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1. Introduction

It is well known (e.g. Stone [1]) that the Stone-Weierstrass approximation
theorem can be used to prove the completeness of various systems of orthogonal
polynomials, e.g. Chebyshev polynomials. In this paper, Stone's theorem is used
to prove a more general completeness theorem, which includes as special cases
Plancherel's theorem, the corresponding theorem for Hankel transforms, the
completeness of various polynomial systems, and certain expansions in Jacobian
elliptic functions. The essential feature common to all these systems is a certain
algebraic structure - if S is an appropriate vector space spanned by orthogonal
functions, then the algebra A generated by S is contained in the closure of S in a
suitable norm.

Stone's theorem is used in the following form (Naimark [2]). If B is a real
algebra of continuous functions on the compact Hausdorff space X, which sepa-
rates points, then the uniform closure of B either coincides with the algebra of all
real continuous functions on X, or with the subalgebra of all real continuous
functions which vanish at one particular point of X. (B may be complex if also B
contains the conjugate of each of its points.)

Now let X denote a locally compact Hausdorff space, and \i a measure on X;
it will always be assumed, without further statement, that n(J) < oo for each
compact J c X, and that the space L2(J) contains, as a dense subset, C{J), the
space of all continuous functions on J; here the inner product on X is (/, g) =
Ixfgdu, and the L2(X)-norm is | | / | | = ( / , / )* ; denote also by | | / | | y the L2-norm
on the subset J c X. In section 2, C(X) and L2(X) are restricted to real functions;
in Section 3, they relate to complex functions.

If E c C(X) n L2(X), E denotes the closure of E in the L2(;if)-norm II • II;
E denotes the closure of E in the uniform norm on X, || • ||'; and E* denotes the
closure of £ in the norm ||-| |* = IHI + IHI'. (If E is compact, then E* = £.)

2. Functions on compact spaces

Let X be a compact Hausdorff space, and /i a measure on X, satisfying the
above conventions; let G = {<j>n : n = 1, 2, • • •} be an orthonormal sequence of
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212 D. B. Craven [2]

real functions on X, thus (<j)m, <j>n) = 5mn. Denote by Sn the vector space spanned
by {^l, •" ', $„}', S = [jf Sn; and A the algebra consisting of all finite linear
combinations of finite products of elements of S.

LEMMA 1. If <f>m<j)ne S for each pair of integers m, n, then A <= 5.

PROOF. It suffices to prove that if g is a finite product of elements of G, such
that g e S, and i feG, then \j/g e S. Since g e 5, \\g — gp\\ -> 0, where gp e S, thus
gp is a finite sum £ a,-<£_,.; by hypothesis, \j/gp = £ a,(i/4;) e S; so \\^gp-hpq\\ < e
for <? > q(e, p), where #M e S. Then

pqi

< sup
x

for p ^ p(s) and q ^ q(e, p(e)). Hence gip e S.

THEOREM 1. Let X be compact Hausdorff, fi a measure on X, and G — {(/>„}
an orthonormal sequence of real continuous functions on X, such that

(i) A separates points in X;
(ii) for each integer pair m, n, 4>m<j>neS;

(iii) for each point x e X, there is a function fe A which does not vanish at X.

Then G is complete.

PROOF. From Lemma 1, A <= S. LetfeL2(X); since C(X) is dense in L2(X),
there is g e C(X) with \\f— g\\ < |e. By Stone's theorem, A = C(X), therefore
there is p e A with Supx \g— p\ < e/(3Vfi{X)). Since A c S, there is he S with
11/7 — h\\ < e/3; and he SN for some N. Then, for n ^ N,

\\f-i(f,<t>j)<l>j\\^\\f-h\\

= £,

since g—p ^ sup^ \g— p\ • Jfi(X). Hence S = L2(X).

COROLLARY. Theorem 1 remains true if {$„} is not orthogonal.

PROOF. By Gram-Schmidt orthogonalization, {$„} may be replaced by an
orthonormal sequence {i//n}; since the algebra A generated by {ij/n} is the same as
that generated by {(£„}, the hypotheses of Theorem 1 apply also to {i/^}.

Theorem 1 remains true if the {<pn} are complex valued, if A (or S) contains
the conjugate of each of its elements.
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[3] Stone's theorem and completeness 213

If X = [a, b] is a compact real interval, and G = {</>„ : n = 0, 1, 2, • • •} is a
sequence of real polynomials, such that <j>n has degree n, for n = 0, 1, 2, • • •, then
^ c j , since <t>m(j>n is a polynomial, and the other hypotheses of Theorem 1 are
also fulfilled. Thus, for example, the Legendre polynomials, and the Chebyshev
polynomials, form complete systems. The same conclusion applies to trigonometric
polynomials, with period b — a, except that here the two end points of X must be
identified. If, as in these instances, A c S holds, as well as the hypotheses of
Theorem 1, then S c C(X) = A implies S = C(X); thus each continuous func-
tion on X is the uniform limit of a sequence of functions in S. For trigonometric
polynomials, this result is part of Fejer's theorem.

If G is complete, X compact Hausdorff, and each (j>n real continuous, then
A c S, since each element of A is continuous; hypothesis (iii) of Theorem 1
holds; and S separates points of X; but it is not obvious that A separates points
of X. So the direct converse to Theorem 1 may not hold, without extra hypothesis.

Theorem 1 can also be applied to certain expansions in Jacobian elliptic
functions, analogous to trigonometric Fourier series.

LEMMA 2. Let the function fbe defined on [0, n] by

(1) f(6) = ! « „ cos iifl,
n= 1

where at = 1, Ya \an\ < 1> and Yjan^-" converges for some X > 1. Let p and a
denote any positive integers. Then g(G) = f{pd)f(o6) is expansible in a uniformly
convergent series

(2) g(8) = I bsf(s6).
s = l

PROOF. If the Laurent series

n = — oo

converges for k~l < \v\ < X, where X > 1, then XQ1 < \v\p < Xo, and
XQ1 < \v\" < Xo, for suitable Xo > 1. Therefore the series

(3) «K</W) = ! :<^ r , where «5r = £ «»*„,
— oo mp + no = r

converges for XQ X < |i;| < Xo. Hence

f \Sr\ < oo.
— OD

Set <x0 = 0, and an = \aM for n # 0; then/(0) = iA(eie). Therefore, from (3),

g(6) = f (Pe)f(crd) = tdn cos n9,
n = 0

where £ \dn\ < oo.
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Now consider

p p oo oo

£ bsf(s9) = £ X b* «n cos ns0 = £ </; cos r0
s = l s = l n = l r = l

where, for r < p,

sn = r sn = r
sip Kngr

s%p

Since no pair of subscripts n, s occurs more than once in the array {anbs},

CO 00 00 00

s = l s=l

Since ^2 k l < 1 and X 1̂ ,1 < oo, ^ f IM < oo.
Therefore

\f(*0)\ g £ lft.11 lan| < oo,
s= 1 s= 1 n= 1

so (2) converges uniformly.

THEOREM 2. 7%e sequence of Jacobian elliptic functions

(4) 1, cn(x, k), cn(2x, k), • • •, cn(nx, k), • • •

is complete on (0, 2K), where AKis the real period of the elliptic functions of modulus
k, provided that 0 < k < kc, where kc = 0.99 approximately.

PROOF. Let X = [0, 2K], dfi(x) = dx. Now

, ,s 2n " qs+* (2S+1)TIX

cn(x, k) = —— V c o s v ^9 2K

where q is the nome. Set 9 = \nx\K, and

K 1 + 4-

Since 0 < q < \,f{&) satisfies the hypotheses of Lemma 2 if A: is such that
00

z2s+1 i + «

This is so if qi/(l-q) < qi/(l+q), thus if q < V 2 - 1 , or, from tables [2], if
K 5S 0.99. By Lemma 2, if S denotes the space spanned by the functions (4),
then the product of any two of the functions (4) is contained in the uniform
closure of S, and therefore in S, since X is compact. The other hypotheses of the
Corollary to Theorem 1 are readily verified (orthogonality is not required).
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[5] Stone's theorem and completeness 215

REMARK. A similar proof, and conclusion, applies to the sequence

(5) sn(x, k), sn(2;c, k), • • •, sn(«;t, k), • • •

on [0, 2K], with a similar restriction on k.
Hence, the sequences (4) and (5) combined form a complete system on

[-2K, 2K].

3. Generalized Plancherel theorem

Let X be a locally compact Hausdorff space, \i a measure on X, and {Jm} an
expanding sequence of compact subsets of X, such that each fi(Jm) < oo, and
fi(X- \Jf Jm) = 0. Assume that L2(Jm) contains C0(Jm), the space of continuous
complex functions on X whose support is contained in Jm, as a dense subspace;
note that a function in C0(Jm) vanishes at the boundary of Jm. For each / e C(Jm),
extend its definition to all of X by defining/(x) = 0 for x e X—Jm. Let / and J'
denote elements of {Jm}, and, for brevity, write J f JSTfor Jm | [jf Jm; the neglected
set X- \Jf Jm does not affect the L2(X)-norm. Let Y, v, Kn, K, K' satisfy the
same hypotheses as X, \i, Jm, J, J'.

A function cf>, mapping YxX into complex numbers, will be called an
orthogonal kernel if it satisfies the following four conditions:

(i) (Continuity) For eachy e Y, the function (f>(y, •) is continuous on each Jm.
For each xe X, <f>(-, x) is measurable.

(ii) (Orthogonality) For each compact Ke {Kn},

(6) lim f a(y')dv(y') f ^)dv(y) f j&xfay', x)d^(x) = f \a(y)\2 dv(y)
JIXJY JY JJ , JY

whenever a s D(K), a dense (in L2(Z)-norm) subset of C0(K).
(iii) (Boundedness) cf>(y, x) is bounded on each compact subset of YxX.
(iv) (Conjugacy) Either <f> assumes real values only, in which case a, C0(K),

C(K), L2(X), L2(Y) will be restricted to real functions, or, for each y e Y, there
exists y' e Y for which <p(y, x) = <j>(y', x).

If X and Y are vector spaces, then the orthogonality property (6) can be for-
mally expressed, in terms of the Dirac delta function, by

f
J

Denote by S the vector space of functions To, where

(7) (To)(x)=\o(y)4>(y,x)dv(y),
JY

in which a e C(K), Kisa compact subset of Y, and xe X. Denote by A the algebra
of all finite linear combinations of finite products of elements of S.
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216 B. D. Craven [6]

If / is a compact subset of X, denote by B(J) the vector space of functions b,
with support in / , such that each b is the limit, in || • ||£-norm, of a sequence in S.
(Then each b e B(J) vanishes on the boundary of B(J).) The space B(J) will be
said to have the separating property if

(i) for each two distinct points xt, x2 ofJ, of at which at most one is a bound-
ary point of J, there exists b e B(J) with b{xl) ^ b(x2)-

(ii) for each interior point xt of / , there exists b e B(J) with b(Xi) ^ 0.

Let/e L2(X); for compact J c X, define/, by fj(x) = f(x) for x e J,fj(x) = 0
for x e X—J. Define the operator Q by

(8) (Qfj)(y) = f fAxWfcx)dp(x) (y e Y).
Jx

Define also, where they exist, the following limits:

(9) Qf = lim Qfj (in L2( Y)-norm).
JtX

(10) T(Qf) = lim T(QKf) ' (in L2(X)-norm),

where

(o f

10 for y e Y- K.

LEMMA 3. Let 4> be an orthogonal kernel; let feL2(X); let a e D(K), where
Ke {Kn}. Then Qf and TQf exist, and

(ii) \\f-T<x\\2 ^ \\f-TQf\\2 = n/ii2-ne/ii2.
PROOF. From (7) and the boundedness property of <j>, Ta is bounded and

continuous, for a e C(K), but not necessarily of bounded support. If a e D{K)
then, from (6) and (7),

(12) lir<x|| = ik||.

By Fubini's theorem, for a e D(K),

From (8) and the boundedness property of (j), QKfj e C(K).
Let peL2{K), and let p vanish on Y—K. Since D{K) is dense in L2(K),

there is a £ D(K) with ||p-(r||K < e. By the boundedness property of <f>, \4>{y, x)\
is bounded by a constant, X = X(J, K) say, on K x J. Define Tp by (7). Then

by (7), applied to p — a, and (12)
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[7] Stone's theorem and completeness 217

Hence ||rp||., < ||p||. Let J | Y, then

(14) ||rp|| ^ ||p||.

Now, if a e D(K), then

\\fj-To\\2 = (fj,fj)-(To,fj)-(fj, T<j) + (Ta, Ta)

by (11) and (12)

= \\fj\\2-\\Qfj\\2K+\W-Qfj\\2K

where the L2(A^)-norms are used, since a has support in K. Since QKfj e C(K),
and D(K) is dense in C(K), there is aeD(K) with \\cr-Qfj\\K < e. Hence

(15) \\Qfj\\ = lim \\Qfj\\K ^ | | / , | | g Il/H < oo.
j c t r

So, from (14), if c e £>(A:), then

(16) ll/.-Ttrll2 ^ H/j-nQ^/^H2 = ll/.ll'-liex/jll2

Let K' ZD K and J ' z> J. Then

I I Q / J - G / J I I = WQfr-jW ^ Wfr-jW by (15)

-• 0 as J t X.

So {2/j} is a Cauchy sequence in L2(Y), defining Qf. Similarly

by (13)

-> 0 as K t Y.

Hence {T(QKf)} is a Cauchy sequence in L2{X), defining T(Qf).
Now let J\X, then A"t F, in (16). Since, by (14),

\\TQKf-TQKfj\\ = \\TQKfx_j\\ ^ \\QKJx-j\\ ^ \\fx-A\

which -• 0 as J f X, the limit of (16) yields (11).

LEMMA 4. 7/"̂ 4 c 5*, ?/ien -5(7) w an algebra, closed in the uniform norm on J.

PROOF. Convergence in | | ' | |* implies both uniform convergence on X and
convergence in the L2{X)-notm \\-\\. Let b,b' eB(J); then b = lims,,, V =
limj^, where sH,s'neS. Since A <= S*, sns'n = liman>r, where anreS, and the
limit is in | | - | |* norm. Hence bb' is the uniform limit of a sequence {dn} c S,
where dn = an,r(n). Now
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218 B. D. Craven [8]

S sup \b\ • | |fc'-s;|| + sup \b'\ • ||fc-sn|| + sup \b-sn\ • \\b'-s'n\\
J J Y

+ \\sX-dm\\
< e for n > N(e).

So bb' e -6(7); and B(J) is an algebra.
If {bn} c B(J), and {bn} -* b uniformly on / , then, since J is compact,

l l^-^ l l -* 0 also; hence b e B{J). Thus B(J) is closed in the uniform norm.

LEMMA 5. If A <=. S*, and B(J) has the separating property, then B{J) = C0(J).

PROOF. The algebra B(J) is unaltered by identifying all boundary points of J
with a single point x0; this identification maps J onto a compact set J'. Since B(J)
has the separating property, B(J), considered as an algebra on J', separates points
of / ' , and for each point xt of / ' , JCJ ¥= x0, there i s / e B(J) w i t h / ^ ) # 0. By
Stone's theorem, B(J) coincides with the algebra of all continuous functions on
J' which vanish at x0; thus B(J) = C0(J).

THEOREM 3. Let X and Y have the properties listed above; let <j> be an orthogonal
kernel; let A a S*; let B(J) have the separating property, for each Je {Jm}; let
feL2(X). Then

(17) f=TQf

PROOF. Since feL2(X), there exists a compact Je {Jm} and geL2(X), with
support of g in / , such that \\f— g\\ < e/3. There exists heC0(J) such that
| |#- / ; | | < e/3. By Lemma 5, B(J) = C0(J), so there exists seS such that
\\h-s\\ < E/3. Therefore | | / - * | | < e.

Now, from (11), since s = To for some a, \\f-s\\ ^ \\f-TQf\\. Therefore
11/- TQf\ | = 0 , a n d / =

REMARKS. In the definition of B(J), the uniform convergence on X may be
replaced by uniform convergence on J, with bounded convergence almost every-
where on X—J; the same results follow, with ess sup replacing sup in the
proof of Lemma 4.

If, in particular, J = (Jf Jm is compact, then B(J) may be replaced by A,
and the hypothesis A <=. S* by A <= S. Then (A)~ = A a S, so that A = C0(J);
the rest of the proof is unchanged.

4. Applications

(a). PlanchereVs Theorem. Let X = Y = (— co,oo), /i = v = Lebesgue mea-
sure, Jm = [-m, m], Kn = [~n, n], <j>(y, x) = 7i~Vx)>, and let D{K) be the space
of continuous functions of bounded variation in the compact interval K. It is
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[9] Stone's theorem and completeness 219

readily verified that (j> is an orthogonal kernel; the orthogonality follows from

(18) <j(y')<j(y)dy dy' eixye'xy dx
J J J — n

, 2 sin n(y' — y)

y'-y~
1 dy as n -> oo, if oeD(K).nj\o(y)\

If To1 and To2 are elements of S, then their product is To, where a is the
convolution of ot and o2, and therefore is continuous and of compact support.
Thus A c S, and a fortiori A c S*.

To show that B(J) has the separating property, it suffices to verify that
ij/h(x — a)eB(J) for each a interior to J and all h sufficiently small, where
ij/h(t) = l-\t\/h for |f| < h, ij/h(t) = 0 for |f| > h. Now ^ih{t) = lim,,.,^ \}ihin{t),
where, for an = {In + i)n/h,
, 1 ( U , /A 1 ["" 1-cos hy i(

(19) \j/h n(t) = — — - e y d y e S .
71J-<>„ y

The convergence in (19) is uniform in t, and also in L2(— oo, oo)-norm, since for
ri > n, by (18),

(20)
"' I 1 — c o s 2

2

which —• 0 as n -> oo.

r 2 /Then Theorem 3 applies, yielding Plancherel's theorem, for/eL2( — oo, oo):

(21) j(x) = — l.i.m, f" e""dy (l.i.m. f" / ( ^ - ' " A )

(b). Orthonormal sequences of functions. Let Y be the set of non-negative
integers, with the discrete topology; define the measure v by v(y) = 1 for each
y e 7. Then the compact subsets of Y are just the finite subsets; let Kn =
{0, 1, 2, • • •, «}. Write (/>„(*) for <j>(n, x)(n 6 Y); then, from (6),

(22) (
J

= 5mn.
x

So {</>„} is a sequence of orthonormal functions, continuous except on the null set
W = X— [Jf Jm, and S is the space of finite linear combinations of the <£„. As
before, let A denote the algebra generated by S. Then Theorem 3 has the following
corollary.

THEOREM 4. Let X be locally compact; let the measure n on X satisfy the
requirements of Theorem 3. Let {<£„} be a sequence of orthonormal locally bounded
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220 B. D. Craven [10]

functions on X, continuous except on the null set W. Let each cj>n be real, or let S
contain the conjugate of each of its elements. Let A <= S*. For each x e X, which
is an interior point of some Jm, and each sufficiently small neighbourhood N of x,
let a function f exist, the \\ • \\*-limit of a sequence in S, such that f is positive on N
and zero elsewhere. Then the sequence {(/>„} is complete.

REMARKS. The existence of these functions / ensures that each space B(Jm)
has the separating property. The requirement of || • ||*-convergence can be weaken-
ed, as indicated in the remarks following Theorem 3. Theorem 4 is applicable, e.g.,
to the Hermite polynomials.

(c). Hankel transform. Let X = Y = [0, oo), dfi(x) = x2" + 1dx, dv(y) = dy
where p Si 0 is a constant, Jm = Km = [m~1,m]. Let <j)(y, x) = yix~"Jp(yx)'
where x e X, y e Y. The following results are quoted from the theory of Besse'
functions (see, e.g., [4], and the appendix):

(23) <j>(y, x) is bounded and continuous on YxX.

(24) lira f <r(a)a*rfa f a^p^dp f Jp(ocx)Jp(fix)x dx = f \a(a)\2 da
r-> oo JK JK J O J K

if a e D(K), the space of continuous functions of bounded variation on K e {Km}.

(25) Jp(ax)Jp(Px) = cp(apx)»J' Jp(yx)(l -* 2 ) '~ V ^

in which cp is constant, and y = [a2+^2-2ay?f] i . (Then | a - / ? | ^ y £ |a+/?|.)

(26)
J a

where B is constant, independent of y, if 0 < a < b < oo, and he C2[0, oo),
and has support in [a, b].

From (23) and (24) it follows that cj> is an orthogonal kernel. From (25),
the product of two elements of S is of the form

(27) f ffl(«Xa, x)dv(a) f
JK JK

= f <rl
' - 1

where ay, a2 e C(K), K= [a,b],0 < a < b < oo; (27) is of the form
'2b

>(y, x)g(y)dy
'o

in which g(y) is continuous in (0,2b]. Changing the variables in (27) from
t, a, P to y, a, p, and substituting u = cc + P, v = a-fl, h(u, v) = al(a)a2(P), gives,
after reduction:

J:
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[11] Stone's theorem and completeness 221

C C f y2 — V2~\p~^
g{y) = K r " r i h(u,v)(y2-v2y-i 1 - ——- <

JJ L u —v J
Now

u2-v2 4<xp~4a2

so that if y < a, and M = sup \h(u, v)\,

and

I<7MI ^ K y " MM J^ (y -v )'

So,i(p ^0,geL2[0,2b].
Now, from the orthogonality property of <f>, if 0 < t; < r\, then

lim \\{y,x)g{y)dy ' = [\g{y)\2dy
J | Ji

~> 0 as ^ -> 0.
Therefore (27) equals

lim
r2b

lim (/>(y, x)p(y)dy,
SlOJl;

the convergence being in L2(Z)-norm, and also uniformly on X, since g e L[0, 26]
and 4>(y, x) is bounded uniformly in x. Thus (27) is the ||-||*-limit of elements
of 5; and A <= S*.

It remains to show that each B(J) has the separating property. Let
0 < a < b < oo; let h e C2[0, oo), with support of h contained in [a, b]. Then

Jo

is continuous in [0, oo), and, from (26), |f(>')|< Byi(l+y2)~i, so WeL[0, oo).
This, with the boundedness of 4>, implies that

(28) H{x) = lim f" ^ , x)V(y)dy
r-* cc J r~ l

exists uniformly for xe[a, b]; so if is continuous. Since, for any interval
[a',b']C [a,b],

lim f dx f (j)(y, x)V(y)dy
r-*co J a' J r~ 1

= lim Cdx \bh(^p+1x-"d^ \rJlJ^y)JlJ(xy)ydy
r-^oo J a' J a J 0

= h(x)dx, using (24),
J a'
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it follows that H(x) = h(x) for each x. If E = Kn-Kjjn > n), then

P f <Ky, x)V(y)dy \fo(x) = f
Jo JE J E

0 as n -* oo;

so (28) converges to h both uniformly and in L2(X)-noTm, thus in ||-||*-norm.
Let x*F(x) e L2(0, oo); then

/•OO

I/WI
Jo

V + 1 ^ < oo,

where /(x) = F(x)x~p. By Theorem 3, / = Tg/. Expressed in terms of F, this
gives the Bessel-Plancherel theorem:

(29) F(x) = l.i.m. ^(y^)^ ̂ J I l.i.m. I F(Qjp(yi;)\ £d£.
m-* ao J 0 \ /(-* oo J 0 /

(The replacement of }£-i by JJ is readily validated.)

Appendix

Equation (24) is obtained from Bessel's equation and from the asymptotic
expressions [4]:

(30) Jp{an) = ] / — cos (an - q) • (l + O (-))
' nan \ \n 11

J'P(*n) = ]/— sm(an-q)-(l+o(-\)
f nan \ \n11

(as n -» oo; a, ft > 0; q = q(p).). From Bessel's equation,

(31) f"jp(ax)Jp(Px)x dx = — ^ 2 [ayp(n^)/;(na) - pJp(na)J'p(nP)l
Jo p —a

On substituting the expressions (30), (31) reduces to

sin,(/»-

where £ is a finite sum of terms of the form [7t(a)S)i(a + £)]" 1e'("p+r), where each
r is constant, and each p is a linear combination of a and /?. If a is a continuous
function of bounded variation, whose compact support K does not include the
origin, then
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I <r(a)a*da | oW)Pidp \ Jp{ax)Jp{Px)x dx
JK JK JO

= fff(a)a^af^)^-sin^-°t)
*f K *J K *^VP — ®*)\^P)

J x J K 7t(a + i?)(a jS) i I n /

-> ff(a)ff(a)da + 0 + 0 as n -> oo.

From [4], page 28,

- J C£(cos0) ,)7
where y = (a2 + P2 — 2ajS cos 0)*, and the Gegenbauer functions C^(cos 9)

satisfy the orthogonality relation ([4], page 77):

I sin2" 9 • C£(cos 0) • C£(cos 9)d9 = const. 5mn.
Jo

Therefore

" JM sin2" 0d0 = const.I" J-M Cg(cos 9) si
Jo /

From this (25) follows, on substituting cos 9 = t, and noting that Cg(f) = 1.
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