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MAXIMAL ABELIAN SUBGROUPS OF THE 
SYMMETRIC GROUPS 

JOHN D. DIXON 

0. Introduction. Our aim is to present some global results about the set 
of maximal abelian subgroups of the symmetric group Sn. We shall show that 
certain properties are true for "almost all" subgroups of this set in the sense 
that the proportion of subgroups which have these properties tends to 1 as 
n-*c°. In this context we consider the order and the number of orbits of a 
maximal abelian subgroup and the number of generators which the group 
requires. 

Earlier results of this kind may be found in the papers [1; 2; 3; 4; 5]; the 
papers of Erdôs and Turân deal with properties of the set of elements of Sn. 
The present work arose out of a conversation with Professor Turân who 
posed the general problem: given a specific class of subgroups (e.g., the 
abelian subgroups or the solvable subgroups) of Sn, what kind of properties 
hold for almost all subgroups of the class? It turns out that the class of 
maximal abelian subgroups is one of the easiest to deal with because of the 
simple structure of these groups (Lemma 6). 

Our main results are given in Theorems 1 to 4 in Sections 1 and 2, although 
some of the subsidiary results of Section 1 throw interesting light on the 
structure of transitive abelian groups. Some of our results are rather surprising 
in view of the work of Erdos and Turân. For example, almost all maximal 
abelian subgroups of Sn have their orders "close" to n — 1 which is the 
smallest possible value (see Theorem 3 and the remark following Lemma 6), 
whilst according to [3], almost all elements of Sn have order "close" to 
exp{ | (log n)2} which grows much faster than n. We also show that maximal 
abelian subgroups usually have few orbits and require few generators 
(Theorem 4), and show that the average number of generators required for 
a transitive abelian subgroup of Sn is bounded independently of n (Theorem 1) ; 
and we give estimates for the numbers of transitive abelian subgroups and 
maximal abelian subgroups of Sn (Theorems 1 and 2). 

Notation. We use the notation un <K vn to imply that there exists an absolute 
constant c > 0 such that un ^ cvn for all values of n considered. Similarly, all 
the implied constants in 0- and o- notation will be absolute constants. 

1. Transitive abelian subgroups. Let tn denote the number of transitive 
abelian subgroups of Sn. It is well known that a transitive abelian subgroup 
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MAXIMAL ABELIAN SUBGROUPS 427 

of Sn is regular and hence of order », and that it is its own centralizer and hence 
a maximal abelian subgroup (see [8, § 10.3]). Let 9\ be a set of groups con­
sisting of exactly one isomorphic copy of each abelian group of order n. 

LEMMA 1. tn = (n — 1)! £ |Au t^ | _ 1 , where the sum is over all A G ^n 

and |Aut -41 denotes the order of the automorphism group of A. 

Proof. It is enough to show that if tA is the number of transitive subgroups 
of Sn isomorphic to A, then 

tA = (n - 1)1 lAut^ l" 1 for all A G &H. 

We shall first show that any two regular subgroups H, G of Sn which are 
isomorphic are conjugate in Sn. Let x i—» x' denote the isomorphism H —» G. 
Since H and G are regular, the images F (x G H) and F ' (x' G G) of the 
symbol 1 both run over the whole set {1, 2, . . . , n\ exactly once. (Sn is taken 
to consist of all permutations of {1, 2, . . . , » } ). Thus we can define w G Sn by 
lxw = F ' (x G H). We now claim that w~lxw = x' for all x £ H. Indeed, 
for each symbol i we can choose u' G G such that i = F ' . Then i"'"1*"' = 
(lu'w-iyte = !(«*)« = i*x' = jz't s m c e (wxy = u>x> by ^ e isomorphism 

property. Since this holds for all i, 1 ^ i -^ n, we have w~1xw = xr. This is 
true for all x G H and so w~lHw = G as asserted. 

Now without loss in generality we may suppose that A G &n is a transitive 
abelian subgroup of 5W. As we noted at the beginning of this section, such a 
subgroup is regular. Thus, all the transitive abelian subgroups of Sn isomorphic 
to A are conjugate to A in Sn by what we just proved. Therefore tA equals the 
index \Sn:N(A)\ of the normalizer of A in Sn. Moreover, as we noted above, 
A is its own centralizer in Sn, and so N(A)/A ~ Aut A (see [7, § 13]). Thus 
tA = \Sn\/\N(A)\ = n\/n\AutA\ = (n - 1)! lAut^l"1 . 

We define f(n) = nHJn\ = n XI lAutyll"1, summed over 4̂ G &n- If 
n = pikl . . . ps

ks is the canonical prime factorization of w, then 

|Aut v4| = |Aut v4i| . . . |Aut,4 s | 

where A t is the Sylow pi-group of A, since the A t are characteristic subgroups 
of A. Moreover, as the At range over &pi

ki (i = 1, . . . , s), the direct product 
A i X . . . X A s ranges over a complete set of non-isomorphic abelian groups 
of order n. Hence we conclude that 

(1) / (») = IT f(Pi*' ) when n = pïl ... p«' ; 
1 = 1 

that is, / is multiplicative. 
We now consider the value of f(pk) for a prime p. 

LEMMA 2. Let A be an abelian p-group of type (wi, . . . , mr). This means 
that A is a direct product of cyclic groups of orders p™1, . . . ,pmr, respectively. 
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(A requires r generators and we say A is of rank r). Then 

r 

| A u t 4 | = pnAYL (1 - p-') where 

r 

nA = ]T) min(Wi, mf). 

Proof. Let i7î;- denote the additive group of all homomorphisms of a cyclic 
group of order pmi into a cyclic group of order pmi; it is easily seen that 
\Hii\ = pmi^mi>mi\ I t is known (see [7, § 21]) that the ring E of endomorphisms 
of A is isomorphic to the ring of r X r matrices with (i,j)th entry from 
Hijiijj = 1, . . . , r ) ; we can define a natural matrix sum and product in E 
because we can define addition in Hij and composition between elements of 
Htj and elements of Hjk. Note that Aut A is the group of units of E. Consider 
the ideal J = pE of E. Clearly J is nilpotent since phE = 0 when 

h = max (mi, . . . , m r) . 

Moreover E/J is isomorphic to the ring of all r X r matrices whose ( i , j ) th 
entry lies in Hij/pHij, and this ring is isomorphic to the ring M(r,p) of 
all r X r matrices over a field with p elements. Since / is nilpotent, a is a 
unit in E if and only if a -\- J is a unit in E/J. But the group of units of 
M(r, p) is the general linear group GL(r, p) of order ITj=Zo(#,r — p*). Hence 
the group of units of E/J has this order, and so we conclude that the order 
of the group of units Aut A of E is 

| Aut 41 = VlfiiP'-P*) 

=u\Hti\p-ri-ii(pT-pi) 

Since | f l ^ | = p*ln(m,-,my)> 

Remark. This proof also includes some detailed information about the 
structure of Aut A. 

LEMMA 3. f(pk) < Cp(l + P~A)/(1 - P~2) where Cp = I l r = 1 ( l - p-')-1. 

Proof. Define h(k, r) = X) |Aut^4|_1 where the sum is over all A G ^ V °^ 
rank r. If we go from a group of type (mi, . . . , ms, 1, . . . , 1) of rank r with 
all mt > 1 to one of type (mi — 1, . . . , ms — 1) of rank 5, then the cor­
responding value of nA in Lemma 2 is decreased by r2. Thus Lemma 2 implies 
that 

) ]£/K& - r, s)£~r2 iir<k 
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Now from Lemma 2, h(k, 1) < Cvp~k and 

*(*,2) = {(i -p-'Ki -p-*)}-1 s P-<*-»-*> < cvp~k-\\ -P-y\ 

We shall use (2), and induction on k(k jg r) to prove that 

(3) h(k, r) S Cpp~k-2r+2 for r è 3. 

In fact (3) is valid for k = r by (2). On the other hand, if / > r and (3) holds 
for all k < I, then (2) implies that 

Hl,r) sih(l~r1s)p-r2 

â c,p-ri ip-l+r + p-i+r-\i - p-y1+£ p-'+'-^\ 
^ 6 = 3 / 

<Cpp~l~2r+2 f o r r ^ 3 . 

This proves the induction step, and so (3) is proved. Finally from these 
estimates of h(k, r), we have 

f(pk)=pk£h(k,r) 

< 
k 

p'jCip-" + c,p~*-\i - p-Y1 + £ c,p-»-iT+i 

i +P~ 
-*\-p-< Cv - ,-=2 as asserted. 

Remark. It follows directly from this proof that/(£*) ^ f(p) = p/(p — 1), 
for all k ^ l . 

LEMMA 4. .For a// n ^ 1, 1 g f(n)<p(n)/n < Co where ip(n) is the Euler 
ip-function and Co is a constant. (We may take 

Co = np{ (i - p - r m + p-') n~ 3(i - />-')-»} 
Jafĉ w over all primes p). 

Proof. From (1) and Lemma 3 we have 

/<»> <n c, ( f^C) < a n (i - p-y1 

= Con/<p(n). 

On the other hand, from the remark following Lemma 3, we have 

p\n 
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LEMMA 5. For all ft, f(n) ^ 1, and f(n) = 0 (log log n) as n —> co. If we 

define Fin) = Z)L=i/(&), then F{n) — F(m) <£n — m + (log ft)2 for all 
n ^ m ^ 1. 

Proof. Since n/<p(n) = O(loglogft) (see [6, p. 267]), the estimates for/(ft) 
follow from Lemma 4. To prove the second part we note that 

67T~2 < n~2a(n)<p(n) < 1 

for all n ^ 1, where a(n) is the sum of the divisors of n (see [6, p. 267]). Thus 

F(n) - F(m) = £ /(*) < C0 £ « M « ) < ^f ± ^ . 

Now if we define G(n) = E*=io-(£), then G(ft) = ir2n2/12 + 0(n logn) 
(see [6, p. 266]). Therefore 

V ^ 1 = V r m l i 1 I , G(n) G(m) 
*~ + i * ^ + i W U i + l /" 1 " ft m + 1 

= T^I L i~r~T + » — —r~r i + 0 1 L —r- + log ft r 
2 

= — (ft — m) + 0(log ft)2. 

Hence we conclude that F(n) — F(m) <<C ft — m + (log ft)2 as asserted. 

We can now state our first theorem giving global information about the 
set of transitive abelian subgroups of Sn. 

THEOREM 1. The number tn of transitive abelian subgroups of Sn lies in the 
range 

{n - D! < . . r {n - 1)! 
<p(n) <p(n) 

(zvhere Co is given in Lemma 4). 
The proportion of these subgroups which require more than d generators is 

0(4rd) independently of n; and indeed there exists a constant Ki such that for 
all ft the average number of generators of a transitive abelian subgroup of Sn is 
at most K\. 

Proof. The first part of the Theorem follows from Lemma 4 and the definition 
of/(ft). So we consider the second part. 

It follows from Lemma 1 and the proof of Lemma 3 that the proportion 
qd of transitive abelian subgroups of Spk which require d generators (that is, 
have rank d) is pkh(k, d)/f(pk). Since C2 ^ Cp for all p (see Lemma 3), it 
follows from the estimates for h(k, d) in Lemma 3 that qd < (4/3) C2p~~2d+2; 
hence the proportion of transitive abelian subgroups of Spk requiring more 
than d generators is <Kp~2d (uniformly in p, k and d). In general, an abelian 
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group requires d generators if and only if at least one Sylow ^-group requires 
d generators. But if A is a transitive abelian subgroup of Sn, and Ai is a Sylow 
p-group of order pk, then Ai has a faithful (transitive) representation on each 
of its orbits (of length pk). Thus the proportion of transitive abelian subgroups 
of Sn which require more than d generators is <<C J2p\n P~2d <3C 2~2d = 4r~d as 
asserted. 

The last assertion of the Theorem follows immediately, since £ j= i 4rd is 
finite. 

2. Maximal abelian subgroups. We begin by characterizing the maximal 
abelian subgroups of Sn. It turns out that these subgroups have an especially 
simple structure (part (b) of Lemma 6), and it is this that makes our sub­
sequent analysis relatively easy. 

We shall need the following notation. If A is a subgroup of Sn and 
&i Q {1, 2, . . . , n) is an orbit of A, then A \tot will denote the group of restric­
tions a\tot of a to tot (a £ A). Note that A\tot is embedded in a natural way 
in Sn as a subgroup fixing all symbols not in tot. 

LEMMA 6. Let A be an abelian subgroup of Sn and let toi, . . . , tok be the orbits 
of A with lengths n\, . . . , nk, respectively. Then A is a maximal abelian subgroup 
of Sn if and only if 

(a) at most one nt = 1; and 
(b) A = A\toi X . . . X A\tok (direct product), and so 

\A\ = \A\Qt\... |i4|0t| = n1...nk. 

Proof. First, suppose that (a) did not hold. Then nt = nj = 1, say, and the 
transposition interchanging the symbols in tot and toj centralizes A. Hence A 
could not be maximal. Similarly, A\tot X - . . X A\tok is an abelian subgroup 
of Sn, and it contains A, so if (b) did not hold A could not be maximal. Thus 
(a) and (b) are necessary if A is a maximal abelian subgroup. 

Conversely, suppose that (a) and (b) hold. To prove A is maximal it is 
enough to show that A equals its centralizer C(A) in Sn. Let u 6 C(A). 
Then u 6 C(A\tot) by (b), and we claim that when nt 5* 1, this implies that 
toiu = to^ Indeed, let / G tot and 1 9* a G A\tot. Then la = m ^ I because 
A\toi is regular, and so lua = lau = mu 9^ lu. Thus lu is moved by a Ç A\tou 

and so lu G to{. This holds for all / G tou and so tot
u = tot as claimed. But in 

the symmetric group on tou the transitive abelian subgroup A\tot is maximal 
and hence its own centralizer, and so nt 9e 1 implies that u\tot G A\tot. Since 
by (a) there is at most one exceptional nu we can conclude that u\tot G A \tof for 
all i. Hence u G A by (b). Therefore we have shown that C(A) C A, and 
so A is maximal. 

Remark. I t is a simple exercise to deduce from this Lemma that for n §: 3, 
the smallest order of a maximal abelian subgroup of Sn is n — 1, and the 
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largest order is 3^/3i, ( 4 / 3 ) 3 ^ , or 2.&nlz\ depending on whether n = 
0, 1, 2 (mod 3). 

Let s$n denote the set of all maximal abelian subgroups of Sn and let SSn 

consist of those subgroups in s/n which have no orbit of length 1. We write 
an and bn, respectively, to denote the orders of these sets. Clearly an = bn + 
nbn-i by Lemma 6. 

LEMMA 7. We have the following generating functions. 

(3) ËV = °pfe^) 
(4) ÊlK=(l+*)exp(É%V). 

B=ow!' * x \™2 nf 

Proof. (4) follows immediately from (3) and the relation an — bn + nbn-\\ 
so consider (3). 

The number of subgroups in Se\ for which a fixed symbol 1 lies in an orbit 
of length k is clearly 

\l-i)tA- (k = 2,...,n) 

by Lemma 6, since there are (™Ii) possible orbits. Thus 

K = S (* -1) /A-* 
and so 

/RX won = y^ fe &n-fc = y^ f(k) bn^k 
K) n\ fci(*- 1)! (»-*)! & * (»-*) ! 
But if we write 

\ ^ 2 m / ~ 0 n\ 

then upon differentiating and comparing coefficients of zn~l we obtain (5), 
with bj in place of bm (m = 0, 1, . . . , n). Since b0 = &o' = 1, the recursion 
formula (5) shows that bn = bn' for all n. This proves (3). 

We now define 

P*W = {lZ\) 'A-,/ E (j I J) *A_, 
(the ''probability" that for a subgroup in ̂  a specified symbol should lie in 
an orbit of length k). From the proof of Lemma 7 we see that 
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and that 

t PM = l. 
LEMMA 8. 

i*M«>-t/«7^Wt k=2 k=2 (n — k)\ 

= n + 0{log n • (log log n) }, 

and for each n0, 1 ^ w0 ^ n — 2, 

Z) £*(») « ~ (log n) (log log »)2. 
jfc=2 » 0 

Proof. If we differentiate (3), multiply by 2, and differentiate again, we get 

n = l WI Vm=2 \ m = 2 " * / / \ m = 2 " * / 

If we substitute (3) into this expression and compare coefficients of s™-1 wre get 

(a\ n b" - V ffm\ bn-m , y> Y?f(l) f(m — 0 frw-m 
W »! ~ ^ 2 / W ( » - m ) ! ' i " ^ 4 a / m - l (n-m)V 
Now 

S i^ar=r «(log Iog m) 5 m Vr + Ï ^ J 
<<C — (log log m) log w, using Lemma 5. 

Therefore 

m=4 M / m — I (n — m)\ & ^ 4 m (w - m)\ 

« l o g » - (log log n)2— f 

for all n ^ 4 by (5), because f(m) ^ 1. Hence we can conclude from (6) that 

" 2 (» — w j ! »! v »! / 

= —f \n + O(log n • (log log n)2)}. 
w! 

This proves the first part of the Lemma. 
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The second part of the Lemma follows from 

n—no -I n— no -« n 

Jfc=2 ^ 0 £ = 2 " 0 fc=2 

*{*-£*(,°} 
<3C — log n - (log log n) , for all w ^ 3 , 

no 

from above. 

THEOREM 2. The number an of maximal abelian subgroups of Sn lies in the range 

(n - 1)! , n(n - 2)! «! 
/ N + - 7 - TV ^ fln « Gog log n) -a 

/or all n ^ 3. (Note that the lower bound is always greater than 2nl/n2> and 
is y> (log log n)n\/n2, for infinitely many n (see [6, p. 267])). 

Proof. We first claim that bn <<C (n + l)~z,2n\. If this were not so, there 
would be an increasing sequence of indices nk —» oo for which 

(7) bnk(nk + iy/2/nkl ^ bm(m + l)3/2m!, for all m ^ nk. 

But by Lemma 8 

2T nfc-2 » 

and substituting in the inequalities (7) and the estimate / ( / ) <<C log log / of 
Lemma 5, we get the contradiction 

#** <K log log nk as k —> oo. 

Thus è„ <K (# + l)~3/2w!. Applying Lemma 8 again we obtain 

# ( l + 0(l)) = E/(m)T-^ »! ^ 2 (w — m)\ 
n 

« L (log log n) (n - m + 1)~3/2 

m=2 

<<C log log n, for all n è 3. 

This combined with Theorem 1, and the observation that bn ^ tn for all 
» ^ 2 , shows that 

(8) * ^ * ft. «dog log.) jj!. 

Now the required estimate for aM comes from the identity an = bn + wèTO_i. 
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THEOREM 3. Let nn denote the average of the logarithms of the orders of the 
maximal abelian subgroups of Sn. Then for each e > 0 

\in = logn + O(log»)«. 

Moreover, almost all maximal abelian subgroups A of Sn satisfy 

\\ogn — log|i4|| < (log»)*+* 

and the proportion of exceptions is O(\og n)~~\ 

Proof. Let \n be the average corresponding to /xw, but taken over the sub­
groups in 3§n. Clearly 

n 

^n = ]C Pk(n)(\og k + \n-k), 
Jc=2 

and so using Lemma 8, we get 

n n—np 

(9) \n = 2 P*W 0°S * + *»-*) + E &(») (loS * + X»-*> 

^ log w + sup \m + 0 ( — log w(log log n)2 sup X5 

We now claim that \n « log n for all w §; 2. If this were not so then there 
would exist an increasing sequence of indices nk—>co such that 

W l o g nk è Xm/log w, for m = 2, . . . , nk, 

and XnA/log rcfc -> oo. 
Then taking w0 = [log wfc]

2, (9) yields 

\ <: i™ *, J- l o g tog ^fe . , n /(log log wO2 \ 

K s log ^ + -j^- \nk + o I lognk Kj • 
But this implies that XWA <3C log nk as & —> oo , contrary to the choice of w*. 
Thus \n<Klogn for all w ^ 2. Applying (9) again, with TZ0 = [exp(log w)*], 
we get 

An ^ log n + O(\ogn)e. 

Now every subgroup m.sén is either in Se\ or (discarding the orbit of length 1) 
corresponds co a subgroup in 38x„i. Hence it is clear that juw is a weighted 
average of Xn anà \n-ii in view of our bound on Xw, this means that 

f*n Slogn + 0(\ogn)€. 

Since every maximal subgroup of Sn has order Z n — 1 (see the remark after 
Lemma 6), /zn è tog(w — 1) = log n + O(log w; % and so the first part of the 
Theorem is proved. 

• 
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To prove the second part we introduce 0n as the average of (log|^4|)2, taken 
over all A G 38n. Again it is clear that 

n 

en = H P,c(n){{\og kf + 2 V . , log k + 9n.k\. 

Therefore, using our previous estimate for \m and using Lemma 8, we obtain 

(10) 0n ^ (log n)2 + sup 0m + 0{log n • log no + no'1 (log n)\\og log n)z 

m<no 

+ no'1 log n • (log log rif sup 0m\. 
m<n 

By an analysis analogous to that of (9), we can show that 0n <<C (log n)2 for 
all n = 2, and so taking n0 = [log n\z in (10), we get 

0n ^ (log n)2 + O(log n • log log n). 

But this together with our estimate \n ^ log n + O(log n)€ yields 

r - E (*» - logMI)2 = 0n- Xre
2 « (log n)1+\ 

On 

where the sum is over all A G âiïn. As before, it may be seen that we can extend 
the average over s/n to obtain 

^-E(^-iogMi)2«(iogW)1 + e , 

where the sum if over all A G s/n. This in turn implies that the proportion 
of A G sén which fail to satisfy 

|Xn - log|^l|| < | ( log«)*+ e 

is O(logw)"e. Since \n = log n + O(\ogn)6, the second part of the Theorem 
now follows. 

We define the function h(n) to be the integer s = 1 such that log, n = 

0 < \ogs-\n (here, log5 is the 5th iterated logarithm). Note that L(n) t.rows 
very slowly; for example L(106) = 3 and L(10106) = 4. 

LEMMA 9. Let p > 0, and le- an è 0 (n = 1 ,2 , . . .). / / 

a» -• YJ>c=-2pk(n){$ + an..k) 

for n = 2, 3, . . . , then arl « ^\n) jor all n. On the other hand, if 

<*n è X ? = 2 Pic (n)(0 + <Xn-k) 

for n = 2, 3, . . . , then an -—» oo as n —> oo. 

Proof. Suppose that the first series of inequalities holds. Then applying 
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Lemma 8, with n0 = [log n]2, we obtain 

n 

«n S P + J2 Pk(n)an-k + Oino'1 log n • (log log nf) 
k=n—no+1 

^ j8' + sup am 
ra<(log w)2 

for all w ^ 2 if we choose /3' large enough. Applying this inequality twice 
we get 

(11) an g 20' + sup am, for all n è 3. 
w<(2log log n)2 

Now L ([(2 log log w)2]) g L(w) — 1, whenever log « ^ (2 log log w)2, so if 
we choose $" > 0 such that 0" ^ 20', and a„ ^ 0"L(w) for all n with log w < 
(2log log n)2, then induction with (11) shows that 

an ^ P"L(n) for all w. 

This proves the first part of the Lemma. 
Now suppose that the second series of inequalities holds. Then observing 

that pjc(n) —> 0 as n —> co for each fixed k, we conclude that 

Km inf an ^ lim inf (/3 + an) 

which implies that lim inf an — co ; hence an —> oo . 

THEOREM 4. Z ^ cow and yn denote, respectively, the average number of orbits 
and the average number of generators required by the maximal abelian subgroups 
of Sn. Then 

(a) o)n —» oo but œn <<C L(n) /or a// n; 
(b) 7^ « L(w) for all n. 

Remark. In particular, it follows immediately that for each e > 0 almost 
all maximal abelian subgroups have fewer than L(n)1 + € orbits and require 
fewer than L(w)1+€ generators. 

Proof. It is readily seen that it is enough to prove the corresponding asser­
tions for the averages oon' and yn' taken over the subgroups in 3)n. But clearly 
con = Xfc=2^fcM(l + °>n-k), and so (a) follows from Lemma 9. On the other 
hand, if A and B are groups which require dA and dB generators, respectively, 
then A X B requires at most dA + dB generators. Thus we find that 

7 ' » ^ M » ) ( « i + 7 U 
/c=2 

by Theorem 1, and so (b) follows from Lemma 9. 
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