulence
is not accurate; that is, the resolved flow fields are not equivalent to the filtered DNS
(i.e. vLES �= fDNS). Therefore, typical supervised super-resolution models which are
trained on fDNS and DNS are not applicable to the super-resolution of vLES. It is thus
necessary to first convert the vLES flow fields to fDNS-quality flow fields before inputting
into the super-resolution model. This machine learning process must be performed by an
unsupervised model because it is impossible to obtain the pairs of vLES (input) and fDNS
(expected output), as discussed in § 1. This class of problem is sometimes classified as
‘style transfer’ using unpaired datasets. While there exist many other methods that also
accomplish the same task (e.g. CUT (Park et al. 2020) and DCLGAN (Han et al. 2021)),
CycleGAN (Zhu et al. 2020) enables such unsupervised learning through a relatively
simple architecture, and, as will be shown later in § 5.1, CycleGAN is effective for the
vLES-to-fDNS model.

We also note that, with an artificial modification function g such that g(DNS) ≈ vLES,
we may supervisedly train a machine learning model using the one-to-one corresponding
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ˆ

Figure 4. Schematic of the SGS extraction process. Figure shows the process for m = 2.

pairs of g(DNS) and DNS flow fields as the training data. Such training procedure would
allow for a supervised machine learning model to perform the accurate super-resolution
from vLES to DNS. However, the effects of errors caused by coarse grid resolutions
are not well understood to construct such function g today. Therefore, we must resort to
unsupervised learning methods to train machine learning models that can take vLES flow
fields as the input.

The choice of cGAN as the supervised super-resolution model as opposed to a simple
neural network (using the L2 error as the loss function, for example) is based on the reports
that GANs show better predictions of small-scale turbulent structures (Güemes et al. 2021;
Kim et al. 2021). The same tendencies are obtained using the dataset of this study; cGAN
shows better agreement of the small-scale structures compared with a simple convolutional
neural network (CNN). As accurate predictions of small structures are key to accurate
predictions of SGS stresses, we employ the cGAN in this study.

3.2. Extraction of SGS components
To utilise the super-resolved flow obtained by the proposed pipeline as an SGS model,
the small-scale unresolved turbulence reconstructed by the super-resolution pipeline is
extracted as SGS stress components. Figure 4 illustrates this process. Consider that
the two-dimensional distributions of the three components of velocity ui ∈RH×W×3

on a grid of H × W points (where (u1, u2, u3) = (u, v, w), the three components of
velocity) is super-resolved by a factor of m. The super-resolved flow field is expressed
as the distribution on a m H × mW grid as uSR

i,kl ∈Rm H×mW×3. Here, the subscripts
1 � k, l � m indicate the position of a super-resolved grid point within the given
original coarse grid point. In other words, the space occupied by a single grid point of
the vLES is now occupied by m2 grid points of the super-resolved velocity field.
Applying a top-hat filter (̂·) to the output velocity field uSR

i,kl yields the filtered velocity
components ûi ∈RH×W×3 and fluctuations u∗

i,kl ≡ uSR
i,kl − ûi ∈Rm H×mW×3. Local SGS

stress components can then be calculated as −u∗
i,klu

∗
j,kl ∈Rm H×mW×3×3. Finally, applying

a top-hat filter to the local SGS stresses yields the SGS stress components τij,SGS ≡
−û∗

i u∗
j ∈RH×W×3×3, which will then be used as the SGS stress terms in (2.9) in the

computational fluid dynamics solver. In actuality, because τij,SGS = τ j i,SGS is satisfied, the
SGS stress tensor τij,SGS has H × W × 6 degrees of freedom.
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Lx/δ Lz/δ L y/δ 	x+ 	z+ 	y+ δ/	x Nx Nz Ny

DNS 6π 2π 2 9.0 4.5 0.5–6.0 111.1 2160 1440 669
LESx4 6π 2π 2 36 18 0.8–6.0 27.8 540 360 600
LESx8 6π 2π 2 72 36 0.8–16 13.9 270 180 285

Table 1. List of parameters for each computational set-up. Lx , Lz and L y denote computational domain size.
Here 	x , 	y and 	z denote grid resolutions in each direction, and superscript (·)+ represents values in wall
units. Here Nx , Nz and Ny denote number of grid points in each direction.

During the simulation (results presented in § 6 and § 7), the clipped SGS stress τ
clip
ij,SGS is

used for numerical stability according to the following equations:

τ
clip
ij,SGS ≡

{
τij,SGS if μeff > μclip,

τij,SGS −
(

1 − μclip
μeff

)
μeffSi j otherwise. ,

μeff ≡
∑

i j τij,SGS
∂ui
∂x j∑

i j Si j
∂ui
∂x j

. (3.2)

Here, Si j is the deviatoric part of the strain tensor as in (2.6) and μclip � 0 is given as the
simulation parameter. The clipping procedure is designed to bound the minimum possible
effective viscosity by μclip. As a result, only the most extreme and rare localised energy
backscatter events (i.e. very large negative μeff) that may destabilise the simulation but are
physically important for the accurate simulation of turbulence are weakened to a moderate
backscatter. In this study, the parameter is set to μclip/μw ≈ −2. We note that it is desirable
to set the value of μclip as low as possible to minimise the amount of backscatter that is
clipped in the simulation while ensuring its stability. The sensitivity of the results against
the value of μclip is shown in Appendix C.

4. Dataset generation and training process

4.1. Simulation settings for dataset generation
To train our proposed machine-learning-based SGS modelling methodology, the data from
DNS and LES of a fully developed turbulent channel flow are obtained by the well-
validated compressible flow solver (Kawai & Fujii 2008; Asada & Kawai 2018; Kawai
2019; Hirai, Pecnik & Kawai 2021; Kamogawa, Tamaki & Kawai 2023; Tamaki & Kawai
2023). As discussed in § 2.1, DNS solves (2.1)–(2.3), while LES solves (2.8)–(2.10).

The parameters of the computational grids are summarised in table 1. A uniform grid
in the streamwise direction x and spanwise direction z is used for both the DNS and LES;
the DNS grid spacings are (	x+, 	z+) ≈ (9.0, 4.5), and the LES grid spacings are four
times ((	x+, 	z+) ≈ (36, 18)) and eight times ((	x+, 	z+) ≈ (72, 36)) that of the DNS
for LESx4 and LESx8 cases, respectively. The DNS grid spacings are comparable to the
previous studies by Lee & Moser (2015). Here the superscript (·)+ denotes quantities in
wall units. We have confirmed that the present DNS grid shows grid convergence in terms
of the turbulent statistics studied in this study. The grid spacings of LESx4 are roughly
comparable to the conventional LES, while LESx8 corresponds to the vLES targeted in
this study. The Reynolds number based on the channel half-width δ and bulk velocity ub
is set as Reb,δ ≈ 20000, which gives the friction Reynolds number Reτ ≈ 1000. The bulk
Mach number is set as Mb = ub/aw ≈ 0.1, where aw is the speed of sound at the wall. The
flow is driven by a constant body force in the streamwise direction as s = τw/δ, where τw
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Figure 5. Mean streamwise velocity (a) and Reynolds stresses (b) of DNS, LESx4 and LESx8. Here circles,
DNS; dashed lines, LESx4; solid lines, LESx8. For (b) blue, streamwise Reynolds normal stress (u′u′); orange,
wall-normal Reynolds normal stress (v′v′); green, spanwise Reynolds normal stress (w′w′); red, Reynolds shear
stress (u′v′).

is the skin friction estimated by Dean’s empirical correlation (Dean 1978) as

C f = τw

1
2
ρbu2

b

= 0.073Re−0.25
b,2δ . (4.1)

Here, the bulk density ρb is given as the initial state. The constant body force fixes the wall
shear stress τw and the friction Reynolds number Reτ to a constant so that the near-wall
grid resolution in wall units is the same between the different computational set-ups. This
method of applying a constant body force has been compared with other methods (constant
flow rate and constant power input) and, for the purposes of this study, has negligible
effects on the flow fields (Quadrio, Frohnapfel & Hasegawa 2016). The adiabatic non-slip
boundary condition is applied at the walls, and the periodic boundary condition is applied
in the streamwise and spanwise directions.

The third-order total variation diminishing Runge–Kutta method (Gottlieb & Shu 1998)
is used for time integration. The second-order kinetic energy and entropy preserving
(KEEP) scheme (Kuya, Totani & Kawai 2018) is used for spatial discretisation. The
KEEP scheme is a split-form-based non-dissipative central scheme and achieves robust
computation without introducing numerical dissipations, and thus there is no dissipation
error in the DNS and LES. While the results of an LES should not depend on the
employed discretisation scheme, this issue is important for vLES in which the energetic
eddies are intended to be not resolved well, leading to discretisation errors involved in the
solutions. Therefore, in this study, we employ the KEEP scheme whose non-dissipative
and robust characteristics have been shown to be effective for the LES (Asada et al.
2023). We also emphasise that the non-dissipative characteristic is highly desirable for
the very coarse LES to discuss the effects of different SGS models as the SGS dissipation
is not contaminated by the numerical dissipation. The selective mixed-scale SGS model
(Lenormand et al. 2000) is used as the SGS model for the LES.

Figure 5 shows the mean streamwise velocity and the Reynolds stresses obtained by the
DNS, LESx4 and LESx8. The LESx4 reproduces the mean streamwise velocity of DNS
well, whereas LESx8 overestimates the velocity. Similarly in the Reynolds stresses, LESx4
agrees well with the DNS while LESx8 shows deviations from the DNS. The discrepancies
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in the vLES (i.e. LESx8) make learning the mappings difficult as the machine learning
model must also learn to significantly adjust the means and variances from the input data.

In the tests, LESx4 serves as the baseline conventional LES case where the resolved
turbulent statistics agree reasonably well with the DNS. On the other hand, LESx8 serves
as the very coarse-grid case where correct turbulence must be predicted from erroneous
resolved turbulent fields. Considering the spanwise wavelength of the near-wall streak
structures at λ+z ≈ 100 (Smith & Metzler 1983), LESx8 (vLES) places two to three grid
points per wavelength of the near-wall streaks.

4.2. Training settings
In the simulations of wall turbulence, a grid that is uniform in the wall-parallel directions
and non-uniform in the wall-normal direction is often used. Convolution in the wall-
normal direction may be unsuitable because the convolution operation expects that the grid
resolution does not change between training and inference; this is not the case with non-
uniform grids when the flow condition (such as the Reynolds number) changes. Therefore,
we choose to super-resolve each wall-parallel plane separately, then combine the results to
reconstruct the entire three-dimensional flow fields.

To learn the two-dimensional super-resolution mapping that works throughout the chan-
nel, eight wall-parallel planes at different distances from the wall are chosen as the training
data: four from the inner layer scaling (y+ ≈ 5, 15, 30, 100) and four from the outer
layer scaling (y/δ = 0.25, 0.50, 0.75, 1.00). The slices at y+ ≈ 5, 15, 30, 100 correspond
to y/δ = 0.005, 0.015, 0.03, 0.1, respectively. As the various flow characteristics of the
turbulent channel are included in the training data, the wall-parallel planes that are not
included in the training data are expected to be treated as an interpolation between the
learned turbulent structures. As the employed Mach number is low in this study (Mb ≈
0.1), the contributions of compressibility to the flow are negligible and the temperature
can be considered as a passive scalar. Therefore, the three components of velocity (u, v, w)
are considered for training and prediction to obtain the SGS stress components.

As the turbulent channel is symmetric about the centreline, instantaneous snapshots
from both walls of the channel are collected to obtain the training data. Here 1600
snapshots from each of the x−z planes are used as the training data, that is, a total
of 25 600 snapshots (1600 snapshots × 8 planes × 2 walls) for both DNS and LES.
The snapshots are taken every 	t+ ≈ 2.9. Here 40 snapshots independent from the
training data are used to create the results shown in the following § 5. As discussed in
§ 3.1, the unsupervised training (figure 3a) requires vLES and fDNS flow fields, while
the supervised training (figure 3b) requires fDNS and DNS flow fields as the training
dataset. The fDNS flow fields in the datasets are obtained by applying a top-hat filter and
downsampling the DNS flow fields in the streamwise and spanwise directions. During the
training for the LESx4, random patches of 256 × 256 grid points from the DNS snapshots
and 64 × 64 grid points from the LESx4 snapshots are used with zero-padding for the
convolution operation. These patches correspond to the size of 2.304δ × 1.152δ in physical
space. This choice is because the size of the largest structures in turbulent channel flow
scales with δ (Liu, Adrian & Hanratty 2001), and the patches with a size of at least δ × δ is
required during the training to capture the large-scale structures in the outer-layer regions.
Likewise in the training of LESx8, random patches of 32 × 32 grid points are used for
consistency. During testing, however, the snapshots for the full computational domain are
used as inputs, i.e. 540 × 360 grid points for LESx4 and 270 × 180 grid points for LESx8.
Periodic padding is used during testing so that the periodic boundary condition of the
turbulent channel is satisfied by the output flow field.
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All networks in this study are two-dimensional fully convolutional networks. The
detailed architectures of each network are shown in Appendix A. Adam (Kingma & Ba
2014) with α = 10−5, β1 = 0.5 is employed as the optimisers for all networks. The learning
rate is 10−5, and a batch size of 16 is used.

The convention in the machine learning community is to normalise the input and output
data to have zero mean and unit standard deviation. However, this process requires prior
knowledge of the output distributions, which is not always available as the DNS data.
Therefore, in this study, both input and output data are normalised by the mean and stan-
dard deviation of the input for each off-wall distance. With this normalisation method, the
output data do not always have zero mean and unit standard deviation. In particular, the in-
put velocities at the non-slip wall boundary are always zero; that is, the mean and standard
deviation of the input data are zero. To undo the normalisation of the machine-learning
output for the velocities at the wall, the output velocities are multiplied by the input
standard deviation of zero, which always produces zero velocity as the output. Therefore,
the non-slip boundary conditions at the walls are satisfied by the output flow field.

5. Validation of machine learning pipeline
In this section, we perform the a priori test of the proposed unsupervised–supervised
machine learning pipeline, and the predicted turbulent flows and statistics are discussed.
The SGS stresses are also extracted from the super-resolved flow fields and compared
with the reference data. Here, to test whether the machine-learning pipeline is trained
appropriately to predict the SGS stress components, we use the precomputed flow field
from the LES using a conventional SGS model (selective mixed-scale model in this study)
at the friction Reynolds number of Reτ ≈ 1000 (same as the training data) as the input of
the proposed pipeline and test the prediction accuracy for each of the pipeline component.
Here 40 instantaneous snapshots that are independent from the training data are used to
produce the results in this section, as discussed in § 4.2. For brevity, we only show the
results of the models for LESx8 as a vLES case in this section. We note that the proposed
pipeline also works well for LESx4 without major drawbacks, and the results are shown in
Appendix B. For the remainder of this section, LESx8 is simply referred to as vLES.

The results of the a priori tests are discussed in the following three parts. In
§ 5.1, the performance of the unsupervisedly trained vLES-to-fDNS model GvLES−fDNS
(figure 3a) is assessed using the vLES flow fields as the input and the fDNS flow fields as
the reference data. In § 5.2, the performance of the supervisedly trained super-resolution
model GSR (figure 3b) is assessed using the pairs of fDNS flow fields as the input and the
DNS flow fields as the reference data. Section 5.3 combines the above two models and dis-
cusses the performance of the proposed unsupervised–supervised pipeline (figure 3c) us-
ing the vLES flow fields as the input and the DNS flow fields as the reference data. We note
that, because of the low Mach number 0.1 as discussed in § 4.2, we treat the flow as incom-
pressible. Therefore, in this section, the Reynolds-averaged turbulence statistics are shown.
Additionally, because the proposed machine-learning models are not trained to predict the
wall shear stress τw, comparing the results in wall-units (·)+ which requires the wall shear
stress for the normalisation is not an appropriate choice. Therefore, in this section, the
results are normalised by the bulk parameter ub which is constant throughout the paper.

5.1. The vLES-to-fDNS model GvLES−fDNS (CycleGAN)
In this subsection, the unsupervised machine learning model GvLES−fDNS is constructed
and its performance is tested. The model is trained using the vLES flow fields and fDNS
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Figure 6. Instantaneous velocity distributions in wall-parallel (x–z) plane for vLES-to-fDNS model
GvLES−fDNS at Reτ ≈ 1000. The region corresponds to (Lx , Lz) = (1.152δ, 0.576δ). Velocity components are
non-dimensionalised by the bulk velocity ub. Here (i,iv,vii) streamwise component (u); (ii,v,viii) wall-normal
component (v); (iii,vi,ix) spanwise component (w); (i–iii) input vLES; (iv–vi) predicted flow; (vii–ix) reference
fDNS.

flow fields, and thus, the inputs are the vLES flow fields, the outputs are the fDNS-quality
flow fields, and the reference data are the fDNS flow fields.

5.1.1. Instantaneous flow fields
Figure 6 shows the instantaneous velocity distributions of the input vLES flow fields,
the predicted fDNS-quality flow fields obtained through the unsupervised GvLES−fDNS
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in figure 3, and the reference fDNS flow fields at y+ ≈ 15 and 100. Here, because the
CycleGAN model is trained unsupervisedly without paired instantaneous flow fields, there
does not exist the exactly same instantaneous fDNS flow field that corresponds to the input
instantaneous vLES flow field. Thus, the reference fDNS data are shown for qualitative
comparisons only, and quantitative comparisons are in the discussion of the turbulence
statistics in § 5.1.2.

In the predicted flow fields, the high streamwise velocity in the middle of the
domain in figure 6(a) and throughout the domain in figure 6(b) obtained by the vLES
(figure 6(a)i–iii and figure 6(b)i–iii) decreases to match the velocity magnitude observed
in the fDNS flow field. The difference between the highest and lowest velocity magnitude
is also lowered, which signifies that the variances of the predicted velocities are
appropriately decreased from the vLES input. The small-scale structures are missing in
the wall-normal velocity distributions of vLES at y+ ≈ 15, unlike its fDNS counterpart.
This difference is alleviated by the machine learning model creating fine structures similar
to the ones obtained by the fDNS. These observations will be quantitatively assessed
in the following § 5.1.2. It is important to point out that these changes are performed
while the large resolved turbulent structures in the vLES data remain unchanged. In other
words, the information of the original vLES remains although the proper adjustments
are made by the unsupervised machine learning model GvLES−fDNS. This characteristic
is crucial as the SGS stress represents the interaction between the large resolved scales
and small unresolved scales. That is, if the resolved scales are significantly altered
by the unsupervised machine learning model GvLES−fDNS, the predicted SGS stress
components predicted using the changed resolved scales (as in § 5.3.2) would not be able
to appropriately represent the effect on the original flow field.

Figure 7 shows a streamwise (y–z) cross-sectional plane of the instantaneous velocity
distributions. As discussed in § 3, the present machine learning model processes each
wall-normal plane independently. This method may cause spurious discontinuities
between each wall-normal plane, however, the results suggest that there are no clear
discontinuous velocity distributions across the wall-normal direction. This may be
understood by considering that the machine learning model consists of convolution layers
which are continuous functions with respect to the change in input. Therefore, because the
flow fields at adjacent wall-normal planes are continuous, the output flow fields are also
continuous in the wall-normal direction.

We stress again that the fDNS flow fields shown in figures 6 and 7 do not correspond on
a one-to-one basis to the flow fields predicted by the CycleGAN model. Because the input
vLES flow fields are not created by filtering the DNS flow fields, there does not exist an
exactly-the-same instantaneous reference flow field corresponding to the input vLES flow
field. The fDNS flow fields shown in the figure as ‘reference’ are taken from a simulation
that is independent from the vLES simulation. As a result, the instantaneous flow fields
shown in the figures should only be compared qualitatively in terms of the exhibited flow
features, not quantitatively in terms of their congruence. Quantitative comparisons based
on turbulence statistics are presented in § 5.1.2.

5.1.2. Turbulence spectra and statistics
Figure 8 shows the streamwise and spanwise energy spectra for the three components of
velocity at y+ ≈ 15 and y+ ≈ 100. The input vLES spectra show significant deviations
from the fDNS spectra, which show the effects of the insufficient grid resolution of the
very coarse computational grid. On the other hand, the predicted output spectra show good
agreements with those of the reference fDNS for both off-wall locations shown.
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Figure 7. Instantaneous velocity distributions in streamwise (y–z) cross-sectional plane for vLES-to-fDNS
model GvLES−fDNS at Reτ ≈ 1000. The region corresponds to (L y, Lz) = (δ, 2δ). Velocity components are
non-dimensionalised by the bulk velocity ub. Here (i,iv,vii) streamwise component (u); (ii,v,viii) wall-normal
component (v); (iii,vi,ix) spanwise component (w); (i–iii) input vLES; (iv–vi) predicted flow; (vii–ix) reference
fDNS.

The mean streamwise velocity and the resolved Reynolds stresses of the predicted flows
are shown in figure 9. The turbulence statistics show good agreements with those of the
reference fDNS. A slight underprediction is observed for the streamwise normal Reynolds
stress profiles at 0.1 � y/δ � 0.7. Although not shown here, we have confirmed that this
discrepancy originates from the underprediction of the low-wavenumber components of
turbulence. However, as shown in the later subsections, this discrepancy does not degrade
the machine learning pipeline’s ability to predict the correct SGS stresses.

The results indicate that the unsupervised CycleGAN model is highly effective at
converting the non-physical vLES flow fields to physically correct fDNS-quality flow
fields. This kind of conversion is impossible without the use of an unsupervised learning
method, where paired training data of inputs and expected outputs are not required.

5.2. Super-resolution model GSR (cGAN)
This subsection tests the performance of the supervised super-resolution model GSR. The
model is trained on the paired data of filtered DNS flow fields (fDNS) and the original
DNS flow fields, and is designed to super-resolve the fDNS-quality flow fields obtained
from GvLES−fDNS in the latter-half of the proposed unsupervised–supervised pipeline.
Here, to test the performance of GSR individually, the fDNS flow fields obtained from
the DNS flow fields are used as the input, and the corresponding DNS flow fields are the
references.

5.2.1. Instantaneous flow fields
Figure 10 shows the instantaneous velocity distributions of the super-resolved flows from
the cGAN model GSR. As with figure 6, the wall-normal planes at y+ ≈ 15 and 100 are
shown. Unlike the vLES-to-fDNS model GvLES−fDNS which is trained using unsupervised
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Figure 8. (a,c) Streamwise and (b,d) spanwise energy spectra of predicted velocity for vLES-to-fDNS model
GvLES−fDNS at Reτ ≈ 1000. Here (a,b) y+ ≈ 15; (c,d) y+ ≈ 100; blue, streamwise component; orange, wall-
normal component; green, spanwise component; solid lines, predicted flow; circles, reference fDNS; pluses,
input vLES.
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Figure 9. (a) Mean streamwise velocity and (b) resolved reynolds stresses of predicted flow at Reτ ≈ 1000.
Solid lines, predicted flow; circles, reference fDNS; pluses, input vLES. For (b) blue, streamwise normal
component (u′u′); orange, wall-normal normal component (v′v′); green, spanwise normal component (w′w′);
red, shear component (u′v′).
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Figure 10. Instantaneous velocity distributions in wall-parallel (x–z) plane for super-resolution model GSR
at Reτ ≈ 1000. The region corresponds to (Lx , Lz) = (1.152δ, 0.576δ). Velocity components are non-
dimensionalised by the bulk velocity ub. (i,iv,vii) Streamwise component (u); (ii,v,viii) wall-normal component
(v); (iii,vi,ix) spanwise component (w); (i–iii) input fDNS; (iv–vi) predicted super-resolved flow; (vii–ix)
reference DNS.

machine learning, this super-resolution model is supervisedly trained since the paired
training data of fDNS and DNS can easily be obtained by applying a filter to DNS flow
fields. Thus, the reference DNS flow field is the expected instantaneous output for the
input fDNS flow field. The figure shows that the super-resolution model can reconstruct
the high-wavenumber components that are not present in the input fDNS. Figure 11 shows
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Figure 11. Instantaneous velocity distributions in streamwise (y–z) cross-sectional plane for super-resolution
model GSR at Reτ ≈ 1000. The region corresponds to (L y, Lz) = (δ, 2δ). Velocity components are non-
dimensionalised by the bulk velocity ub. (i,iv,vii) Streamwise component (u); (ii,v,viii) wall-normal component
(v); (iii,vi,ix) spanwise component (w); (i–iii) input fDNS; iv–vi) predicted super-resolved flow; (vii–ix)
reference DNS.

the streamwise (y–z) cross-sectional planes of the velocity fields. As with figure 7, there
are no clear discontinuous velocity distributions across the wall-normal direction owing to
the similarities between the adjacent wall-normal planes.

5.2.2. Turbulence spectra and statistics
In figure 12, the energy spectra of the super-resolved flows are shown. The components of
the wavenumbers that are lower than the vertical dashed lines in the figure are resolved
by the fDNS, while the higher wavenumber components must be newly generated. In
other words, the higher wavenumber components are not included in the input, and
they are predicted by the super-resolution model. The predicted flows of the super-
resolution model show good agreements in the high-wavenumber components of the
flow. While discrepancies are observed in the highest-wavenumber components, they
are insignificantly small by three to four orders of magnitude compared with the most
energetic eddies. In fact, the discrepancies are indeed negligible to the mean streamwise
velocity and the resolved Reynolds stresses, as shown in figure 13. Furthermore, in the
resolved wavenumbers (left of the vertical dashed lines), the discrepancies between the
input fDNS and the reference DNS are corrected by the super-resolution, most evidently
in the wall-normal component. As the low-wavenumber components carry much of the
turbulent kinetic energy, this correction is an important part of the super-resolution process
in terms of the recovery of the energy. As shown in figure 13, the mean streamwise
velocity and the Reynolds stresses of the super-resolved flows show good agreements with
those of the reference DNS. We note that the spikes of the spectra occurring at some
of the high wavenumbers are known as the chequerboard artefact (Odena, Dumoulin &
Olah 2016). These artefacts are known in the field of computer vision to be avoidable by
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Figure 12. (a,c) Streamwise and (b,d) spanwise energy spectra of predicted super-resolved velocity fields
at Reτ ≈ 1000. Here (a,b) y+ ≈ 15; (c,d) y+ ≈ 100. Blue, streamwise component; orange, wall-normal
component; green, spanwise component. Solid lines, predicted super-resolved flow; circles, reference DNS;
pluses, input fDNS. Black vertical dashed lines indicate maximum wavenumber resolved by the input fDNS
(cutoff wavenumber).
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Figure 13. (a) Mean streamwise velocity and (b) resolved Reynolds stresses of predicted super-resolved flows
at Reτ ≈ 1000. Solid lines, predicted super-resolved flow; circles, reference DNS; pluses, input fDNS. For
(b) blue, streamwise normal component (u′u′); orange, wall-normal normal component (v′v′); green, spanwise
normal component (w′w′); red, shear component (u′v′).
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Figure 14. The SGS stresses extracted from flows predicted by the super-resolution model GSR at Reτ ≈
1000. Solid lines, predicted super-resolved flow; circles, reference DNS. Blue, streamwise normal component
(û∗u∗); orange, wall-normal normal component (v̂∗v∗); green, spanwise normal component (ŵ∗w∗); red, shear
component (û∗v∗).

employing more sophisticated upsampling layers, while the current study uses nearest-
neighbour interpolation as shown in Appendix A. However, as the spikes only exist in few
wavenumber components and contribute little to the total energy, they pose little problem
to the SGS modelling in this study.

5.2.3. Extraction of SGS stresses
The super-resolution model’s ability to predict the SGS stresses is tested in an a priori
manner. Figure 14 shows the SGS stresses obtained from the super-resolved DNS-quality
flows through the process described in § 3.2. The predicted super-resolved flows agree
well with the reference SGS stresses extracted from the original DNS data. Also, the
discrepancies in the highest-wavenumbers of the predicted spectra observed in figure 12
do not negatively affect the predicted SGS stresses. The largest energy contained in the
unresolved wavenumbers (the energy at the near-cutoff wavenumbers which constitute
the majority of the extracted SGS stresses) and the prediction errors near the highest-
wavenumbers are separated by around two orders of magnitude, leading to the negligible
contribution to the total SGS stress components. The results indicate that the proposed
turbulence super-resolution can be used to predict accurate SGS stresses.

5.3. Entire unsupervised–supervised machine learning pipeline
Finally, the results of the entire unsupervised–supervised machine learning pipeline
consisting of the vLES-to-fDNS model GvLES−fDNS and the super-resolution model GSR,
which are obtained by separate trainings as discussed in § 5.1 and § 5.2, are presented.
To reiterate, the unsupervised vLES-to-fDNS model GvLES−fDNS is trained to convert
the vLES flow fields to fDNS-quality flow fields (in § 5.1), while the supervised super-
resolution model GSR is trained to convert the fDNS flow fields to DNS-quality flow fields
(in § 5.2). The two models form a pipeline in which the fDNS-quality flow fields generated
by the vLES-to-fDNS model are input into the super-resolution model to obtain the DNS-
quality flow fields. As such, the inputs to the pipeline are the vLES flow fields, and the
outputs are the DNS-quality flow fields predicted by the proposed pipeline (figure 3c). The
reference solutions are the DNS flow fields. For comparisons, the results of applying the
typical supervised super-resolution model directly to vLES data, which is often used in
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Figure 15. Proposed unsupervised–supervised pipeline architecture (a) compared with typical supervised
method (b). In the typical supervised method, the machine learning model trained on fDNS data are used
to super-resolve vLES data.

the super-resolution machine learning community (e.g. Fukami et al. (2019)and Obiols-
Sales et al. (2021); also see review by Fukami et al. (2023)), are also shown to highlight
the importance of the unsupervised learning model GvLES−fDNS in the proposed pipeline.
As shown in figure 15, while the proposed pipeline uses the unsupervised vLES-to-fDNS
model GvLES−fDNS to first convert the vLES flow fields to fDNS-quality flow fields, the
typical supervised method applies the super-resolution model directly to the vLES flow
fields.

5.3.1. Instantaneous flow fields
The instantaneous velocity fields of the flows super-resolved by the proposed pipeline
are shown in figure 16. We note that the proposed super-resolution machine learning
pipeline performs unsupervised super-resolution, and therefore the reference DNS is
not exactly the same instantaneous reference solution to the particular instantaneous
vLES input as with § 5.1.1. The predicted instantaneous flow fields are expected to show
qualitative agreement, such as the turbulent structures and the peak velocity magnitude,
and the quantitative assessments will be assessed using turbulence statistics in § 5.3.2.
It can be seen from figure 16 that the proposed pipeline successfully decreases the high
streamwise velocity at the centre of the domain and successfully generates the stronger
fluctuations in the wall-normal velocity, which are the characteristics of the vLES-to-fDNS
model discussed in § 5.1.1. Additionally, the predicted distributions show the small-scale
turbulent structures similar to the reference DNS that are not present in the input vLES,
which is a characteristic of the super-resolution model discussed in § 5.2.1. The predicted
velocity distributions suggest that the constructed pipeline exhibits the characteristics of
each of the constituents: the vLES-to-fDNS model GvLES−fDNS and the super-resolution
model GSR. It should be noted that this kind of super-resolution is impossible without
the use of an unsupervised method such as CycleGAN because it is impossible to obtain
the paired flow fields of vLES and DNS required by supervised learning methods. The
streamwise (y–z) cross-sectional planes of the velocity fields are shown in figure 17.
One may observe that the proposed pipeline predicts the high-wavenumber components
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Figure 16. Instantaneous velocity distributions in wall-parallel (x–z) plane for proposed unsupervised–
supervised pipeline at Reτ ≈ 1000. The region corresponds to (Lx , Lz) = (1.152δ, 0.576δ). Velocity
components are non-dimensionalised by the bulk velocity ub. (i,iv,vii) Streamwise component (u); (ii,v,viii)
wall-normal component (v); (iii,vi,ix) spanwise component (w);(i–iii) input vLES; (iv–vi) predicted super-
resolved flow with the proposed pipeline; (vii–ix) reference DNS.

qualitatively well, especially near the wall. It can also be seen that the velocity distributions
do not present clear discontinuities in the wall-normal direction, similar to figures 7
and 11. As shown in § 5.3.2, the predictions made by the proposed pipeline show
quantitative agreements in terms of turbulence spectra and statistics. We also note that the
resolved large eddies in the original vLES remain after the super-resolution. This shows

1013 A28-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
21

1 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10211


Journal of Fluid Mechanics

0.50

u/ub v/ub w/ub

1.0 –0.1 0 0.10–0.1 0.1

y

z

Lz

Ly

(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

Figure 17. Instantaneous velocity distributions in streamwise (y–z) plane for proposed unsupervised–
supervised pipeline at Reτ ≈ 1000. The region corresponds to (L y, Lz) = (δ, 2δ). Velocity components are
non-dimensionalised by the bulk velocity ub. (i,iv,vii) Streamwise component (u); (ii,v,viii) wall-normal
component (v); (iii,vi,ix) spanwise component (w); (i–iii) input vLES; (iv–vi) predicted super-resolved flow
with the proposed pipeline; (vii–ix) reference DNS.

that the proposed pipeline successfully creates the DNS-quality flow fields which still
contain the large eddies resolved by vLES.

5.3.2. Turbulence spectra and statistics
Figure 18 shows the energy spectra of the flows super-resolved by the proposed
unsupervised–supervised pipeline. The proposed pipeline newly predicts the high-
wavenumber components (right of the vertical dashed lines) and corrects the spectra
differences in the lower wavenumber range (left of the vertical dashed lines) accurately.
As also observed in § 5.2.2, some discrepancies are seen in the highest wavenumber
components. These differences, however, are insignificant in the turbulence statistics
and the extracted SGS stresses as will be shown in § 5.3.3. The dashed lines show that
using only the supervised learning model (as typical flow super-resolution) to super-
resolve vLES data does not result in accurate super-resolution. The discrepancy occurs
because fDNS flow fields do not have the same turbulence statistics as vLES as discussed
in § 1. Therefore, typical supervised learning using fDNS flows as the training data
does not learn to properly super-resolve the non-physical vLES flow fields, and thus
is not appropriate for application to vLES flow fields. Specifically, in the spanwise
premultiplied spectra of the streamwise velocity at y+ ≈ 15 (although not shown here),
the proposed unsupervised–supervised pipeline shows a peak at kzδ ≈ 60, whereas the
typical supervised model shows a peak at kzδ ≈ 40. Converted to wavelengths in wall
units, the length scales correspond to λ+z ≈ 100 and λ+z ≈ 150, respectively. The proposed
unsupervised–supervised methodology reproduces the peak at the length scale that
corresponds to the well-known streak structures λ+z ≈ 100 (Smith & Metzler 1983), while
the typical supervised model produces the peak at the length scale that is approximately
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Figure 18. (a,c) Streamwise and (b,d) spanwise energy spectra of predicted super-resolved velocity field with
the proposed unsupervised–supervised pipeline at Reτ ≈ 1000. Here (a,b)y+ ≈ 15; (c,d) y+ ≈ 100. Blue,
streamwise component; orange, wall-normal component; green, spanwise component. Solid lines, predicted
super-resolved flow using proposed unsupervised pipeline model (figure 15a); dashed lines, typical supervised
model (figure 15b); circles, reference DNS; pluses, input vLES. Black vertical dashed lines indicate maximum
wavenumber resolved by the input vLES (cutoff wavenumber).

1.5 times longer. These results show the superiority of the proposed unsupervised pipeline
method for the super-resolution of the vLES flow fields.

Figure 19 shows the premultiplied spanwise energy spectra of the streamwise velocity
for the input vLES, the flow field super-resolved by the proposed pipeline, and the
reference DNS. As can be seen from the figure, while the reference DNS shows an increase
in energy in the low wavenumber range (2 � kzδ � 10) at the outer layer (y/δ � 0.1),
the spectra are missing in the input vLES. This energy corresponds to the so-called
outer peak (or very large-scale motions) of the turbulent boundary layer in high-Reynolds
number flows (Hutchins & Marusic 2007; Marusic et al. 2010a, b; Lee & Moser 2015).
The outer peak typically manifests in the spanwise wavelengths of λz/δ ≈ 1 (kzδ =
2πδ/λz ≈ 6), as is observed in the present DNS. Furthermore, the outer peak is reported
to be missing for wall-modelled LES (Maeyama & Kawai 2023), where the grid resolution
with respect to the wall-unit is significantly coarse as is in vLES. On the other hand, the
super-resolved flow field shows the presence of the energy in the outer layer, which does
not exist in the input vLES data. It can also be seen that the energy peak in the inner-
layer (y/δ ≈ 10−2) predicted by the proposed pipeline shows better agreement with the
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Figure 19. Premultiplied spanwise energy spectra of streamwise velocity for input vLES (a), predicted
super-resolved flow using proposed unsupervised–supervised pipeline (b) and reference DNS (c).
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Figure 20. Mean streamwise velocity (a) and resolved Reynolds stresses (b) of predicted super-resolved flows
at Reτ ≈ 1000. Solid lines, predicted super-resolved flow using proposed unsupervised–supervised pipeline
(figure 15a); dashed lines, typical supervised model (figure 15b); circles, reference DNS; pluses, input vLES.
For (b): blue, streamwise normal component (u′u′); orange, wall-normal normal component (v′v′); green,
spanwise normal component (w′w′); red, shear component (u′v′).

reference DNS compared with the vLES. This shows that the proposed unsupervised–
supervised machine-learning pipeline not only learns to predict the high-frequency
component of turbulence, but also to amend the errors in the low-frequency components
that occur in coarse computational grids.

Figure 20 shows the turbulence statistics of the reconstructed super-resolved flows. The
mean streamwise velocity obtained by the proposed pipeline accurately predicts the mean
velocity of the reference DNS, whereas the typical supervised super-resolution model,
which was supervisedly trained using fDNS flows, yields distributions that do not differ
from the input vLES. Similarly, the proposed unsupervised machine learning pipeline
can correct the resolved Reynolds stresses and show good agreements with the reference
DNS. The super-resolution model alone overestimates the streamwise and shear stresses
because of the incorrect mapping learned from fDNS. This likely occurs because the
super-resolution model GSR is trained merely to predict the small-scale structures missing
from the fDNS flow fields, and does not learn to correct the low-frequency components
of turbulence. Therefore, the typical supervised model is unable to correct the flow fields
that differ from the fDNS flow fields, such as the vLES flow fields. It thus follows that an
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Figure 21. The SGS stresses extracted from predicted super-resolved flows with the proposed unsupervised–
supervised pipeline at Reτ ≈ 1000. Solid lines, predicted super-resolved flow using proposed unsupervised
pipeline model (figure 15a); dashed lines, typical supervised model (figure 15b); circles, reference DNS. Blue,
streamwise normal component (û∗u∗); orange, wall-normal normal component (v̂∗v∗); green, spanwise normal
component (ŵ∗w∗); red, shear component (û∗v∗).

unsupervisedly trained model is required to perform accurate super-resolution from vLES
flow fields, as is proposed in this study.

5.3.3. Extraction of SGS stresses
Figure 21 shows the SGS stress components extracted from the super-resolved flows with
the proposed pipeline using the method described in § 3.2. The SGS stress distributions
obtained by the proposed unsupervised–supervised pipeline show good agreements with
those from the reference DNS. On the other hand, the super-resolution model based on the
typical supervised method overpredicts the magnitude of the SGS stress in the streamwise
and shear components. The discrepancies in the predicted SGS stresses are caused by the
inappropriate super-resolution performed by the typical supervised model. Additionally,
the reference SGS stress components show that the streamwise component is stronger
compared with the spanwise and the wall-normal components in the near-wall region, and
the proposed pipeline shows good predictions of this relationship. It is also notable that
the shear component is well predicted by the proposed pipeline. As the shear stress is
directly related to the mean velocity profile through the total shear stress balance within
the boundary layer, its accurate prediction is important for the accurate prediction of the
mean velocity with vLES.

6. Very coarse-grid LES with the proposed unsupervised–supervised pipeline
SGS model

In this section, the constructed machine-learning-based SGS model is implemented in
the LES solver and the vLES is performed using the proposed unsupervised–supervised
pipeline SGS model (i.e. the a posteriori test). The constructed model takes the
instantaneous velocity distributions (u, v, w) obtained in the vLES and outputs the SGS
stress tensor distribution τij,SGS. We emphasise that, as stated in § 1, the primary objective
of this study is to obtain an accurate mean streamwise velocity profile on the very coarse
grid of vLES. For this purpose, the proposed SGS model must yield the correct profile
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Figure 22. Mean streamwise velocity (a) and Reynolds shear stress (b,c) of a posteriori tests at Reτ ≈ 1000.
Panel (c) is a near-wall zoomed view of (b). Blue, vLES with proposed unsupervised–supervised-pipeline
SGS model (figure 15a); green, vLES with typical supervised SGS model (figure 15b); red, vLES with typical
SGS model; black circles, reference DNS; grey symbols, reference fDNS. For (b,c): dashed lines and squares,
resolved components; dotted lines and triangles, SGS components; solid lines, resolved + SGS components.

of the Reynolds shear stress. The predictions of other turbulence statistics, such as the
Reynolds normal stresses and higher-order statistics, are not the objective of this study (and
should not be expected as will be discussed). However, these statistics are also investigated
in this section to clarify their effects on the predicted mean velocity.

The computational set-up is identical to the one used to collect the training data shown
in § 4. The results using the conventional SGS model (selective mixed-scale model in this
study) and the typical supervised SGS model are also shown for comparisons. As with § 5,
the results for the LESx8 case are shown in this section and are referred to as vLES. As
shown in Appendix B, the proposed methodology also performs well for the LESx4 case
without major drawbacks.

6.1. Overview of the obtained results
Figure 22 shows the obtained mean streamwise velocity and the Reynolds shear stress
of the a posteriori tests. The results are compared with the DNS results and the fDNS
results obtained from top-hat filtered DNS results. We note that due to the very coarse
grid employed by the vLES and the related discretisation errors, it is debatable that the
resolved and SGS shear stresses should match the fDNS data quantitatively. Therefore,
we believe that the values of the resolved and SGS components from the vLES should
not be compared directly with the fDNS data. On the other hand, the total shear stress
can be compared quantitatively as its accurate prediction is required to obtain the correct
mean streamwise velocity profile, which is the main focus of this study. As discussed in
§ 4.1, the typical SGS model significantly overpredicts the mean streamwise velocity as
shown in figure 22(a). Contrarily, the proposed unsupervised–supervised-pipeline SGS
model shows good agreement with the reference DNS. While the typical supervised
SGS model shows a slightly better prediction compared with the typical SGS model, the
obtained velocity is still overpredicted. The Reynolds shear stress (figure 22b) shows that
the proposed unsupervised–supervised-pipeline SGS model shows good agreements of
the total shear stress (solid lines in figure) with the reference DNS, especially for the
rise of the Reynolds shear stress in the near-wall region (3 � y+ � 30). It can also be
seen qualitatively within the near-wall region that the SGS shear stress predicted by the
proposed SGS model exceeds the resolved shear stress and contributes significantly to
the rise of the Reynolds shear stress, which is in agreement with the fDNS results at
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Figure 23. Streamwise (a), wall-normal (b) and spanwise (c) Reynolds stresses of a posteriori tests at Reτ ≈
1000. Blue, vLES with proposed unsupervised SGS model (figure 15a); green, vLES with typical supervised
SGS model (figure 15b); red, vLES with typical SGS model; black circles, reference DNS; grey symbols,
reference fDNS. Dashed lines and squares, resolved components; dotted lines and triangles, SGS components;
solid lines, resolved + SGS components.

3 � y+ � 10 (zoomed-in view in figure 22c). On the other hand, the prediction by the
typical SGS model shows that the predicted SGS shear stress is smaller than the resolved
component, and the total shear stress is underpredicted.

The mean streamwise velocity profile and the Reynolds shear stress are closely related
through the total shear stress balance of the turbulent channel, which reads

μ
∂u

∂y
− ρũ′′v′′ = τw (1 − y/δ) . (6.1)

This equation states that at the off-wall distance y, the sum of the viscous shear stress
μ(∂u/∂x) and the Reynolds shear stress −ρũ′′v′′ is a constant τw(1 − y/δ). In the present
vLES, because the proposed unsupervised–supervised-pipeline SGS model is able to
accurately predict the near-wall Reynolds shear stress, the viscous shear stress is also
accurately predicted. As the viscous stress is proportional to the velocity gradient ∂u/∂y,
this results in the accurate prediction of the mean velocity. On the other hand, both
the conventional SGS model and the conventional supervised SGS model underpredict
the Reynolds shear stress in the near-wall region. As a result, the viscous stress is
overpredicted which leads to the overprediction of the velocity. In particular, it can be
seen that the predicted streamwise velocity profile is sensitive to the prediction accuracy of
the near-wall Reynolds shear stress, suggesting the importance of the near-wall prediction
accuracies of the Reynolds shear stress.

We note that because we employ the constant body force condition to drive the channel
flow as discussed in § 4.1, the predicted mass flow rates vary between the computational
cases. Specifically, the mass flow rate obtained by the typical SGS model is overpredicted
by 23 % compared with the DNS, while the proposed machine-learning-based SGS model
improves the prediction to a 10 % overprediction. Since the error of the mass flow rate
under the constant body force condition is smaller for the proposed SGS machine-learning-
based model compared with the typical SGS model, it is expected that the proposed SGS
model yields a better prediction of the wall shear stress under the constant mass flow rate
condition.

To investigate the origin of the differences in the Reynolds shear stress, the profiles of
the three components of the Reynolds normal stresses are shown in figure 23. In the near-
wall region (y+ � 10), similar profiles are predicted in the streamwise component amongst
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Figure 24. Instantaneous velocity distributions of a posteriori tests at y+ ≈ 15 at Reτ ≈ 1000. The region
corresponds to (Lx , Lz) = (4.608δ, 2.304δ). Velocity components are non-dimensionalised by the bulk
velocity ub. (i,iv,vii,x) Streamwise component (u); (ii,v,viii,xi) wall-normal component (v); (iii,vi,ix,xii)
spanwise component (w); (i–iii) vLES with proposed unsupervised SGS model; (iv–vi) vLES with typical
SGS model; (vii–ix) reference fDNS; (x–xii) reference DNS.

the SGS models, while the wall-normal and spanwise components shows discrepancies
with the proposed unsupervised–supervised-pipeline SGS model predicting a near-wall
increase of the Reynolds normal stresses ρṽ′′v′′ and ρw̃′′w′′. Another observation is that,
in the wall-normal and spanwise components for the proposed unsupervised–supervised-
pipeline SGS model, a larger fraction of the total stress comes from the predicted SGS
stresses. The wall-normal component for the fDNS also exhibit larger SGS stress than
the resolved stress in the near-wall region. These trends are similar to the Reynolds
shear stress presented in figure 22. Considering that the Reynolds shear stress is written
as the covariance between the streamwise and the wall-normal velocity fluctuations,
the differences in the near-wall Reynolds shear stresses (and thus the velocity profiles)
between the SGS models are considered to be originated from the differences in the
near-wall wall-normal Reynolds stresses.

To clarify the differences in the near-wall Reynolds normal stresses, the instantaneous
velocity distributions of the a posteriori tests at y+ ≈ 15 are presented in figure 24.
The figure also shows the fDNS flow field, which is in concept the reference flow field
of vLES. Compared with the reference DNS and fDNS, the typical SGS model non-
physically enlarges and deforms the near-wall resolved turbulent structures. In can also be
seen that the amplitude of the streamwise velocity fluctuations is larger while that for the
wall-normal velocity is smaller. In comparison, the proposed unsupervised–supervised-
pipeline SGS model shows fine turbulent structures in the resolved flow field that show
resemblance to DNS. Importantly, the proposed model creates the small-scale structures in
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the wall-normal velocity distributions that are observed for the DNS but not for the typical
SGS model. These differences in the resolved turbulence are considered to be the cause of
the differences in the near-wall wall-normal Reynolds stresses between the SGS models
observed in figure 23. It is also noteworthy that the spanwise velocity magnitudes are larger
in the proposed unsupervised–supervised-pipeline SGS model compared with the typical
SGS model and the DNS, corresponding to the large near-wall spanwise Reynolds stress.

From these results, we can observe that the proposed unsupervised–supervised-pipeline
SGS model enables better predictions of the mean streamwise velocity and the Reynolds
shear stress, and the use of the unsupervised vLES-to-fDNS model GvLES−fDNS signifi-
cantly contributes to the quality of the predictions. The results indicate that the differences
in the mean streamwise velocity and the Reynolds shear stress are caused by the differences
in the near-wall wall-normal component of the Reynolds stress. Here, we stress again that
accurately predicting the Reynolds shear stress and the resultant mean streamwise velocity
profile is the primary objective of vLES. The overpredicted wall-normal and spanwise
Reynolds stresses observed in figure 23, while non-physical, enable this objective as will
be shown in § 6.2.1. In the following, we conduct the budget analyses of the Reynolds
stresses to investigate how the near-wall Reynolds shear stress correctly rises leading to
the accurate mean velocity profile despite the very coarse grid resolution for the near-wall
turbulence structures. Moreover, we investigate the turbulence mechanisms behind the rise
of the near-wall wall-normal Reynolds stress which is considered to be the primary origin
of the accurately predicted near-wall Reynolds shear stress.

6.2. Analysis of Reynolds stress budget
In this subsection, we discuss the turbulence mechanism that leads to the correct rise of
the near-wall wall-normal Reynolds stress (and thus the correct near-wall Reynolds shear
stress) despite the insufficient grid resolution of vLES through the budget analyses of
the Reynolds stress components. As the flow is at the low Mach number of Mb ≈ 0.1,
the following analyses are performed with the incompressible assumption. Therefore, we
assume that the Favre-averaged velocity ũi approximately equals the Reynolds-averaged
velocity ui , and that the Reynolds stress in the previous subsection ρũ′′

i u′′
j approximately

equals ρu′
i u

′
j . This assumption is confirmed to hold well for the present computations.

6.2.1. Effect of SGS stresses on near-wall Reynolds stresses
As discussed in § 1, this study aims to obtain the accurate prediction of the mean velocity
(first-order statistics) and the closely related Reynolds shear stress (second-order statistics)
from the vLES. Therefore, the agreement of the Reynolds stress budgets (third-order
statistics) between the proposed SGS model and the reference DNS is not the goal of
this study. Rather, we focus on understanding the mechanism that lead to the accurate
predictions of the mean streamwise velocity and the Reynolds shear stress obtained by the
proposed unsupervised–supervised-pipeline SGS model. We also note that the following
analyses reveal that the DNS-obtained Reynolds normal stresses and the budgets should
not be expected in the vLES to obtain the correct mean velocity and Reynolds shear
stress.

The budget equation of the resolved Reynolds stresses is given as follows:
∂

∂t

(
ρu′

i u
′
j

)
= Ci j + Pi j + Tt,i j + Tp,i j + Tv,i j + TSGS,ij

+ Dp,i j + Dv,i j + DSGS,ij

= 0. (6.2)
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Here, the subscripts i, j = (1, 2, 3) denote the streamwise, wall-normal and spanwise
directions respectively, and

Ci j = − ∂

∂xk

(
ρu′

i u
′
j uk

)
, (6.3)

Pi j = −ρu′
i u

′
k
∂u j

∂xk
− ρu′

j u
′
k
∂ui

∂xk
, (6.4)

Tt,i j = − ∂

∂xk

(
ρu′

i u
′
j u

′
k

)
, (6.5)

Tp,i j = − ∂

∂xk

(
p′δiku′

j

)
− ∂

∂xk

(
p′δ jku′

i

)
, (6.6)

Tv,i j = ∂

∂xk

(
τ ′

iku′
j

)
+ ∂

∂xk

(
τ ′

jku′
i

)
, (6.7)

TSGS,ij = ∂

∂xk

(
τ ′

ik,SGSu′
j

)
+ ∂

∂xk

(
τ ′

jk,SGSu′
i

)
, (6.8)

Dp,i j = p′δik
∂u′

j

∂xk
+ p′δ jk

∂u′
i

∂xk
, (6.9)

Dv,i j = −τ ′
ik

∂u′
j

∂xk
− τ ′

jk

∂u′
i

∂xk
, (6.10)

DSGS,ij = −τ ′
ik,SGS

∂u′
j

∂xk
− τ ′

jk,SGS
∂u′

i

∂xk
. (6.11)

Here Ci j , Pi j , Tt,i j , Tp,i j , Tv,i j , TSGS,ij, Dp,i j , Dv,i j and DSGS,ij denote convection,
production, turbulent transport, pressure transport, viscous transport, SGS transport,
pressure redistribution, viscous dissipation and SGS dissipation terms, respectively. As
can be seen from (6.3), (6.5)–(6.8), the convection and transport terms are written in
conservative forms; that is, they satisfy∫

V
Fi j dV = 0, Fi j ∈ (Ci j , Tt,i j , Tp,i j , Tv,i j , TSGS,ij

)
(6.12)

for the entire computational domain V . Thus, they do not result in the net increase/decrease
in the Reynolds stresses in the flow field. The other terms do not satisfy the above relation,
therefore, they act as the source/sink terms of the Reynolds stresses and increase/decrease
the Reynolds stresses of the computational domain. The SGS-related terms TSGS,ij and
DSGS,ij represent the direct effects of the employed SGS model on the Reynolds stresses.
The other terms are also affected by the change in the SGS-related terms to satisfy the
relation (∂/∂t)(ρu′

i u
′
j ) = 0. That is, as the SGS terms increase, the other terms should

decrease and vice versa.
Figure 25 shows the budgets of the resolved Reynolds normal stresses for the vLES with

the proposed unsupervised–supervised-pipeline SGS model, with the typical SGS model,
and the reference DNS by taking j = i . It can be observed that the overall shape of the
profiles are similar between the three cases with differences in the magnitude. Focusing
on the SGS dissipation term DSGS,ii (dashed blue lines in figure 25), discrepancies are
observed between the two SGS models, most evidently for the spanwise component.
Furthermore, comparatively large differences in the spanwise viscous dissipation Dv,33
(solid blue line in figure) and the wall-normal and spanwise pressure redistribution terms
Dp,22, Dp,33 (solid yellow lines in figure) are observed. Here, based on the discussion
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Figure 25. Budgets of Reynolds normal stresses in a posteriori tests at Reτ ≈ 1000. (a–c) Streamwise
component; (d–f ) wall-normal component; (g–i) spanwise component; (a,d,g) vLES with proposed
unsupervised–supervised-pipeline SGS model; (b,e,h) vLES with typical SGS model; (c,f ,i) reference DNS.
Solid red, production Pi j ; solid green, turbulent diffusion Tt,i j ; solid orange, pressure diffusion Tp,i j ; solid
purple, viscous diffusion Tv,i j ; dashed purple, SGS diffusion TSGS,ij; solid yellow, pressure redistribution Dp,i j ;
solid blue, viscous dissipation Dv,i j ; dashed blue, SGS dissipation DSGS,ij.

in § 6.1, we will focus on the effects of the predicted SGS stresses and the resulting
changes to the near-wall wall-normal Reynolds stress, which was found to have significant
effects on the correctly predicted near-wall Reynolds shear stress and the mean streamwise
velocity in the vLES. Therefore, in the following analyses, the mechanism behind the SGS
dissipation and the pressure redistribution are discussed in detail to clarify their roles in
predictions of the near-wall wall-normal Reynolds stress.
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First, the effects of the SGS dissipation term (DSGS,ii, dashed blue lines in figure) are
discussed. In the wall-normal component of the SGS dissipation term DSGS,22, there
is little difference between the SGS models (and also DSGS,22 is negligibly small),
suggesting that the near-wall differences in the wall-normal Reynolds stress are not
directly caused by the SGS dissipation term DSGS,22. On the other hand, the spanwise SGS
dissipation term DSGS,33 shows opposite tendencies between the proposed unsupervised–
supervised-pipeline SGS model and the conventional SGS model. The conventional
SGS model predicts negative values of the SGS dissipation, whereas the proposed
unsupervised–supervised-pipeline SGS model predicts positive values in the near-wall
region (y+ � 100). In general, positive values in the SGS dissipation term (i.e. the
net increase in the resolved Reynolds stress) are attributed to the occurrences of SGS
backscatter events; that is, the resolved Reynolds stress is transported from the unresolved
SGS components. The results suggest that the increased near-wall spanwise Reynolds
stress predicted by the proposed unsupervised–supervised-pipeline SGS model seen
in figure 23 is primarily caused by the SGS backscatter, which induces the near-wall
spanwise velocity fluctuations.

Next, we focus on the pressure redistribution term Dp,i i (yellow lines in figure). In the
incompressible limit, this term satisfies

∑
i Dp,i i = 0. Therefore, this term represents the

exchange of Reynolds normal stress components between each other. Note that the vertical
axis ranges vary among the three components depicted in figure 25. Particularly, the wall-
normal component (figure 25d–f ) exhibits the smallest range among the three directions.
In the near-wall region (20 � y+ � 100) of the proposed unsupervised–supervised-
pipeline SGS model, the spanwise component shows a negative value while the wall-
normal component shows a positive value. The decrease of the spanwise stress and the
increase of the wall-normal stress corresponds to the transfer of the Reynolds stress from
the spanwise component to the wall-normal component through the pressure redistribution
term. In fact, this process is known to be the dominant energy transfer mechanism
towards the wall-normal component (Lee & Moser 2019), and will be discussed in more
detail in § 6.2.2. In comparison, the conventional SGS model predicts a smaller positive
peak in the wall-normal component slightly farther from the wall (y+ ≈ 70) compared
with the proposed unsupervised–supervised-pipeline SGS model. This shows that the
redistribution of the Reynolds stress to the wall-normal component is weaker and occurs
farther away from the wall using the conventional SGS model. It can be considered that
these differences between the SGS models in the pressure redistribution term are the
causes of the differences in the near-wall wall-normal and the shear Reynolds stresses.

Considering that the terms in (6.2) balance each other out to satisfy (∂/∂t)(ρu′
i u

′
i ) = 0,

the prediction of SGS backscatter by the proposed SGS model in the near-wall spanwise
Reynolds stress leads to a net decrease in the other terms. In the present vLES, the
decrease was observed for the pressure redistribution term, which represents the outflow
of Reynolds stress from the spanwise component. The decrease then leads to the
increase of the pressure redistribution term in the near-wall wall-normal component to
satisfy

∑
i Dp,i i = 0, acting as the source term for the increasing wall-normal velocity

fluctuations. Therefore, it can be considered that the increase in the near-wall wall-normal
Reynolds stress is caused by the SGS backscatter in the near-wall spanwise Reynolds
stress. The increase of the near-wall spanwise Reynolds stress leads to the increase of the
near-wall Reynolds shear stress and the resultant correct mean velocity. On the other hand,
the typical SGS model does not predict the SGS backscatter in the spanwise Reynolds
stress and resultantly does not cause the redistribution of near-wall Reynolds stresses
from the spanwise to the wall-normal component. Therefore, the conventional SGS model
leads to a smaller wall-normal Reynolds stress in the near-wall region, leading to the
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Wall

∂v′′/∂y > 0, ∂w′′/∂z < 0

∂v′′/∂y < 0, ∂w′′/∂z > 0

λz

Z
X

Y

Figure 26. Schematic of near-wall streaky streamwise vortices in wall turbulence.

underprediction of the near-wall Reynolds shear stress and the overprediction of the mean
streamwise velocity.

6.2.2. Mechanisms of redistribution of Reynolds stresses
In § 6.2.1, the SGS dissipation and the pressure redistribution terms are shown to have
a significant effect on the prediction of the mean velocity and the Reynolds shear stress
by the proposed unsupervised–supervised-pipeline SGS model. The redistribution of the
stress from the spanwise to the wall-normal component is to be expected from streamwise
vortices near the wall (Lee & Moser 2019), as shown in figure 26. For example, at locations
with (∂v′/∂y) > 0 (red regions in figure), the spanwise velocity satisfies (∂w′/∂z) < 0.
Conversely, at blue regions in the figure, (∂v′/∂y) > 0 and (∂w′/∂z) < 0 are satisfied.
Therefore, p′(∂v′/∂y) and p′(∂w′/∂z) have opposite signs at each of the red and blue
regions which represent the redistribution of the Reynolds normal stress as discussed
earlier. However, because the grid resolutions between the DNS and vLES are different
by a factor of eight, the resolved structures of the near-wall turbulence are also expected
to be different. Here, we perform the spectral analyses of the pressure redistribution terms
to quantify the differences between the resolved turbulence in vLES using the proposed
unsupervised–supervised-pipeline SGS model and the conventional SGS. Specifically, we
aim to elucidate the reason of the differences in the pressure redistribution terms by exam-
ining the spanwise wavelengths (denoted by λz in figure) associated with these structures.

As with § 6.2.1, we disregard the density variations because of the low Mach number
condition at Mb ≈ 0.1. Considering the channel flow as in this study in which the flow is
homogeneous in the streamwise and the spanwise directions, the spectral Reynolds stress
budget equation (Mizuno 2016; Lee & Moser 2019) can be written as

Re
[

∂

∂t

(
ρû′

i û
′
j
∗
)]

=Či j + P̌i j + Ťt,i j + Ťp,i j + Ťv,i j + ŤSGS,ij

+ Ďp,i j + Ďv,i j + ĎSGS,ij. (6.13)

Here, (̂·) denotes the Fourier transformed quantity, (·)∗ the complex conjugate and Re[·]
the real part of the complex number. For each term on the right-hand side, the following
equality holds: ∫ ∞

0
F̌i j (k, y)dk = Fi j (y). (6.14)

This equation shows that the terms in the spectral budget equation represents the
contribution of each wavenumber to the budget term in the total budget equation (6.2).
Note that the previous studies (Mizuno 2016; Lee & Moser 2019) further split the turbulent
transport term Ťt,i j into the spatial and interscale transfers, which is not employed here
for consistency with (6.2). Following the discussion in § 6.2.1, we focus on the spectral
pressure redistribution term Ďp,i j which is written as
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Figure 27. Premultiplied spanwise-spectral components of pressure redistribution in a posteriori tests at y+ ≈
15 at Reτ ≈ 1000. (a) Streamwise component; (b) wall-normal component; (c) spanwise component. Blue lines,
proposed unsupervised–supervised-pipeline SGS model; red lines, typical SGS model, circles, reference DNS.
Horizontal dotted lines denote values of 0 in the vertical axes.

Ďp,i j = Re

⎡⎣ p̂′δik
∂̂u′

j

∂xk

∗
+ p̂′δ jk

∂̂u′
i

∂xk

∗⎤⎦ . (6.15)

Figure 27 shows the premultiplied spanwise spectral components of the pressure
redistribution term for the proposed unsupervised–supervised-pipeline SGS model, the
conventional SGS model and the reference DNS at the y+ ≈ 15 plane. In the DNS,
the wall-normal component of the pressure redistribution term takes a positive peak in
the high-wavenumber range of k+

z � 0.1. There also exists a small negative peak in the
spanwise component in this high-wavenumber range. As also discussed by Lee & Moser
(2019), these peaks show that there is the redistribution of the Reynolds stress from the
spanwise direction to the wall-normal direction, and the near-wall streaky streamwise
vortices discussed above occur in the spanwise wavelength of λ+z � 2π/k+

z ≈ 60. Here, it
is notable that the spanwise grid spacings for the vLES are set at 	z+ ≈ 36 and therefore
cannot resolve the structures smaller than the Nyquist wavelength 2	z+ ≈ 72. This is
shown in the figure by the fact that the solid lines do not exist in the high-wavenumber
range k+ � 0.09. Instead, the proposed unsupervised–supervised-pipeline SGS model
shows a clear positive peak of the spanwise pressure redistribution term at the smaller
wavenumber of k+

z ≈ 0.04, for which the corresponding wavelength at λ+z = 2π/k+
z ≈ 160

is larger than the DNS. There is also a negative peak in the spanwise pressure redistribution
term at the similar wavenumber range, suggesting that there exist dominant near-wall
streaky streamwise vortical structures at this wavenumber range. These observations can
be understood as the mechanism by which the near-wall wall-normal Reynolds stress
increases for the proposed unsupervised–supervised-pipeline SGS model; that is, the
pressure redistribution of near-wall Reynolds normal stress from the spanwise to wall-
normal component is driven by the larger vortical structures. As discussed in § 6.2.1, the
redistribution leads to the increase of the near-wall wall-normal Reynolds stress and the
Reynolds shear stress, resulting in the correct prediction of the mean streamwise velocity.
On the other hand, it can be seen from the wall-normal budget of the conventional SGS
model that the positive peak of the pressure redistribution term does not exist in the wall-
normal component. The lack of redistribution towards the wall-normal component causes
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the discrepancies in the near-wall wall-normal Reynolds stress and Reynolds shear stress,
leading to the overprediction of the mean streamwise velocity.

6.2.3. Discussions on the near-wall turbulence mechanisms
Based on the above analyses of the Reynolds stress budget, we discuss the differences in
the resolved phenomena that leads to the differences in the near-wall Reynolds shear stress
between the high-fidelity DNS and vLES with the proposed unsupervised–supervised-
pipeline SGS model and the conventional SGS model.

We first discuss the DNS, which is a high-fidelity representation of real turbulence.
As also shown by Lee & Moser (2019), near-wall wall-normal Reynolds stress is
generated primarily by the pressure redistribution from the spanwise Reynolds stress. The
redistribution occurs in the spanwise wavenumber of k+

z ≈ 60. The resulting increase in
the wall-normal stress gives rise to the Reynolds shear stress in the near-wall buffer layer
of the turbulent boundary layer.

In the vLES using the proposed unsupervised–supervised-pipeline SGS model, the
SGS backscatter represented by the positive SGS dissipation term (SGS backscatter)
introduces the additional production of the resolved Reynolds stress in the spanwise
direction, as shown in figure 25. The effect of the predicted SGS backscatter can also be
seen in the instantaneous flow fields in figure 24, where the non-physical large elongated
structures in the near-wall region such as those observed by the conventional SGS model
are disturbed to generate the smaller structures. To satisfy the balance of the Reynolds
stress budget (6.2), the increased near-wall spanwise stress then gives rise to the increased
pressure redistribution towards the wall-normal stress which results in the increased near-
wall wall-normal Reynolds stress and Reynolds shear stress. Here, the spectral budgets
(figure 27) show that the redistribution mainly occurs in the spanwise wavenumbers of
0.03 � k+

z � 0.05, which correspond to the resolved wavelengths of 3.5	z � λz � 5.8	z
(130 � λ+z � 210). While these length scales are larger than those observed in the DNS
because of the very coarse grid employed in the vLES, the resolved turbulent structures
serve the similar roles in the redistribution of the Reynolds normal stresses. Here we
repeat that the spanwise wavenumber for DNS (k+

z ≈ 60) cannot be resolved by the
vLES grid. Considering that the redistribution process is induced by the predicted SGS
backscatter, the increased wall-normal stress can thus be interpreted as compensation for
the unresolved turbulence dynamics by the proposed SGS model. As a result, although
the resolved flow field of vLES cannot reproduce the near-wall turbulent physics of DNS
(because of the very coarse grid), the vLES with the proposed unsupervised–supervised-
pipeline SGS model leads to the accurate near-wall Reynolds shear stress and the resultant
mean streamwise velocity profile.

In the vLES using the conventional SGS model, where the turbulence physics in the
unresolved wavenumbers k+

z � 0.09 that are crucial for the reproduction of the near-
wall wall-normal Reynolds stress are also not resolved, the redistribution of Reynolds
stress from the spanwise to the wall-normal component does not occur in the near-
wall region. As the conventional SGS model fails to reproduce the near-wall energy
redistribution that is crucial for the accurate prediction of the Reynolds shear stress, the
mean streamwise velocity resultantly shifts to satisfy the total shear stress balance, leading
to the overprediction of velocity.

We also note that the identified mechanisms of the proposed unsupervised–supervised-
pipeline SGS model show similarities with the SGS dynamics described by Hamba (2019)
and Inagaki & Kobayashi (2023). By analysing the DNS data of turbulent channel flows,
it was shown that SGS backscatter in the spanwise velocity fluctuations occur in the
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Lx/δ Lz/δ L y/δ 	x+ 	z+ 	y+ δ/	x Nx Nz Ny

DNS (Reτ ≈ 1000) 6π 2π 2 9.0 4.5 0.5–6.0 111.1 2160 1440 669
LESx8 (Reτ ≈ 1000) 6π 2π 2 72 36 0.8–16 13.9 270 180 285
DNS (Reτ ≈ 2000) 6π 2π 2 9.0 4.5 0.5–6.0 222.2 4320 2880 819
LESx8 (Reτ ≈ 2000) 6π 2π 2 72 36 0.8–30 27.8 540 360 335

Table 2. List of parameters for each computational set-up. Here Lx , Lz and L y denote computational domain
size. Here 	x , 	y and 	z denote grid resolutions in each direction, and superscript (·)+ represents values in
wall units. Here Nx , Nz and Ny denote number of grid points in each direction.
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Figure 28. Mean streamwise velocity (a) and Reynolds shear stress (b) of a posteriori tests at Reτ ≈ 2000.
Blue, vLES with proposed unsupervised–supervised-pipeline SGS model; red, vLES with typical SGS model;
black circles, reference DNS. For (b): dashed lines, resolved component; dotted lines, SGS component; solid
lines, total stress.

near-wall region. It is also shown that the physics-based stabilised mixed SGS model
proposed by Abe (2013) enables appropriate prediction of the redistribution term for the
near-wall wall-normal Reynolds stress in coarse-grid LES, which leads to the enhanced
near-wall Reynolds shear stress (Inagaki & Kobayashi 2020). As these observations
are consistent with the identified near-wall dynamics of the proposed unsupervised–
supervised-pipeline SGS model in this study, we believe that the spanwise SGS backscatter
and the pressure redistribution terms may provide insight into further development of SGS
models for coarse-grid LES.

7. Robustness against Reynolds number higher than training data
As discussed in § 4.1, the machine learning models (i.e. unsupervised model GvLES−fDNS
and supervised model GSR in figure 3) in the proposed unsupervised–supervised-pipeline
SGS model are trained using flow fields at the friction Reynolds number of Reτ ≈ 1000.
Here, we apply the same models to an LES simulation at a higher Reynolds number
than the training data; namely, Reτ ≈ 2000 to assess the extrapolation capabilities of the
proposed machine-learning SGS model to different flow conditions that it was not trained
on. The computational grid for the Reτ ≈ 2000 case is constructed in the same manner as
described in § 4.1 and summarised in table 2.

The obtained mean streamwise velocity and the Reynolds shear stress are shown
in figure 28. The proposed unsupervised–supervised-pipeline SGS model shows good
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Figure 29. Streamwise (a), wall-normal (b) and spanwise (c) Reynolds stresses of a posteriori tests at Reτ ≈
2000. Blue, vLES with proposed unsupervised–supervised-pipeline SGS model; red, vLES with typical SGS
model; black circles, reference DNS. Dashed lines, resolved component; dotted lines, SGS component; solid
lines, resolved + SGS stress.

agreement with the reference DNS in the predicted velocity and the near-wall shear
stress even for the flow condition that the machine learning models were not trained
on, which shows the robustness of the proposed machine-learning-based model. On
the other hand, the conventional SGS model shows significant deviations in the mean
streamwise velocity and the near-wall Reynolds shear stress. The obtained Reynolds
normal stresses are summarised in figure 29. The predicted stresses obtained by both the
SGS models show similar tendencies to the Reτ ≈ 1000 case, such as the similar profiles
of the streamwise stress ρũ′′u′′ and the larger wall-normal stress ρṽ′′v′′ predicted by the
proposed unsupervised–supervised-pipeline SGS model in the near-wall region. Likewise,
the Reynolds shear stress correctly rises in the near-wall region for the proposed model
leading to the better prediction of the mean streamwise velocity, while the conventional
SGS model underpredicts the near-wall Reynolds shear stress causing overprediction
of the mean velocity. These similarities suggest that, despite the Reynolds number
differences, the proposed unsupervised–supervised-pipeline SGS model functions in a
similar mechanism to the Reτ ≈ 1000 case to enable the accurate predictions of the
Reynolds shear stress and the resultant mean streamwise velocity. Furthermore, it suggests
that the DNS data of a low-Reynolds number turbulence, which are relatively low-cost
and feasible to obtain, can be used to train a machine learning model to enable vLES of
high-Reynolds number turbulence for which DNS is prohibitively expensive.

This test shows that the proposed unsupervised–supervised-pipeline methodology can
be successfully applied to Reynolds numbers that are higher than the training data. By
employing the CNNs as in this study, the machine-learning models are able to incorporate
the spatial extent of the non-physical turbulent structures to accurately predict the SGS
stresses. On the other hand, pointwise predictions (for example by using the local velocity
gradient tensor as the input features as demonstrated by Gamahara & Hattori (2017)) may
not be able to appropriately distinguish the non-physical structures. It should be noted that
for both the training data and testing, the computational grids are constructed in wall-
units (normalised by the wall shear stress τw and the viscosity at the wall μw). Therefore,
the near-wall turbulent structures characterised by the wall-unit are resolved by nearly the
same number of grid points for both Reynolds number cases. Because this study employs
CNNs which operate in the computational coordinate space as the components of the
machine learning models (see Appendix A), it is important to keep the resolution of
the turbulence structures similar between the training and the testing. This limitation of
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the CNNs may degrade the applicability of the presented model to different grid
resolutions and aspect ratios from the training data, and require additional work for use
in unstructured grids. Although this problem may be overcome by machine learning
techniques such as transfer learning (as has been pursued by Guan et al. (2022)), we see
this problem as a problem of the CNN architecture itself and not particular to the proposed
unsupervised–supervised-pipeline methodology.

8. Conclusion
We proposed an unsupervised-and-supervised machine learning pipeline which enables
SGS modelling for vLES, where the energetic eddies that are resolved in regular LES are
not properly resolved by the grid. As a consequence, the coarse grid resolves turbulent
structures that are not similar to the structures from fDNS data. Our proposed pipeline
consists of an unsupervised vLES-to-fDNS model using CycleGAN, which transforms
the input non-physical vLES flow fields to physical fDNS quality, and a supervised
super-resolution model using cGAN, which super-resolves the fDNS-quality flow fields
to obtain the DNS-quality flow fields. To accurately super-resolve the vLES flow fields
which show dissimilar turbulent statistics from the fDNS, the proposed pipeline is trained
unsupervisedly using vLES flow fields in its dataset. The use of unsupervised learning is
mandated by the fact that it is impossible to obtain the paired data of the instantaneous
vLES flow fields and their expected DNS outputs, which inhibits the use of typical
supervised machine-learning super-resolution methods.

The proposed unsupervised–supervised pipeline was trained and tested in both a
priori and a posteriori tests using the simulations of a turbulent channel flow at Reτ ≈
1000, Mb ≈ 0.1. The a posteriori test was also performed at the higher Reynolds number
of Reτ ≈ 2000 to test the proposed pipeline’s robustness against different Reynolds
numbers from the training dataset. Two LESs were performed with grid spacings that are
four times coarser (LESx4) and eight times coarser (LESx8) than the DNS. The LESx4
serves as the baseline case in which the resolved eddies retain the physically correct
structures of the fDNS. On the other hand, LESx8 serves as the challenging case in which
the resolved structures and turbulence statistics deviate from the fDNS flow fields. In the a
priori tests using the precomputed vLES flow fields with the conventional SGS model as
the input, the proposed unsupervised–supervised pipeline showed good agreement of the
predicted SGS stresses in both LESx4 and LESx8 cases. This agreement was not observed
in the predicted SGS stresses from the typical supervised method, which suggests that
employing unsupervised learning is crucial for accurate SGS modelling for vLES. The a
posteriori tests at Reτ ≈ 1000 (same as the training data) and Reτ ≈ 2000 (higher than
the training data) showed that the proposed pipeline yields accurate predictions of the
mean streamwise velocity and Reynolds shear stress when the proposed pipeline is used
as the SGS model in a vLES computation, while the conventional SGS model and the
typical supervised model overpredict the mean velocity. The success of the proposed
unsupervised–supervised-pipeline SGS model at Reτ ≈ 2000, which is higher than the
training data, shows the robustness of the proposed methodology to extrapolatory flow
conditions.

The difference between the predicted mean streamwise velocity profiles obtained by
the vLES with different SGS models are caused by the differences in the predicted
Reynolds shear stress in the near-wall buffer layer of the turbulent boundary layer.
The differences in the Reynolds shear stress are mainly caused by the differences in
the near-wall wall-normal Reynolds stress, which is underpredicted by the conventional
SGS model and the typical supervised-learning SGS model. The budget analyses of the
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Reynolds normal stresses revealed that the proposed unsupervised–supervised-pipeline
SGS model predicts SGS backscatter events for the spanwise Reynolds normal stress,
which leads to the redistribution of the produced near-wall spanwise Reynolds stress to
the near-wall wall-normal component via the pressure redistribution term. The increased
wall-normal Reynolds stress then results in the strengthened Reynolds shear stress in the
near-wall region. In particular, while the pressure redistribution observed in the DNS
cannot be resolved by the coarse computational grid of vLES, the redistribution does
occur in the resolved larger scales in vLES using the proposed SGS model. This enables
the strengthened near-wall wall-normal Reynolds stress which is crucial for the accurate
prediction of the near-wall Reynolds shear stress and the mean streamwise velocity. On
the other hand, the redistribution is not observed in the vLES using the conventional
SGS model, which leads to the aforementioned underprediction of the near-wall wall-
normal Reynolds stress and the resultant overprediction of the mean streamwise velocity.
Furthermore, we believe that the identified physical processes that enable the accurate
predictions of the mean streamwise velocity may guide further development of SGS
models for vLES.
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Appendix A. Model architectures
The detailed architectures for the CNNs employed in this study are shown. Tables 3 and
4 summarise the architectures of the models for the LESx8 case. Input and output shapes
shown are those during the training as described in § 4.2 and written in the form (height ×
width × channels). Each convolution kernel is fixed at a size of 3 × 3. Each convolution
layer except for the final layer is followed by a leaky rectified linear unit (known as
LeakyReLU) layer with α = 0.2 as the activation layer. Downsampling layers employ 2 × 2
average pooling, and upsampling layers employ 2 × 2 nearest-neighbour interpolation.

Appendix B. Results for LESx4 at Reτ ≈ 1000
Here, the a priori and a posteriori results for the LESx4 case at Reτ ≈ 1000 are presented.
The LESx4 case uses a grid of (	x+, 	z+) ≈ (36, 18) that is four times as coarse as
the DNS grid as the LESx8 uses an eight-times-coarse grid ((	x+, 	z+) ≈ (72, 36)) as
shown in table 1. Therefore, the LESx4 grid is expected to sufficiently resolve the energetic
near-wall streak structures of λ+z ≈ 100 (Smith & Metzler 1983) with five to six grid points
per wavelength, which is important to the accurate resolution of the near-wall turbulence
structures. This grid resolution is close to the the grid resolution requirements for LES of
fully developed turbulent boundary layers suggested by Kawai & Fujii (2008).

B.1. A priori results
The a priori results of the super-resolution and the predicted SGS stresses of LESx4
are discussed. For brevity, the results of the a priori test using the entire proposed
unsupervised–supervised pipeline (figure 15a) are shown (equivalent to § 5.3 for LESx8).
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F G

Layer Input layer Input shape Output shape Layer Input layer Input shape Output shape
Conv1 Input (32,32,3) (32,32,64) Conv1 Input (32,32,3) (32,32,64)
Conv2 Conv1 (32,32,64) (32,32,64) Conv2 Conv1 (32,32,64) (32,32,64)
Conv3 Conv2 (32,32,64) (32,32,64) Conv3 Conv2 (32,32,64) (32,32,64)
Conv4 Conv3 (32,32,64) (32,32,64) Conv4 Conv3 (32,32,64) (32,32,64)
Conv5 Conv4 (32,32,64) (32,32,64) Conv5 Conv4 (32,32,64) (32,32,64)
Conv6 Conv5 (32,32,64) (32,32,3) Conv6 Conv5 (32,32,64) (32,32,3)

DX DY
Layer Input layer Input shape Output shape Layer Input layer Input shape Output shape
Conv1 Input (32,32,3) (32,32,16) Conv1 Input (32,32,3) (32,32,32)
Conv2 Conv1 (32,32,16) (32,32,16) Conv2 Conv1 (32,32,32) (32,32,32)
DS1 Conv2 (32,32,16) (16,16,16) DS1 Conv2 (32,32,32) (16,16,32)
Conv3 DS1 (16,16,16) (16,16,32) Conv3 DS1 (16,16,32) (16,16,64)
Conv4 Conv3 (16,16,32) (16,16,64) Conv4 Conv3 (16,16,64) (16,16,64)
Conv5 Conv4 (16,16,64) (16,16,1) DS2 Conv4 (16,16,64) (8,8,64)

Conv5 DS2 (8,8,64) (8,8,128)
Conv6 Conv5 (8,8,128) (8,8,256)
Conv7 Conv6 (8,8,256) (8,8,1)

Table 3. Architectures of the CNN models used in CycleGAN in figure 2. The bottommost layers correspond
to the outputs of each model. Here ‘Conv’ refers to two-dimensional convolution layers and ‘DS’ refers to
downsampling layers. See § 2.2.2 for nomenclature of each model.

G D

Layer Input layer Input shape Output shape Layer Input layer Input shape Output shape
Conv1 Input (32,32,3) (32,32,64) Conv1 Input (256,256,3) (256,256,16)
Conv2 Conv1 (32,32,64) (32,32,64) Conv2 Conv1 (256,256,16) (256,256,32)
US1 Conv2 (32,32,64) (64,64,64) DS1 Conv2 (256,256,32) (128,128,32)
Conv3 US1 (64,64,64) (64,64,64) Conv3 DS1 (128,128,32) (128,128,64)
Conv4 Conv3 (64,64,64) (64,64,64) Conv4 Conv3 (128,128,64) (128,128,64)
US2 Conv4 (64,64,64) (128,128,64) DS2 Conv4 (128,128,64) (64,64,64)
Conv5 US2 (128,128,64) (128,128,32) Conv5 DS2 (64,64,64) (64,64,64)
Conv6 Conv5 (128,128,32) (128,128,32) Conv6 Conv5 (64,64,64) (64,64,64)
US3 Conv6 (128,128,32) (256,256,32) DS3 Conv6 (64,64,64) (32,32,64)
Conv7 US3 (256,256,32) (256,256,16) Conv7 Condition (32,32,3) (32,32,64)
Conv8 Conv7 (256,256,16) (256,256,3) Concat DS3, Conv7 (32,32,64), (32,32,64) (32,32,128)

Conv8 Concat (32,32,128) (32,32,64)
Conv9 Conv8 (32,32,64) (32,32,64)
Conv10 Conv9 (32,32,64) (32,32,1)

Table 4. Architectures of the CNN models used in cGAN in figure 1. The bottommost layers correspond to the
outputs of each model. Here ‘Conv’ refers to two-dimensional convolution layers, ‘DS’ refers to downsampling
layers, ‘US’ refers to upsampling layers and ‘Concat’ refers to channelwise concatenation. See § 2.2.1 for
nomenclature of each model.

Figure 30 shows the instantaneous velocity distributions of the predicted super-resolved
flow fields at y+ ≈ 15 and 100, and figure 31 shows the instantaneous velocity distributions
of the predicted super-resolved flow fields in the streamwise (y–z) cross-sectional plane.
As discussed above and in § 4.1, the flow fields obtained by LESx4 sufficiently resolve the
near-wall streak structures. The proposed unsupervised–supervised pipeline additionally
predicts the smaller turbulent structures that are not present in the input LESx4. It is also
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Figure 30. Instantaneous velocity distributions in wall-parallel (x–z) plane obtained by proposed
unsupervised–supervised pipeline with LESx4 at Reτ ≈ 1000. The region corresponds to (Lx , Lz) =
(1.152δ, 0.576δ). Velocity components are non-dimensionalised by the bulk velocity ub. (i,iv,vii) Streamwise
component (u); (ii,v,viii) wall-normal component (v); (iii,vi,ix) spanwise component (w). (a) Input LESx4;
middle, predicted super-resolved flow; (b) reference DNS.

notable that minimal changes are made to the eddies that are resolved by LESx4. We
stress again that, because the LES and DNS simulations do not match on the level of
instantaneous flow fields, the distributions shown in the figure do not correspond on a
one-to-one basis. The results suggest that the proposed pipeline does not negatively affect
the accurately resolved eddies in sufficiently fine computational grids.
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Figure 31. Instantaneous velocity distributions in the streamwise (y–z) cross-sectional plane for proposed
unsupervised–supervised pipeline with LESx4 at Reτ ≈ 1000. The region corresponds to (L y, Lz) = (δ, 2δ).
Velocity components are non-dimensionalised by the bulk velocity ub. (i,iv,vii) Streamwise component (u);
(ii,v,viii) wall-normal component (v); (iii,vi,ix) spanwise component (w); (i–iii) input LESx4; (iv–vi) predicted
super-resolved flow; (vii–ix) reference DNS.

Figure 32 shows the energy spectra of the predicted super-resolved velocity flow
fields. The spectra obtained by the proposed unsupervised–supervised pipeline show
good agreement with the reference DNS, while the typical supervised model shows some
discrepancies, most notably at y+ ≈ 15. Figures 33 and 34 show the turbulence statistics
of the predicted flow and the extracted SGS stresses, respectively. The mean streamwise
velocity of LESx4 already matches that of the DNS, and neither the proposed pipeline nor
the supervised model alters the LESx4 velocity and the results agree with the DNS. In the
resolved Reynolds stresses and the extracted SGS stresses, the predictions by the proposed
pipeline agree better with the reference profiles compared with the typical supervised
method. These observations are qualitatively similar to the LESx8 case discussed in
§ 2.2.2. These results suggest that the proposed unsupervised learning is effective even
for conventional well-resolved LES.

B.2. A posteriori results
Here, the turbulence statistics obtained by the a posteriori test at Reτ ≈ 1000 are
presented. Figure 35 shows the obtained mean streamwise velocity and the Reynolds
shear stress. The proposed unsupervised–supervised-pipeline SGS model shows good
agreement in the predicted mean velocity to the reference DNS, while the conventional
SGS model shows some discrepancies. Similarly, the proposed model shows good
agreement of the near-wall shear stress. Figure 36 shows the components of the Reynolds
normal stresses. The proposed model shows differences with the conventional SGS model
in the wall-normal and spanwise components while the streamwise component is similar.
These observations are qualitatively similar to the observations from the LESx8 case
discussed in § 6. The results indicate that the proposed unsupervised–supervised machine-
learning pipeline methodology to SGS modelling does not negatively affect the LES
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Figure 32. Streamwise (a,c) and spanwise (b,d) energy spectra of predicted super-resolved velocity
fields at Reτ ≈ 1000. Here (a,b) y+ ≈ 15; (c,d) y+ ≈ 100. Blue, streamwise component; orange, wall-
normal component; green, spanwise component. Solid lines, predicted super-resolved flow using proposed
unsupervised–supervised pipeline (figure 15a); dashed lines, typical supervised model (figure 15b); circles,
reference DNS; pluses, input LESx4.

predictions for sufficiently fine computational grids and may yield better results compared
with conventional SGS models.

Appendix C. Effects of the clipping parameter μclip

This appendix presents the effects of the clipping parameter μclip used in (3.2). The
a posteriori results using μclip/μw = 0 and μclip/μw ≈ −1 are shown in addition to
μclip/μw ≈ −2 that was shown in § 6. As mentioned in § 3.2, a small value of μclip
yields less clipped backscatter. In the case of μclip/μw = 0, the SGS stress only predicts
forward scatter of kinetic energy. We note that μclip/μw ≈ −3 led to instabilities of the
computation and thus not shown.

Figure 37 shows the obtained mean streamwise velocity and the Reynolds shear stress. It
can be observed that as μclip decreases, the streamwise velocity approaches the reference
DNS profile. The difference in the velocity profiles may be attributed to the weakened SGS
backscatter with μclip/μw = 0 and μclip/μw ≈ −1, as the clipping procedure weakens
the production of velocity fluctuations. The result indicates the importance of the SGS
backscatter in vLES, and the appropriate prediction of SGS backscatter is crucial to the
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Figure 33. Mean streamwise velocity (a) and resolved reynolds stresses (b) of predicted super-resolved flows at
Reτ ≈ 1000. Solid lines, predicted super-resolved flow using proposed unsupervised–supervised-pipeline SGS
model (figure 15a); dashed lines, typical supervised model (figure 15b); circles, reference DNS; crosses, input
LESx4. For (b): blue, streamwise normal component (u′u′); orange, wall-normal normal component (v′v′);
green, spanwise normal component (w′w′); red, shear component (u′v′).
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Figure 34. The SGS stresses extracted from predicted super-resolved flows at Reτ ≈ 1000. Solid lines,
predicted super-resolved flow using proposed unsupervised–supervised-pipeline SGS model (figure 15a);
dashed lines, typical supervised model (figure 15b); circles, reference DNS. Blue, streamwise normal
component (û∗u∗); orange, wall-normal normal component (v̂∗v∗); green, spanwise normal component
(ŵ∗w∗); red, shear component (û∗v∗).

accurate prediction of the streamwise velocity, as shown in § 6. Therefore, it is desirable
to clip as little backscatter as possible by setting μclip as small as possible. Another
observation is that μclip/μw = 0 gives a better prediction of the mean velocity profile
compared with the conventional SGS model. While both models do not predict the SGS
backscatter of energy, the proposed machine-learning-based SGS model is shown to
provide a better prediction for vLES.

We note that the clipping procedure is necessary for the stable computation of vLES.
Matsumoto, Inubushi & Goto (2024) have shown that machine-learning turbulence models
for the computational grids with kmaxη < 0.2, where kmax is the maximum resolved
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Figure 35. Mean streamwise velocity (a) and Reynolds shear stress (b) of a posteriori tests at Reτ ≈ 1000.
Blue, LESx4 with proposed unsupervised–supervised-pipeline SGS model (figure 15a); red, LESx4 with
typical SGS model; black circles, reference DNS. For (b): dashed lines, resolved component; dotted lines,
SGS component; solid lines, resolved + SGS stress.

101 103

y+
101 103 101 103

y+ y+

0

5.0

2.5

7.5

0

0.5

1.0

ρ
u′

′  u
′′ /

τ w
−

−

ρ
v

′′  v
′′ /

τ w
−

−

ρ
v

′′  v
′′ /

τ w
−

−

0

2.0

1.5

1.0

0.5

(a) (b) (c)

Figure 36. Streamwise (a), wall-normal (b) and spanwise (c) Reynolds stress of a posteriori tests at Reτ ≈
1000. Blue, LESx4 with proposed unsupervised–supervised-pipeline SGS model (figure 15a); red, LESx4
with typical SGS model; black circles, reference DNS. Dashed lines, resolved component; dotted lines, SGS
component; solid lines, resolved + SGS stress.
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Figure 37. Mean streamwise velocity (a) and Reynolds shear stress (b) of a posteriori tests at Reτ ≈ 1000.
Green, μclip/μw = 0; orange, μclip/μw ≈ −1; blue, μclip/μw ≈ −2; red, vLES with typical SGS model; black
circles, reference DNS. For (b): dashed lines, resolved component; dotted lines, SGS component; solid lines,
resolved + SGS stress.
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wavenumber and η is the Kolmogorov length scale, cannot perform stable computation.
The spanwise grid resolution in the near-wall region for the present vLES (i.e. LESx8)
gives kz,maxη ≈ 0.13 (details of the computational grid and the flow condition are shown
in § 4), which necessitates the clipping procedure.
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