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The Richtmyer–Meshkov instability (Richtmyer, Commun. Pure Appl. Maths, vol. 13,
issue 2, 1960, pp. 297–319; Meshkov, Fluid Dyn., vol. 4, issue 5, 1972, pp. 101–104)
of a twice-shocked gas interface is studied using both high spatial resolution single-shot
(SS) and lower spatial resolution, time-resolved, high-speed (HS) simultaneous planar
laser-induced fluorescence and particle image velocimetry in the Wisconsin Shock Tube
Laboratory’s vertical shock tube. The initial condition (IC) is a shear layer with broadband
diffuse perturbations at the interface between a helium–acetone mixture and argon. This
IC is accelerated by a shock of nominal strength Mach number M = 1.75, and then
accelerated again by the transmitted shock that reflects off the end wall of the tube. An
ensemble of experiments is analysed after reshock while the interface mixing width grows
linearly with time. The kinetic and scalar energy spectra and the terms of their evolution
equation are calculated and compared between SS and HS experiments. The inertial range
scaling of the scalar power spectrum is found to follow Gibson’s relation (Gibson, Phys.
Fluids, vol. 11, issue 11, 1968, pp. 2316–2327) as a function of Schmidt number when the
effective turbulent Schmidt number is used in place of the material Schmidt number that
controls equilibrium scaling. Further, the spatially integrated scalar flux follows similar
behaviour observed for the kinetic energy in large eddy simulation studies by Zeng et al.
(Phys. Fluids, vol. 30, issue 6, 2018, 064106) while the spatially varying scalar flux exhibits
back scatter along the centre of the mixing layer and forward energy transfer in the spike
and bubble regions.
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1. Introduction

The Richtmyer–Meshkov (RM) instability (RMI) (Richtmyer 1960; Meshkov 1972) occurs
when fluid layers are impulsively accelerated in a direction normal to the interfaces
between the layers, leading to the growth of any perturbations. The RMI is seen as a
primary cause of inefficiency in attempts to produce energy via inertial confinement fusion
(Lindl et al. 2004). The capsule and fuel form a material interface, and compression driven
by intense X-rays causes the propagation of a shock across this boundary, leading to
the mixing of the fuel and capsule material and reducing fusion yield. The instability
has also been proposed as an important mechanism by which the mixing of fuel and
oxidant in hypersonic aero-engines can be increased (Marble, Hendricks & Zukoski
1989).

The RMI after reshock has been studied extensively over the years. Following are some
of the most recent investigations. Initial perturbation effects on the RMI of an inclined
plane have recently been explored using numerical simulations by Reilly et al. (2015) and
Mohaghar, McFarland & Ranjan (2022). Time-resolved particle image velocimetry (PIV)
of multi-mode RMI, focused on measuring the growth exponent of the mixing layer width,
was performed by Sewell et al. (2021). Analytical scalings of the reshocked RMI have
been developed by Campos & Wouchuk (2016). A novel oil droplet method was used to
extract simultaneous density and velocity measurements of an SF6 gas curtain undergoing
RMI (Prestridge et al. 2000). Simultaneous planar laser-induced fluorescence (PLIF) and
PIV experiments have also explored initial condition effects on RMI growth that show a
strong dependence on initial conditions, with Balasubramanian et al. (2012) proposing a
dimensionless length scale to parameterize this initial condition dependence. Large eddy
simulations (LES) of RMI at reshock have been performed with the stretched-vortex
subgrid model, allowing estimates of Schmidt number (Sc) effects (Hill, Pantano &
Pullin 2006). The influence of different initial perturbation spectrum scalings has been
explored by Groom & Thornber (2020), showing the growth rate exponent having a strong
dependence on the initial scaling. Simulations have been performed, supporting a series of
laser-driven experiments on the National Ignition Facility at Lawrence Livermore National
Laboratory, that incorporate high energy density effects into the simulation of the RMI
showing non-negligible effects on small-scale mixing by the increased energy transport
via thermal electrons (Bender et al. 2021). Simultaneous high-speed measurements of
reshocked RMI have been collected by Carter et al. (2019), where the analysis focused on
the exploration of integral quantities. A comprehensive review of the state of the art of
RMI studies is presented by Zhou (2017a,b).

Here, the focus will be on the evolution of spectral quantities, i.e. the scalar and kinetic
energy spectra and the terms in their respective transport equations. For brevity, kinetic
energy here refers to fluctuating kinetic energy. Integral quantities such as mixing width
and mixedness are important metrics that have been used over the years in experiments and
numerical simulations. The state-of-the-art diagnostics utilized in the present experiments
allow a detailed study of spectral quantities and their evolution.

The study of scale-to-scale energy transport in fluid mechanics has a rich history.
Particle image velocimetry experiments exploring two-dimensional energy and enstrophy
transfer have been performed by Rivera et al. (2003). Turbulent mixing zone integrated
scale-to-scale energy transfer specific to RMI turbulence was investigated through
simulation by Liu & Xiao (2016) exploring the scale-to-scale flux. Johnson (2020)
investigated scale-to-scale flux using a filter-based approach to identify mechanisms
driving contributions to the total flux. Structure function transport equations for
inhomogeneous turbulence were developed by Gatti et al. (2020). The spectral energy
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cascade in channel flow was investigated by Andrade et al. (2018). Variable density
turbulence Karman–Howarth–Monin equations were developed by Lai, Charonko &
Prestridge (2018). Energy fluxes and spectra for laminar vs turbulent flow were investigated
by Verma et al. (2018). Scale space energy density for inhomogeneous turbulence has been
explored by Hamba (2018). The integrated kinetic energy spectrum and density fluctuation
spectrum in the RMI were studied by Schilling, Latini & Don (2007) and Tritschler et al.
(2014) using data from numerical simulations. Numerical experiments have explored some
of the terms in the transport of kinetic energy in wavenumber space such as in Cook &
Zhou (2002) for the Rayleigh–Taylor instability (RTI) case and in Thornber & Zhou (2012)
for the RMI case, while a similar experimental study of the combined scalar and kinetic
fields has not been performed to date. Energy transfer within a reshocked gas curtain
was studied by Zeng et al. (2018) calculating the integrated homogeneous flux of kinetic
energy. Here, the focus is on the transport of scalar energy; however, a similar behaviour
of the flux is observed.

Investigations of scalar mixing, both active and passive, have been the subject of intense
study. For idealized turbulent mixing and arbitrary Schmidt number mixing, Corrsin
(1957, 1964) developed scaling relations. Passive scalar mixing in shock–turbulence
interactions was explored through simulations (Gao, Bermejo-Moreno & Larsson 2020).
Low Schmidt number turbulent spectra were generated by Yeung & Sreenivasan (2013)
and then low Schmidt number mixing with a mean gradient was further explored by
Yeung & Sreenivasan (2014). Structure functions at low Schmidt number with a mean
gradient were investigated by Iyer & Yeung (2014). A spectral theory of scalar fields
mixed by turbulence was assembled by Gibson (1968). Generalized scale-to-scale budget
equations for anisotropic scalar turbulence as a function of Schmidt number were explored
by Gauding et al. (2014). The probability distribution of passive scalars in grid generated
turbulence was investigated by Jayesh & Warhaft (1991) with the skewness and kurtosis of
diffusing scalars being modelled by Schopflocher & Sullivan (2005). Scaling exponents
for active scalars were developed by Constantin (1998). Incompressible Rayleigh–Taylor
(RT) turbulent mixing was investigated by Boffetta & Mazzino (2017). Anomalous
scalings of active scalars in homogeneous turbulence were developed by Ching & Cheng
(2008). Kinetic and scalar structure function scaling laws for RMI turbulence have
been investigated through simulations and theory by Zhou et al. (2023). The Batchelor
spectrum of passive scalar isotropic turbulence was discussed by Donzis, Sreenivasan
& Yeung (2010). The difference between active vs passive scalar turbulence scaling has
been explored by Celani et al. (2002, 2004). Moving to spatially developing turbulence,
passive scalar statistics were measured by Paul, Papadakis & Vassilicos (2018). Applying
self-similar scaling to RT turbulence, growth rates and scaling relations were found by
Ristorcelli & Clark (2004). Schmidt number effects in compressible turbulent mixing
have been elucidated by Ni (2015). The scalar energy spectrum has been explored in a
number of experimental studies. Weber et al. (2014) and Reese et al. (2014) looked at the
evolution of the scalar spectrum for the currently considered initial condition (IC) after a
single shock and found a small but growing wavenumber range with a −5

3 Kolmogorov
scaling. Previous high-speed PLIF experiments (Noble et al. 2020a,b) using this IC lacked
direct measurement of the velocity field so they were not suitable to extract individual
production and transport terms. This is remedied in the present work, where the production
and flux terms can be separately evaluated. Here, we will present an argument that the
canonical isotropic homogeneous turbulent scaling of Gibson (1968) may be applicable to
inhomogeneous anisotropic RMI turbulence when the non-equilibrium effective Sc is used
in place of the material Sc that controls equilibrium scaling.
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Ms As

HS 1.75 ± 0.09 0.52 ± 0.098
SS 1.89 ± 0.05 0.42 ± 0.04

Table 1. Parameters of HS and SS experiments. Here, Ms is the Mach number of the 1st shock and As is the
initial Atwood number.

2. Experiment details

Experiments are conducted in a 9.1 m long, vertical, downward-firing shock tube with
a square internal cross-section (25.4 cm on a side). The facility is described in detail by
Anderson et al. (2000), while figure 1 of Noble et al. (2020a) shows a diagrammatic layout
of the shock tube and test section specifically. The process for generating the current IC is
described in detail by Noble et al. (2020a). This IC has been used in previous studies in
this facility (Reese et al. 2014; Weber et al. 2014; Noble et al. 2020a,b). The high-speed
(HS) series is composed of 20 individual experiments, while the single-shot (SS) series
is composed of 71 individual experiments. Parameters for both experiments are presented
in table 1. For the HS simultaneous PLIF and PIV (HS) experiments, a pulse-burst laser
system is used to create a pulse train of 10 ms duration at a repetition rate of 20 kHz. The
system amplifies the output of an Nd:YVO4 oscillator laser in diode-pumped Nd:YAG
amplification stages. The second and fourth harmonics at 532 and 266 nm, respectively,
are used in the experiments with an average total energy of 80 mJ per pulse. The pulse
train is focused by a spherical and a cylindrical lens to create a diverging laser sheet that
spans the entire width of the shock tube, 1 m above the end wall of the tube. The 266 nm
laser sheet excites the acetone present in the light gas mixture causing it to fluoresce while
the 532 nm sheet is Mie scattered by TiO2 particles with a nominal diameter of 300 nm
injected above, below and in the centre of the mixing layer. A HS camera (Phantom V1840)
with a 1 μs exposure is used to capture the resulting fluorescence signal while a second HS
camera (Photron Fastcam SA-Z) captures the resulting Mie-scattered light. Figure 1 shows
the required field of view for the PIV camera to allow a similar PIV resolution between
HS and SS experiments. For the SS simultaneous PLIF and PIV experiments, a dual-head
Nd:YAG laser (Ekspla NL303D) is used to generate two 532 nm pulses at 260 mJ pulse−1

and an excimer laser is used to generate a single pulse of 308 nm light at 360 mJ pulse−1.
These pulses are combined using a dichroic beam splitter and then passed through the
same sheet-generating optics. A CCD camera (Lavision Flowmaster 3S3D) was used to
capture the resulting PLIF signal and an interline transfer CCD camera (TSI PIV01440, 29
MP) was used to record the PIV images.

Figure 2 shows a z − t diagram generated using measured wave speeds. The blue solid
line denotes the material interface between the light and heavy gases. The dashed black
lines show the spatial extents of the imaging window while the shaded region marks
the space–time boundaries of the field of view for the extracted concentration field. The
symbols denote the four reshock times explored in the SS experiments.

For both SS and HS experiments the PLIF and PIV images are registered onto each
other following the procedure described in Reese et al. (2014) to ensure the velocity and
concentration fields are available at the correct physical points.

The PIV particle images were processed using PIVLab (Thielicke & Sonntag 2021),
using recursive grid refinement from a 128 × 128 px window down to a smallest window
of 16 × 16 px (50 % overlap). A 3 × 3 × 3 spatio-temporal median filter was used for
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767 × 575 px

(a) (b)

1024 × 1024 px

Figure 1. (a) Example high-speed (HS) PLIF image. The PIV image subdomain required to acquire
actionable PIV images at high speed is highlighted. (b) Example PIV raw image from HS experiments.
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Figure 2. Experimental z − t diagram with window locations shown with dashed black lines, the interface
location in blue and HS PLIF FOV shown as the highlighted rectangle. Individual symbols refer to single-shot
(SS) times. Here, t = 0 and z = 0 refer to the time and space location of the initial shock–interface interaction;
ts denotes the time after shock and trs is the time after reshock; RS1 − 4 are the labels for the four post reshock
times investigated in the SS experiment campaign.

outlier detection, vector replacement and Gaussian smoothing (to remove high frequency
noise) in the PIV vector fields.

These set-ups result in effective resolutions, after image registration, of �x =
0.43 mm px−1 for the HS experiments and �x = 0.22 mm px−1 for the SS experiments.
Estimates of PIV uncertainty using correlation peak-to-peak ratio relations developed in
Charonko & Vlachos (2013) lead to an uncertainty distribution shown in figure 3. The
distribution has a median of 0.9 % and a mean of 3.7 %.

3. Analysis methodology

The process described in Noble et al. (2020a) to transform the scalar transport equation is
applied to the z-momentum transport equation.
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Figure 3. (a) Joint probability density function ( j.p.d.f.) of displacement and % displacement uncertainty,
(b) p.d.f. of estimated % PIV uncertainty.

Indicating the concentration with ξ , the functional form of this transformation is
ξ(x, z, t) → ξ(x+, z+, h+) with x+ = x/W, z+ = (z − z0)/h and h+ = h/h0 where x is the
spanwise coordinate and z is the streamwise coordinate, W is a representative spanwise
length scale (here, the shock tube width), z0 = 4

∫ ∞
−∞ zξ̄(1 − ξ̄ ) dz+ is the time-varying

location of the mole-fraction-weighted centroid of the mixing layer, h is the time-varying
mixing thickness defined below and h0 is the initial mixing thickness immediately after
the reflected shock has fully traversed the mixing layer. Introducing the spanwise average
in the x-direction of a function f as

f̄ = 1
W

∫ W

0
f dx, (3.1)

such that f = f̄ + f ′, then the mixing thickness is defined as

h = 4
∫ ∞

−∞
ξ̄(1 − ξ̄ ) dz. (3.2)

Starting with the transport equation for ρw,

∂ρw
∂t

+ ∇ · ρuw = −∂p
∂z

+ ∇ · μ∇w, (3.3)

where u, p and μ are the velocity, pressure and kinematic viscosity, respectively, and w is
the vertical (streamwise) component of the velocity. Specializing to two dimensions, and
introducing the following non-dimensionalization

u+ = u − V0

ḣ
, (3.4)

where V0 is the bulk velocity of the interface in the laboratory-fixed frame, (3.3) becomes

∂ρ+w+

∂ ln h+ − z+ ∂ρ+w+

∂z+ + ∂ρ+u+w+

∂x+
h
W

+ ∂ρ+w+w+

∂z+
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= −1
γ M2

h

∂p+

∂z+ + 1
Reh

[
∂μ+

∂x+
∂w+

∂x+

(
h
W

)2

+ ∂μ+

∂z+
∂w+

∂z+

]

+ μ+

Reh

[
∂2w+

∂x+2

(
h
W

)2

+ ∂2w+

∂z+2

]
. (3.5)

The scalar version of this transport equation was derived in Appendix A of Noble et al.
(2020a) and is the form used by Ristorcelli & Clark (2004). The shock tube width (W)
is used as the normalization for the spanwise length scale. The IC generation is directly
linked to the geometry of the shock tube, although, due to the size of the tube, the RM
evolution is not further affected by the shock tube width. Here, Reh = ρ0hḣ/μmix is the
outer scale Reynolds number, and Mh = ḣ/a is the outer-scale Mach number, with a being
the speed of sound in the light gas. This parameter appears here due to the normalization
of the pressure term in the momentum transport equation. The outer-scale Mach number
is not further considered as a dominant parameter due to compressibility effects having
been found to be negligible until larger shock strengths where post-shock fluctuating Mach
numbers grow above around 0.3; here, the fluctuating Mach number is of the order of
0.1. Further, μmix is the dynamic viscosity of the mixture, ρ+ = ρ/ρ0 = 1 + (R − 1)ξ is
the normalized density with R = (1 + A)/(1 − A) being the density ratio, p+ = p/(ρ0ḣ2)
is the normalized pressure and μ+ = μ/μmix is the normalized viscosity. Following the
procedure in Tritschler et al. (2014), μ is calculated using multi-component mixing rules
that use the Chapman–Enskog model to calculate pure gas transport coefficients. The
viscosity, μmix, is then the mass average of the bulk values of μ.

3.1. Power spectrum evolution

Starting with (3.5) and following Thornber & Zhou (2012) by introducing vi =
√

ρ+u+
i

and the transformed scalar equation from (Noble et al. 2020a), taking the Fourier
transform, ξ̂ = Fx+[ξ ], and multiplying by the respective complex conjugates ξ̂∗, the
evolution equations for the scalar energy spectrum (Eξ = ξ̂ ξ̂∗) and the density-weighted
kinetic energy spectrum (Ew = v̂3v̂3

∗) become

∂Eξ

∂ ln h+ − z+ ∂Eξ

∂z+ + P + Txξ + Tzξ = Dxξ + Dzξ − χξ (3.6a)

∂Ew

∂ ln h+ − z+ ∂Ew

∂z+ + Txw + Tzw = −Hw + Γx + Γz + Dxw + Dzw, (3.6b)

with all terms defined in table 2. The Schmidt number Sc = μ/ρD is calculated similarly
to μ using the multi-component mixing rules described in Tritschler et al. (2014).

This is a similar form to the transport equation of the inhomogeneous kinetic energy
spectrum found by Andrade et al. (2018). The terms in the scalar transport equation
are then integrated over dimensionless time (ln h+) to the latest time available in all
experiments, h+ = 5, resulting in (A2)–(A6). These allow an analysis of the different
contributions to the change in the power spectra over the linear growth regime.

This leads to a form of the power spectra that has been integrated over dimensionless
time. Each of the terms can be considered separately to identify its contribution to the total
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Eξ Ew

Production P ,+w]ג ξ ]
∂ξ̄

∂z+ N/A

Transport Tx
h
W

ג

[
∂u+ξ

∂x+ , ξ

]
1
2

h
W

ג

[
1√
ρ+

∂v1v3

∂x+ , v3

]

Transport Tz ג

[
∂w+ξ

∂z+ , ξ

]
1
2

ג

[
1√
ρ+

∂v3v3

∂z+ , v3

]

Pressure Hw N/A
1

γ M2
h
ג

[
1√
ρ+

∂p+

∂z+ , v3

]

Diffusivity gradient Γx N/A
(

h
W

)2 1
Reh

ג

[
1√
ρ+

∂μ+

∂x+
∂w+

∂x+ , v3

]

Diffusivity gradient Γz N/A
1

Reh
ג

[
1√
ρ+

∂μ+

∂z+
∂w+

∂z+ , v3

]

Diffusion Dx
−2k+2

RehSc

(
h
W

)2

Eξ

(
h
W

)2 1
Reh

ג

[
1√
ρ+ μ

∂2w+

∂x+2 , v3

]

Diffusion Dz
1

RehSc

[
∂2Eξ

∂z+2

]
1

Reh
ג

[
1√
ρ+ μ

∂2w+

∂z+2 , v3

]

Dissipation χ
1

RehSc

[
∂ξ̂

∂z+
∂ξ̂∗

∂z+

]
N/A

Table 2. Terms in scalar and kinetic energy spectrum transport, where ,F]ג G] = F̂∗Ĝ + F̂Ĝ∗.

change in energy,

�Eξ = Pξ − Txξ − ∂Πzξ

∂z+ + Dxξ + Dzξ + Xξ . (3.7)

Alternatively, the scalar transport equation can be integrated over the inhomogeneous
direction to investigate the evolution of the total scalar energy as a function of wavenumber
and time,

∂Λξ

∂ ln h+ = P̂ξ + T̂ξ + D̂ξ + X̂ξ . (3.8)

The terms are defined explicitly also in (A2)–(A6) in the Appendix.

3.2. Spectral bandwidth and distribution
Here, the bandwidth of both the scalar spectrum and the density-weighted kinetic spectrum
are defined to provide a coarse measure of how energy is distributed between scales

Reτ Scτ =
(

L
λ

)2

ξ

=

(∫
Eξ

k
dk

)2 (∫
Eξ k2 dk

)
(∫

Eξ dk
)3 , (3.9a)
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Reτ =
(

L
λ

)2

w
=

(∫
Ew

k
dk

)2 (∫
Ewk2 dk

)
(∫

Ew dk
)3 , (3.9b)

where L = ∫
E/k dk/

∫
E dk is the integral scale of a given spectrum and λ2 =∫

E dk/
∫

k2E dk is the Taylor scale. Also, Reτ is an effective ‘turbulence’ Reynolds
number and Scτ is an effective ‘turbulence’ Schmidt number

Scτ =
(

L
λ

)2

ξ

(
λ

L

)2

w
. (3.10)

The definitions of Reτ and Reτ Scτ here come from homogeneous isotropic turbulence
(HIT) and describe the bandwidth of the respective spectra. This is a measure of the
breadth of wavenumber space accessed. Here, Scτ becomes a measure of the difference
in bandwidth between the scalar spectrum and the kinetic spectrum. In HIT, where a
statistical equilibrium is reached, the material Schmidt number would determine the
behaviour of the scalar spectrum compared with the kinetic energy spectrum. In the
present case, the system cannot be said to be at equilibrium, thus the material Schmidt
number does not necessarily prescribe how the scalar spectrum behaves. Therefore, the
instantaneous effective turbulent Schmidt number Scτ is used here in place of the material
Schmidt number.

The spectral slopes are defined as

ζξ = ∂ ln Eξ

∂ ln k

∣∣∣∣
k=kλξ

, (3.11a)

ζw = ∂ ln Ew

∂ ln k

∣∣∣∣
k=kλw

, (3.11b)

where the derivatives are taken at the Taylor microscale wavenumber, so within the
inertial–convective range. These slopes provide another coarse description of how energy
is distributed within wavenumber space.

4. Results and discussion

The results presented here are derived from data obtained according to the methodology
described in § 2. The set of 20 HS and 71 SS experiments are analysed according to the
theory constructed in § 3.

Figure 4 shows an example of the interface evolution captured in a HS experiment run,
showing snapshots as a function of time every 5 frames.

4.1. Power spectra
Following Schilling & Latini (2010), the power spectra are integrated over the mixing
layer such that Λξ(k+

x , h+) = ∫ ∞
−∞ Eξ dz+ (here, the limits are ±∞ rather than the

bubble and spike heights although, in practice, the limits are the bounds of the field of
view of the experiment). The parameter Λξ , shown in figure 5(a), is a measure of the
magnitude of fluctuations at a given wavenumber with a smaller magnitude indicating
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Figure 4. Example evolution of the mixing layer after reshock. The light gas (He + Acetone) mole fraction is
shown overlaid with two-dimensional velocity vectors.

(b)(a)
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L�ρw = 1.1

k+
λ�ρw = 33

Λ�ρw 

Figure 5. Ensemble HS integrated power spectra. (a) Integrated scalar power spectrum. (b) Integrated kinetic
power spectrum. Here, h+ plays the role of time for this mixing system. Integration is performed in the
inhomogeneous direction.

weaker fluctuations from the mean and a more fully mixed state and Λw is a measure of
the kinetic energy at a given wavenumber, and is shown in figure 5(b).

For both Λξ and Λw, energy is concentrated at smaller wavenumbers around the integral
scale. A steady increase in energy over time is seen in Λξ , showing a growth in bulk
structures. For Λw a deposition of kinetic energy is seen followed by a slow decay.
A similar behaviour can be seen in figure 12 of Tritschler et al. (2014) and figure 5(a)
of Carter et al. (2019).

Figure 6 explores the coarse measures of the spectra introduced in § 3.2. Figures 6(a)
and 6(c) show joint probability density functions ( j.p.d.f.s) and figures 6(b) and 6(d) show
conditional probability density functions (c.p.d.f.s).

In particular, figure 6(a) shows the j.p.d.f. of the turbulent Schmidt number and
the scalar spectral slope. A peak in the j.p.d.f. can be seen where the scalar slope is
approximately between −8/3 and −10/3 and the turbulent Schmidt number is between
0.3 and 0.4, which aligns with the estimate of the material Schmidt number of 0.3.
Figure 6(b) shows the c.p.d.f., which represents what the expected spectral slope is for
a given turbulent Schmidt number. The result here is close to the interpolation formula by
Gibson (1968) ((46) in that paper), providing some encouragement to the proposition made
in § 3.2 that, with the flow being far from HIT, the turbulent Schmidt number is appropriate
to use in place of the material Schmidt number to determine expected behaviour.
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Figure 6. The HS results: (a) j.p.d.f. of spectral Schmidt number and scalar spectral slope; (b) conditional
p.d.f. of scalar spectral slope given a spectral Schmidt number. (White line: Gibson 1968, (46).) (c) The j.p.d.f.
of the spectral Reynolds number and the kinetic spectral slope. (d) Conditional p.d.f. of the spectral Reynolds
number and the kinetic spectral slope.

Figure 6(c) shows the j.p.d.f. of turbulent Reynolds number and kinetic spectral slope.
A peak can be seen at a slope between −5/3 and −2 at an Reτ between 20 and 25. The
c.p.d.f. in figure 6(d) points to a weak dependence of the kinetic spectral slope on the
turbulent Reynolds number, although it is difficult to draw conclusions at the lowest and
highest Reτ due to the lower number of observations available to generate the distribution
there due to the turbulent Reynolds number over all measurements being close to
the peak.

Figure 7 shows the same measurement as figure 6 but for the SS data set. Very similar
structures and values and trends are visible in the Schmidt number-based plots, 7(a) and
7(b). The Reynolds number-based plots show a peak at a slightly lower value than the HS
results in plot 6(c). Figure 7(d) shows a similar trend for the small Reτ range; however,
a similar problem occurs with fewer instances to produce statistics for the higher Reτ

values.
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Figure 7. The SS results: (a) j.p.d.f. of spectral Schmidt number and scalar spectral slope; (b) conditional
p.d.f. of scalar spectral slope given a spectral Schmidt number. (White line: Gibson 1968, (46).) (c) The j.p.d.f.
of the spectral Reynolds number and the kinetic spectral slope. (d) Conditional p.d.f. of the spectral Reynolds
number and the kinetic spectral slope.

4.2. Partition of energy
Equation (3.7) describes the partition of the change in scalar energy over a given time
interval. For this study, the dimensionless time interval is the regime of linear growth of
the mixing width for all experiments from ln h+ = 0 to ln h+ = 1.6. The individual terms
are plotted in figure 8 and defined in the Appendix. The time period represented here
begins after the reflected shock has fully traversed the mixing layer; it includes the passage
of an expansion wave and ends at the latest dimensionless time available before the arrival
of a compression wave from above. This analysis is only possible with the time-resolved
HS data set.

The total increase in energy, i.e. the increase in fluctuations away from the spanwise
mean, �Eξ , is concentrated at larger wavelengths, of the order of the shock tube width,
which correspond to the growth and transport of bulk structures. This is evident in the
plot of the production term Pξ , which represents the transfer of energy from the mean
gradient of the scalar field to the fluctuations via the correlation of streamwise velocity
fluctuations and scalar fluctuations. The homogeneous transport term Txξ describes how
energy is transported in wavenumber space, where above and below the interface energy
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Figure 8. The terms of the transport of fluctuating scalar energy (3.7) over the linear growth regime from
h/h0 = 1 to 5 for the HS data set. Here, �Eξ is the change in scalar energy over linear growth regime, Pξ

is the production of scalar energy, Txξ is the homogeneous convective transport, Πzξ is the inhomogeneous
convective flux, Dxξ is the homogeneous diffusion term, Dzξ is the inhomogeneous diffusion term and Xξ is
the dissipation.

975 A39-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

85
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.854


C.D. Noble, A.M. Ames, R. McConnell, J. Oakley, D.A. Rothamer and R. Bonazza

z+

z+

z+

PξPξ
0.2

0

–0.2

0.2

0

–0.2

1

(a) (b)

0RS1

RS2

RS3

z+RS4

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

1

0

–1

0.04

0.02

–0.02

0

–0.04

0.04

HS SS

0.02

–0.02

0

–0.04

0.2

0

–0.2

0.2

0

–0.2

0.04

0.02

–0.02

0

–0.04

0.04

0.02

–0.02

0

–0.04

0.2

0

–0.2

0.2

0

–0.2

0.04

0.02

–0.02

0

–0.04

0.04

0.02

–0.02

0

–0.04

0.2

0

–0.2

0.2

0

–0.2

0.04

0.02

–0.02

0

–0.04

0.04

0.02

–0.02

0

–0.04

πξ πξ

100 101

kW
102 100 101

kW
102 100 101

kW
100 101

100 101 102 100 101 102 100 101 100 101

100 101 102 100 101 102 100 101 100 101

100 101 102 100 101 102 100 101 100 101

kW
Figure 9. Comparison of the production and transport flux between HS and SS experiments at comparable

experiment times.

is being transported from larger wavelengths to smaller wavelengths (Txξ < 0) while in
the centre of the mixing layer energy is being transported to larger wavelengths (Txξ > 0).
The inhomogeneous transport flux Πzξ shows how scalar energy is transported away from
the centre of the mixing layer with a larger amount of energy transported in the negative
z-direction than toward the positive z-direction above the interface. This asymmetry in
energy transport is seen in Thornber & Zhou (2012) and is explained as an Atwood number
effect. The homogeneous diffusion, Dxξ measures the rate of diffusing scalar energy from
large to small wavelengths, while the inhomogeneous diffusion term Dzξ describes how
energy is diffused in the vertical direction. The form makes sense as roughly the second
derivative of a Gaussian such that energy is taken from the centre of the mixing layer and
diffused to above and below the interface. Here, Xξ is the dissipation term and represents
the removal of scalar energy which appears to occur at longer wavelengths where the
gradients are largest.

4.3. Time evolution
To compare the HS and SS data sets further, here, the time evolution of the production and
homogeneous transport terms are shown in figure 9.

The same structures as discussed in § 4.2, referring to figure 8, appear here, where
production occurs around the centroid of the mixing layer with asymmetry appearing. The
flux term, πξ = ∫ kW

0 Tξx dk+, shows a positive flux above and below the interface with a
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Figure 10. Time evolution of the terms in (3.8) as a function of wavenumber for the HS data set. The colour
denotes the change in ln(h+), which is the dimensionless time. The evolution of the scalar and velocity power
spectra are shown for reference. Here, P̂ξ is the production of scalar energy, T̂xi is the convective transport, D̂ξ

is the diffusion term and X̂ξ is the dissipation.

negative flux along the centreline of the mixing layer. The structures seem to correlate,
and the values are comparable; however, some of the details are different.

Cook & Zhou (2002) calculate the time-varying dissipation, production and transport
in non-scaling coordinates for an RTI problem. The production term of the system is very
different between the RTI and RMI, so differences are expected in the temporal behaviour;
however, transport and dissipation have the same mathematical structure. They do not
separate terms by directionality, but comparison can be made with dominant terms. They
find similar trends, with dissipation occurring at short wavelengths in the centre of the
mixing layer and transport reaching peaks at long wavelengths, with positive values above
and below the interface and negative values in the centre of the mixing layer.
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Figure 10 shows the evolution of the terms of the spatially integrated total scalar energy
transport equation (3.8) as a function of wavenumber and time. The peak of the integrated
production, which is centred around the mean of the integral scales of the scalar and
kinetic spectra, shows a steady growth after reshock before reaching a peak value and
steadily decaying. The transport between scales is more complex. Initially, small amounts
of transport occur after reshock. However, energy quickly begins being transported from
large scales to small scales. Phase reversal allows a short duration of bulk transport of
energy from small scales to large scales before the linear growth regime continues to
drive the transport toward a profile that more closely matches an equilibrium turbulence
profile such that, at the later times, energy is transporting from large scales toward the
intermediate scales, and from small scales back toward intermediate scales. The LES
results of Zeng et al. (2018) show a very similar structure for the kinetic flux term as
functions of wavenumber and time. The diffusion spectrum grows with the scalar power
spectrum, but its amplitude shows it to be the subdominant method of energy transport
compared with the convective transport term. In this far from equilibrium setting, the
dissipation spectrum shows a steadily growing peak around the peak of the production
spectrum; however, it is a strongly subdominant budget term. Production is the dominant
term over the whole linear growth regime, while the convective transport term steadily
begins to enable transport of energy to smaller wavelengths.

5. Conclusions

The results of two sets of experiments were presented, both simultaneous PLIF and PIV,
one set SS and one set time resolved. The terms in the evolution equations for the scalar and
density-weighted kinetic energy spectra in a reshock RMI environment were presented.
The scalar spectral index was shown, for both sets of experiments, to approximately follow
the equation given by Gibson (1968) as a function of effective Schmidt number, while the
kinetic energy spectral index was shown to be approximately constant over the observed
effective Reynolds number range and close to the Kolmogorov −5/3 scaling. The partition
of energy in the linear growth regime between the terms of the transport equation of the
scalar power spectra was presented. A comparison of both HS and SS experiments shows
a consistency of structures appearing, although IC structure dependence is suggested as
a reason for the variation in the details of the evolution of the production and transport
terms. This work suggests that the effective Schmidt number used here may be a useful
parameter to work with to aid in the construction of spectral closure models, while the
reported partitions of energy over the linear growth regime provide fields that will be
useful for the comparison of RM and RT experiments at other conditions and simulations.
Future work may want to expand the parameter space to see how the reported quantities
behave as a function of shock strength and Atwood number.
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Appendix. Partition of energy

The terms plotted in figure 8 are defined below. The integrals are taken from 0 to 5 where
h/h0 = 5 is the limit of the linear growth regime for all HS experiments

Pξ (z+, k+
x ) =

∫ ln 5

0
P d ln h+

P̂ξ (k+
x , h+) =

∫ ∞

−∞
P dz+,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A1)

Txξ (z+, k+
x ) =

∫ ln 5

0
Txξ d ln h+

T̂ξ (k+
x , h+) =

∫ ∞

−∞
Txξ dz+,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A2)

Πzξ (z+, k+
x ) =

∫ z+

−∞

∫ ln 5

0
Tzξ d ln h+ dz+, (A3)

Dxξ (z+, k+
x ) =

∫ ln 5

0
Dxξ d ln h+

D̂ξ (k+
x , h+) =

∫ ∞

−∞
Dxξ dz+,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A4)

Dzξ (z+, k+
x ) =

∫ ln 5

0
Dzξ d ln h+, (A5)

Xξ (z+, k+
x ) =

∫ ln 5

0
χξ d ln h+

X̂ξ (k+
x , h+) =

∫ ∞

−∞
χξ dz+.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (A6)
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