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Abstract

We consider feedback predictive control of a discrete nonhomogeneous Markov jump
system with nonsymmetric constraints. The probability transition of the Markov chain
is modelled as a time-varying polytope. An ellipsoid set is utilized to construct an
invariant set in the predictive controller design. However, when the constraints are
nonsymmetric, this method leads to results which are over conserved due to the
geometric characteristics of the ellipsoid set. Thus, a polyhedral invariant set is applied
to enlarge the initial feasible area. The results obtained are for a more general class
of dynamical systems, and the feasibility region is significantly enlarged. A numerical
example is presented to illustrate the advantage of the proposed method.
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1. Introduction

In practice, especially for control engineering, system models are prone to abrupt
changes. These are caused by environmental disturbances, temporary loss of
communication or changes in interconnections of subsystems. Such situations are also
found in economic systems, solar thermal central receivers and robotic manipulator
systems. These systems belong to a class of systems, called Markov jump linear
systems (MJSs), which are governed by a Markov chain [2] taking values in a
finite set, where both time-evolving and event-driven mechanisms are involved. It has
attracted a great deal of attention since the 1960s. The problems under investigation
include Kalman filters [12], time delays [8, 13], gain scheduling [19], sliding mode
control [14] and partly unknown transition probabilities [20, 21]. Typically, a MJS
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evolves according to a Markov stochastic process (or chain). The transition probability
(TP) is a crucial factor in a Markov process (or chain), affecting the dynamical
behaviour and performance of the MJS. Generally, TPs are assumed to be fully
accessible or exactly known. However, TPs are often expensive to obtain and, hence,
are not available for use in practice. Such situations can be found in communication
networks [4], in which the packet dropouts are randomly distributed in different phases
of the networks. In this case, the time-varying TP matrices become nonhomogeneous
Markov chains. Another example is a helicopter system [10]; the airspeed variation in
such system matrices can be modelled as a nonhomogeneous Markov process when
the weather changes. A feasible approach to deal with such situations is to represent
these time-varying uncertainties in terms of bounded sets. In this paper, a polytope set
is applied to describe the characteristic of this time-varying uncertainty.

On the other hand, model predictive control (MPC) is well known for its capability
to handle the constraints which are imposed on the control input and the state.
The control algorithm is obtained by utilizing a prior-experimental process model
to predict the future behaviour of the dynamics of the system. At each sampling
instant, considering the current state of the system as the initial state, the MPC
algorithm computes a sequence of control inputs, which are to be manipulated
in the future by solving an optimal control problem. Then, only the first control
input will be implemented to the process. At the next sequential sampling time,
these actions are repeated. Many interesting results and their applications associated
with MPC technology have been obtained in areas such as output feedback [18],
system-on-chip implementation [15], dual decomposition [16] and actuator
saturation [3]. Specifically, for the finite-horizon MPC, a standard MPC can be
formulated as a compact quadratic program (QP) [9]. However, its closed-loop stability
is hard to guarantee. On the other hand, for the case of infinite horizon, a worst-case
performance cost algorithm was proposed [7] based on invariant sets (which restrains
the states of the system in a certain range) as time evolves. In this way, the closed-loop
stability is achieved. Bemporad et al. [1] explicitly characterized the solution of the
constrained QP problem of MPC as a piecewise-linear state feedback law, based on
the partition of the state space. The closed-loop control is realized through searching
the corresponding control input on-line. Wan and Kothare [17] proposed an efficient
off-line algorithm to obtain an on-line optimal control law by convex combination.
However, in the existing literature, almost all the constraints considered are generally
symmetric. In many engineering problems, these assumptions are often violated due
to the fact that the machine is required to work at different operating points. Although
ellipsoidal invariant methodology is widely applied to handle symmetric constraints, it
is much too conservative for the estimation of the feasible area. The situation is much
worse in the case of nonsymmetric constraints.

From the perspective of modelling and handling of different types of (symmetric
or nonsymmetric) constraints to ensure meeting the performance requirements in the
presence of abrupt changes in the system behaviour, one should consider MPC for
nonhomogeneous Markov jump systems with nonsymmetric constraints.
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The rest of the paper is organized as follows. In Section 2, the control problem
involving MJSs with nonhomogeneous TPs is defined. In Section 3, an on-line
optimal predictive controller design algorithm for MJSs with nonhomogeneous TPs is
developed, and the initial feasible area is enlarged by using a polyhedral invariant set.
In Section 4, a numerical example is provided to illustrate the validity of the results. A
brief summary in Section 5 concludes the paper.

Throughout the paper, the notation Rn stands for an n-dimensional Euclidean space,
the transpose of the matrix A is denoted by A>, E{·} denotes the mathematical statistical
expectation of the stochastic process, a positive-definite matrix is denoted by P > 0,
(a|b) means a based on b, I is the unit matrix with appropriate dimension and ∗ means
the symmetric term in a symmetric matrix. The expressionA>B(∗) denotesA>BA.

2. Problem statement and preliminaries

Let (M, F, P) be a probability space, where M, F and P represent the sample
space, the σ-algebra of events and the probability measure defined on F, respectively.
Consider the following discrete nonhomogeneous MJS with nonsymmetric constraints:xk+1 = A(rk)xk + B(rk)uk,

yk = C(rk)xk,
(2.1)

where xk ∈ Rnx is the state vector of the system, uk ∈ Rnu is the input vector of the
system and yk ∈ Rny is the controlled output vector of the system. The output parameter
matrix is C(rk). A discrete-time Markov stochastic process is defined as {rk, k ≥ 0},
which takes values in a finite state set. The set Γ = {1, 2, 3, . . . , σ} contains σ modes
of system (2.1), and r0 represents the initial mode. The matrices of system parameters
are denoted by A(rk) and B(rk). System inputs and outputs are subject to the following
constraints:

−ullim ≤ uk ≤ uulim, (2.2)
−yllim ≤ yk ≤ yulim, (2.3)

where uulim,−ullim denote the upper limit and lower limit of uk and yulim,−yllim denote
the upper limit and lower limit of yk.

Remark 2.1. In the literature, symmetry constraints are generally considered. Here,
we consider nonsymmetric constraints, that is, ullim , uulim, yllim , yulim.

The transition probability matrix is defined as Π(k) = {πi j(k)}, with i, j ∈ Γ, and
πi j(k) = P(rk+1 = j|rk = i) is the transition probability from mode i at time k to mode j
at time k + 1, which satisfies πi j(k) ≥ 0 and

∑σ
j=1 πi j(k) = 1. For given vertices Πs(k),

s = 1, . . . ,N, the time-varying transition matrix Π(k) of the nonhomogeneous Markov
jump system is constructed as

Π(k) =

N∑
s=1

αs(k)Πs(k), (2.4)
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where 0 ≤ αs(k) ≤ 1,
∑N

s=1 αs(k) = 1, that is, a polytope is applied to describe the time-
varying transition probability matrix of system (2.1).

Remark 2.2. It should be pointed out that if Π(k) is a constant matrix, as considered
by Iosifescu [5] and Kemeny and Snell [6], the system (2.1) becomes a homogeneous
Markov jump system.

To proceed further, we need the following preliminary results.

Lemma 2.3. LetM and N be positive-definite symmetric matrices. Then

M +M> − N ≤MN−1M>.

Proof. Since N is a positive-definite symmetric matrix, it follows that

(M−N)M−1(M−N)> ≥ 0.

Consequently, the following inequality is derived:

MN−1M> −M−M> +N ≥ 0,

which completes the proof. �

Definition 2.4. For a given initial state x0 and an initial mode r0, if

lim
T→∞

E
{ T∑

k=0

x>k xk|x0, r0

}
<∞,

then the discrete-time MJS (2.1) is said to be stochastically stable.

Definition 2.5. Given a discrete MJS (2.1), a subset Θ = {x ∈ Rnx | x>k Pk(rk)xk ≤ γk}

of the state space Rnx is said to be an asymptotically stable mode-dependent invariant
ellipsoid if the following property is satisfied:

whenever xk0 ∈ Θ, xk ∈ Θ for all k ≥ k0 and xk → 0 as k→∞.

Theorem 2.6. Consider system (2.1) (with uk = 0). Suppose that there exists a set of
symmetric positive-definite matrices Ps

i > 0 such that

V+ = A>i Pk+1Ai − Pk < 0, (2.5)

where Pk+1 =
∑σ

j=1
∑N

s=1
∑N

q=1 αs(k)αq(k + 1)πs
i jP

q
j and Pk =

∑N
s=1 αs(k)Ps

i . Then this
system with nonhomogeneous TP matrix (2.4) is stochastically stable.

Proof. Define a Lyapunov function for system (2.1) (with uk = 0):

V(xk, rk = i) = x>k Pk(rk)xk with i ∈ Γ.
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Then

∆V(xk, i) = E{V(xk+1, rk+1)} − V(xk, rk)

= x>k
(
A>i

σ∑
j=1

N∑
s=1

N∑
q=1

αs(k)αq(k + 1)πs
i jP

q
j Ai

)
xk − x>k

N∑
s=1

αs(k)Ps
i xk

= x>kV
+xk.

Clearly, condition (2.5) implies that ∆V(xk, i) < 0.
Denote δ = mink λmin(−V+) for all i ∈ Γ, where λmin(−V+) is the minimal

eigenvalue of (−V+). Then ∆V(xk, i) ≤ −δx>k xk. Therefore, the following inequality
holds:

E
{ T∑

k=0

∆V(xk, i)
}

= E{V(xT+1,T + 1)} − V(x0, r0) ≤ −δE
{ T∑

k=0

x>k xk

}
or, equivalently,

E
{ T∑

k=0

x>k xk

}
≤

1
δ

[V(x0, r0) − E{V(xT+1,T + 1)}] <
1
δ

V(x0, r0),

which implies that limT→∞ E{
∑T

k=0 x>k xk} ≤ (1/δ)V(x0, r0) <∞.
From Definition 2.4, it now follows that system (2.1) (with uk = 0) is stochastically

stable. This completes the proof. �

3. MPC controller design for nonhomogeneous MJS with nonsymmetric
constraints

3.1. MPC controller design The objective of this section is to derive an on-line
optimal predictive control algorithm for the discrete nonhomogeneous MJS (2.1) with
nonsymmetric constraints (2.2) and (2.3).

Theorem 3.1. Consider MJS (2.1) with nonhomogeneous TP (2.4) and nonsymmetric
constraints (2.2) and (2.3). Suppose that there exists a set of matrices Fk(rk) such that
the following optimization problem:

min
uk=Fk(rk)xk ,rk ,rk+1∈Γ

J∞(k),

subject to (2.2) and (2.3) and

E{V(xk+1, rk+1|x0, r0)} − E{V(xk, rk|x0, r0)} ≤ −E{x>k Qxk + u>k Ruk|x0, r0}

has a solution. Then J∞(k) has an upper bound, denoted as γk, at sampling time k,
where uk = Fk(rk)xk, J∞(k) = E{

∑∞
k=0(x>k Qxk + u>k Ruk)|x0, r0} and Q,R are weighting

positive-definite matrices.
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Proof. Assume that at each sampling time k, a state feedback law u(k + i|k) =

Fk(rk)x(k + i|k) is applied to minimize the value of J∞(k). We shall derive an upper
bound for J∞(k). Define a quadratic Lyapunov function V(xk, rk) = x>k Pk(rk)xk ≤ γk,
where Pk(rk) > 0. For MJS (2.1), suppose that V(xk, rk) satisfies the following stability
constraint:

E{V(xk+1, rk+1|x0, r0)} − E{V(xk, rk|x0, r0)} ≤ −E{x>k Qxk + u>k Ruk|x0, r0}. (3.1)

Summing the inequality (3.1) on both sides throughout for k = 0 to ∞ and noting
that ∆V(xk, rk) = E{V(xk+1, rk+1|x0, r0)} − E{V(xk, rk|x0, r0)} < 0, which implies the
decrease of the Lyapunov function, leads to limk→∞ xk = 0 or limk→∞ Vk = 0. Then,
applying this result,

J∞(k) ≤ E{V(xk, rk|x0, r0)} = x>k Pk(rk)xk ≤ γk. (3.2)

From inequalities (3.1) and (3.2), an upper bound on J∞(k) is determined and this
completes the proof. �

Remark 3.2. In Theorem 3.1, the problem of computing the minimum of J∞(k) is
transformed to that of obtaining the minimum of γk, which is a convex optimization
problem and convenient to handle.

Theorem 3.3. Consider MJS (2.1) with nonhomogeneous TP (2.4) and nonsymmetric
constraints (2.2) and (2.3). Suppose that there exists a set of positive-definite matrices
gk(rk), Ql

i and Yk(rk) such that the following optimization problem has a solution:

min
γk ,gk(rk),Yk(rk)

γk, (3.3a)

subject to [
1 ∗

xk Q(rk)

]
≥ 0 for all rk ∈ Γ, rk+1 ∈ π

uk
rk+1
, (3.3b)

[
Z Yk(rk)
∗ gk(rk)

]
≥ 0, Ztt ≤ (ut

lim)2, (3.3c)

[
gk(rk) ∗

C(rk)θ>k (rk) M

]
≥ 0, Mhh ≤ (yh

lim)2, (3.3d)


gk(rk)> + gk(rk) − Hk(rk)l θ>k (rk)Ξ(rk)l gk(rk)>Q1/2 Yk(rk)>R1/2

∗ Q̄m 0 0
∗ ∗ γkI 0
∗ ∗ ∗ γkI

 > 0, (3.3e)

where
Ξ(rk)l =

[√
πl

rk1I · · ·

√
πl

rkσI
]
, (3.3f)

https://doi.org/10.1017/S1446181114000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181114000315


144 Y. Liu and F. Liu [7]

Q̄m =


Qm(1) 0 0 0

0 Qm(2) · · · 0
...

...
. . . 0

0 0 · · · Qm(σ)

 . (3.3g)

Here πuk
rk+1

denotes the unknown transition probability at time k + 1, P(rk)l =

γk(Hk(rk)l)−1, θk(rk) = A(rk)gk(rk) + B(rk)Yk(rk), Ztt denotes the tth diagonal elements
of Z, ut

lim denotes the tth element of the input constraints, t = 1, 2, . . . , nu, Mhh

denotes the hth diagonal elements of M, h = 1, 2, . . . , ny and yh
lim denotes the hth

element of the output constraints. Then, at current sampling time k, u(k + i|k) =

Fk(rk+i)xk+i|k, Fk(rk+i) = Yk(rk+i)g−1
k (rk+i) is the mode-dependent state feedback control

law which minimizes the upper bound γk for the MPC objective J∞(k), and stabilizes
the closed-loop system within an invariant ellipsoid, ε = {x>k Q

−1
k (rk)xk ≤ 1}.

Proof. Denote Qk(rk) = γkP
−1
k (rk). Then the condition J∞(k) ≤ γk in (3.2) is implied

by the following linear matrix inequalities (LMIs):[
1 ∗

xk Qk(rk)

]
≥ 0 for all rk ∈ Γ, rk+1 ∈ π

uk
rk+1
,

which will be used to construct an invariant ellipsoid. The input and output constraints
are guaranteed by (3.3c) and (3.3d), while (3.3e) guarantees stochastic stability (for
details, see the article by Wan and Kothare [17]).

From Lemma 2.3, gk(rk)>(Hk(rk)l)−1gk(rk) ≥ gk(rk)> + gk(rk) − Hk(rk)l. Then it
follows from (3.3e) that

gk(rk)>(Hk(rk)l)−1gk(rk) θ>(rk)Ξ(rk)l gk(rk)>Q1/2 Yk(rk)>R1/2

∗ Q̄m 0 0
∗ ∗ γkI 0
∗ ∗ ∗ γkI

 > 0

for all l = 1, . . . ,N,m = 1, . . . ,N or, equivalently,
gk(rk)> 0 0 0
∗ Q̄m 0 0
∗ ∗ I 0
∗ ∗ ∗ I



(Hk(rk)l)−1 θ>(rk)Ξ(rk)l gk(rk)>Q1/2 Yk(rk)>R1/2

∗ (Q̄m)−1 0 0
∗ ∗ γkI 0
∗ ∗ ∗ γkI

 (∗) > 0,

which is implied by
(Hk(rk)l)−1 θ>(rk)Ξ(rk)l gk(rk)>Q1/2 Yk(rk)>R1/2

∗ (Q̄m)−1 0 0
∗ ∗ γkI 0
∗ ∗ ∗ γkI

 > 0.
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Note that P(rk)l = γ(Hk(rk)l)−1 and Yk(rk) = F(rk)gk(rk). Let P̄m = γk(Q̄m)−1. Then we
get the inequality

(A(rk) + B(rk)F(rk))>
( σ∑

rk+1=1

πl
rkrk+1

Pm
rk+1

)
(A(rk) + B(rk)F(rk)) − Pl(rk)

≤ −Q − F(rk)>RF(rk),

which, by multiplying appropriate coefficients, guarantees the stability of the system.
Next we shall show that the feedback law will stabilize the closed-loop system

within the invariant ellipsoid ε = {x>k Q
−1
k (rk)xk ≤ 1}. Suppose that the optimal values at

current sampling time, k, are

P∗k(rk) = γ∗k(Q∗k(rk))−1,

F∗k (rk) = Y∗k (G∗k(rk))−1.

From (3.3e), it follows that

E{x>k P
∗
k(rk)xk} ≥ E{x>k+1P

∗
k(rk+1)xk+1} + x>k Qxk + x>k (F∗k (rk))>RF∗k (rk)xk.

Since P∗k+1(rk+1) is the optimal value at time k + 1, P∗k(rk+1) is a feasible value at time
k + 1. Thus,

x>k+1P
∗
k+1(rk+1)xk+1 ≤ x>k+1P

∗
k(rk+1)xk+1

and, hence,

E{x>k P
∗
k(rk)xk} ≥ E{x>k+1P

∗
k+1(rk+1)xk+1} + x>k Qxk + x>k F>k (rk)RFk(rk)xk. (3.4)

Since the weighting matrices Q > 0 and R > 0 are positive definite, it follows
from Theorem 2.6 that inequality (3.4) implies ∆V(xk, rk) < 0. Thus, MJS (2.1)
with nonhomogeneous TP (2.4) and nonsymmetric constraints (2.2) and (2.3) is
stochastically stable. From (3.4), it follows that

E{x>k P
∗
k(rk)xk} > E{x>k+1P

∗
k+1(rk+1)xk+1},

which means that E{x>k P
∗
k(rk)xk} is strictly decreasing. This indicates that the invariant

ellipsoid is contracting and, hence, is an asymptotically stable mode-dependent
invariant ellipsoid. This completes the proof. �

Remark 3.4. Here the problem of computing the minimum of J∞(k) implies the
infinite horizon of predictive control, which guarantees the stability of the system.

3.2. Enlargement of initial feasible area The ellipsoidal invariant set constructed
in previous sections is applied to find an approximation for the polyhedral constraints.
Since this set is symmetric and contains the origin, it tends to be rather conservative.
The situation will be worse when the constraints are nonsymmetric. One effective
methodology is to remove the redundant constraints leading to a less conservative
polyhedral invariant set, which is illustrated in Figure 1. Pluymers et al. [11] have
presented an efficient algorithm to remove redundant constraints. Here we extend this
algorithm to nonhomogeneous MJSs to enlarge the initial feasible area.
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Figure 1. Redundant and nonredundant constraints.
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Figure 2. One sampled mode evolution.

4. An illustrative example

Consider the discrete-time MJS with two modes (σ = 2):

A1 =

[
0.22 −0.33
0.12 1.03

]
, B1 =

[
0.32
0.52

]
, A2 =

[
0.17 −0.15
0.26 1.21

]
, B2 =

[
0.63
0.61

]
.

The output parameter matrices C(rk) are
[ 1 0

0 1
]
.
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Figure 3. Trajectory of system state.

Algorithm 1 MPC using polyhedral invariant set.

Removal of redundant constraints
1. Compute the minimizer to obtain γ(rk), Q(rk), X(rk), Y(rk), F(rk) from
Theorem 3.3. For each F(rk), the corresponding polyhedral invariant set is
constructed by the following steps: let S (rk) = [C>(rk),−C>(rk), F>(rk),−F>(rk)]>,
d(rk) = [y>ulim(rk), y>llim(rk), u>ulim(rk), u>llim(rk)]>.

2. Select row m from (S (rk), d(rk)) and check whether S m(rk)(A(rk) + B(rk)F(rk)) ≤
dm(rk) is redundant by solving the following linear programming problem:

max ρm

such that ρm = S m(rk)(A(rk) + B(rk)F(rk))x − dm(rk)
and S (rk)x ≤ d(rk).

3. If ρm > 0, this means that the constraint S m(rk)(A(rk) + B(rk)F(rk)) ≤ dm(rk)
is nonredundant. Update the nonredundant constraints as S (rk) = [S >(rk), (S m(rk)
(A(rk) + B(rk)F(rk)))>]>, d(rk) = [d(rk)>, dm(rk)>]>.

The input and output constraints are ulmin = −2.2, uumax = 1.6, ylmin = −2.7,
yumax = 2.5. The weighting matrices are Q =

[1 0
0 1

]
and R = 0.00002.

A sampled mode evolution is shown in Figure 2. The nonhomogeneous transition
probability matrices are given as π1 =

[0.25 0.75
0.36 0.64

]
, π2 =

[0.16 0.84
0.45 0.55

]
, π3 =

[0.3 0.7
0.4 0.6

]
, π4 =[0.2 0.8

0.3 0.7
]
. Three different initial states are x01 = [−1.7 0.7]>; x02 = [−1.4 0.5]>; x03 =

[2 0.85]>. The corresponding three state trajectories are shown in Figure 3, where the
polyhedral invariant set is much less conservative when compared with the ellipsoidal
invariant set.
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5. Conclusions

We discussed the problem of feedback predictive control of nonhomogeneous MJSs
with nonsymmetric constraints. The main advantage of this methodology is that it is
applicable to a more general class of systems, while reducing the conservativeness
of the method based on the ellipsoidal invariant set. From the numerical example, we
observed the effectiveness of the method proposed. The developed results are expected
to extend to issues such as output feedback and multi-objective predictive control of
constrained nonhomogeneous MJSs in a future work.
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