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Abstract

We present a sufficient and necessary condition for a function module space X to have the approximate
hyperplane series property (AHSP). As a consequence, we have that the space Co(L, E) of bounded and
continuous E-valued mappings defined on the locally compact Hausdorft space L has AHSP if and only
if £ has AHSP.
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1. Introduction

Throughout the paper, E and F will be complex Banach spaces. As usual, Sg, Bg
and E* will denote the unit sphere, the closed unit ball, and the (topological) dual of
E, respectively. Given two Banach spaces E and F, L(E, F) denotes the space of all
bounded linear operators from E into F.

The Bishop—Phelps theorem states that the set of norm-attaining functionals on E
is dense in £ [8]. It has been usefully extended in many directions and in the study of
optimization. After the celebrated Bishop—Phelps theorem, it was a natural question
as to whether the set of norm-attaining linear operators is dense in L(E, F), for all E
and F.

In 1963, J. Lindenstrauss [18] gave a counterexample showing that it does not hold
in general and he also showed that, if E is reflexive, then the set of all norm-attaining
operators is always dense in the space of L(E, F).

Motivated by the study of numerical ranges of operators, B. Bollobds in [9] proved
a refinement of the Bishop—Phelps theorem, nowadays known as the Bishop—Phelps—
Bollobas theorem [9, Theorem 1].

Carrying Bollobés’s ideas to the vector-valued case in 2008, Acosta, Aron, Garcia
and Maestre [1] introduced the notion of the Bishop—Phelps—Bollobas property for
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operators (BPBP for operators, for short) (see the Definition 2.1). BPBP for operators
is a stronger property than the denseness of norm-attaining operators. It had been
known that the set of norm-attaining operators from ¢; to any Banach space F is dense,
but the pair (£}, F) has BPBP for operators if F has a special property. This property
was introduced in [1], called the approximate hyperplane series property (AHSP, for
short), with the purpose of characterizing those Banach spaces F such that (£}, F)
has BPBP for operators. These two properties have attracted the attention of many
researchers. For more details and recent results about BPBP for operators or AHSP,
see [2-6, 10-12, 14-17].

In this note we study when a function module space X has AHSP and we obtain
that the space C(K, E) has AHSP if, and only if, a Banach space E has AHSP. In
this sense, we have generalized a result of Choi and Kim [13]. We also obtain as
a consequence, the space Co(L, E) of bounded and continuous E-valued mappings
defined on the locally compact Hausdorff space L has AHSP if and only if E has
AHSP.

2. Results

For our purposes, it will be useful to recall the definition of BPBP for operators.

Derinition 2.1. Let E and F be Banach spaces. We say that the pair (£, F) has the
Bishop—Phelps—Bollobds property for operators (BPBP for operators, for short) if
given € > 0, there is n(g) > 0 such that whenever T € S g r) and xo € S g satisfy that
[IT xoll > 1 — n(e), then there exist a point uy € S g and an operator S € S g r) satisfying
the following conditions.

IS woll =1, lluo — xoll <€, and IS - T <e.

Now we will give the definition of AHSP introduced in [1]. Recall that if (x;)ren C
E and (Ai)reny C R such that 44 > 0 for all k € N, we say that the series given by
ire1 AkXk is a convex series if 37, A = 1.

Dermnition 2.2. A Banach space E is said to have AHSP (approximate hyperplane
series property) if for every € > 0 there exists 0 < 17 < € such that for every sequence
(x1)r € S g and convex series Y-, agx; With

(o)
5
k=1

there exist a subset A C N and a subset {z; : k € A} satisfying

>1-n,

D) Zreau>1-¢€
(i1) |lzx — x| < e for all k € A;
(ii1) x*(zz) = 1 for a certain x* € S x- and for all k € A.
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We observe that the above property holds if it is satisfied just for a finite convex
combination (instead of convex series). The very useful comment in [1] is:

‘Geometrically, E has AHSP if whenever we have a convex series of vectors in Bg
whose norm is very close to 1, then a preponderance of these vectors are uniformly
close to unit vectors that lie in the same hyperplane (x*)~'(1), where ||x*|| = 1.

Among the spaces with AHSP, we may cite finite dimensional spaces, uniformly
convex spaces and Cy(L) spaces, as representative examples [1]. On the other
hand, there are spaces failing this property: every strictly convex space which is not
uniformly convex [1]. We refer the reader to the paper [15] for more examples of
spaces with AHSP.

It was verified in [1] that in the Definition 2.2, we can consider sequences (xy); of
vectors in the unit ball of E.

Prorosition 2.3. Let E be a Banach space. E has AHSP if and only if for all € > 0
there exist 0 < y(€) < € and n(e) > 0 with lime_,o+ y(€) = 0 such that for every sequence,
(X C Bg and every convex series Y, | axXy satisfying

[ee)
2,
k=1

there exist a subset ACN, {z; : k€ A} C Sg and x* € S g- such that

> 1 —n(e),

() Zreaax>1-7y(e);
(i) ok — xll < e forall k € A;
(iii) x*(zx) =1 forall k € A.

Our objective is to study when a function module space has AHSP. For this, we
define a function module space. Recall that a space X is a C(K)-module space if for
all x € X and for all 4 € C(K), we have that hx € X, where (hx)(t) := h(t)x(t).

DeriniTION 2.4. Function Module is (the third coordinate of) a triple (K, (X;);ek, X),
where K is a nonempty compact Hausdorff topological space, (X;);,cx a family of
Banach spaces, and X a closed C(K)-submodule of the C(K)-module [];ox X; (the
{«-sum of the spaces X;) such that the following conditions are satisfied:

(1) forevery x € X, the function 7 — ||x(?)|| from K to R is upper semicontinuous;
(2) foreveryte K, we have X; = {x(¢) : x € X};
(3) theset{re K:X;+#0}isdensein K.

RemARrk 2.5. In the Definition 2.4, K is called the base space and the family (X;),cx is
called the component spaces.

For function modules we follow the notation of [7], where the basic results of such
theory can be found.
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ExampLES 2.6.

(a) Let K be a nonempty compact Hausdorff space and E # {0}. The space C(K, E)
can be viwed as a function module space when X; = E for all r € K and X =
C(K,E).

(b) Let L be a nonempty locally compact Hausdorff space. The space Co(L, E) is
the space of all continuous function f : L — E such that for all € > O there exists
a compact set C C L such that || f(¢)|| <€, for all t€ L\ C. It can be regarded
in a natural way as a function module with base space K = L (the Stone—Cech
compactification of L) and the component spaces (X;),cx givenby X; = Eift € L
and X; = {0}ifre K\ L.

TueorREM 2.7. Let (K, (X;)iek, X) be a complex function module and € > 0. Suppose
that for all t € K, (X;)ex has AHSP with the same function n(e) given by Proposition
2.3, and for every x; € X; there exists f € X such that f(t) = x; and ||f]| < ||x/|| then X

has AHSP.
Proor. Let 0 < € < 1. We consider a finite convex series },;_; axxy for (x1)i_, C Bx
such that
L €
Za/kxk > 1 —n(z).
k=1
Since

= sup{

n
2,
=1

there exists 7y € K such that,

Z a/kxk(t)H itE€ K} >1- 77(5),
=1 X 2

n
Z axxi(t)
=1

And for all k € {1, ..., n} we have,

€
>1- n(—).
X, 2

llxk(t0)llx,, < llxll < 1.

Then, the sequence (x(f));_, C Bx,. By hypothesis X; has AHSP and by
Proposition 2.3 there exist A C {1,...,n}, {zx : k€ A} C szo and 7* € SX;O such that:
(1) Xkea ax > 1-y(e/2);

(2)  llzk — x(to)llx,, < €/2 forall k € A;

B) () =1forallkeA.

By hypothesis, for all k € A there exist f; € X such that fi(t)) = zx and ||fil| <
llz¢ll = 1. Now, we define the following subset in K:

U=re K10 - noly, < 5}

keA
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Itis clear that U # @ and U is an open set of K, since the function € K — ||x(¢)|| € R
is upper semicontinuous for all x € X. By Urysohn’s lemma there exists a function
¢ : K —[0,1] such that ¢(zp) = 1 and () =0 forallt € K \ U.

Now, for each k € A let g; : K — |,ex X; defined by

(1) = 9 filt) + (1 - g)a — o(O)xi(0).

It is clear that g; € X for all k € A. We claim that (g;)rea C S x. Indeed,

g0l = e+ (1= $)1 - e

<o)+ 1 -9 =1,
and [1gk(t0)llx,, = llzkllx, = 1. So, forallk € A

‘X,

llgkll = sup{llgr®llx, : 1 € K} =1,

which means g, € Sx forall k € A.
Now, we will show that ||g;, — xi|| < € for all k € A. In fact, if t € U, then

lgi(0) — (D, = Hgo(r)fk(o # (1= 5)a - pnwen - xk(t)”x,

|

FOGD - xe0) = 51 = e

€L €.
S5tz =e
Ifr€ K\ U, then [|g(r) — xx(llx, = I(1 = €/2)xi(1) = xi(Dllx, < €.

Thus,
llgx — xill = suplll(gx — x| : 1€ K} <€, VkeA.

Now we consider the valuation mapping ¢, : X — X, and define the linear
function x* := z* 0 §;,. If x € Sy, then [x*(x)| = |z*(x(t0))| < ||z*|lllx(2o)I| < 1.

Besides that, for all k € A, |x*(gi)| = 127 (gx(t,))] = |z2"(zx)| = 1. So ||x*|| = 1.

Finally, x* € Sx- and x*(gx) = 1, for all k € A. Then X has AHSP. O

In the next theorem we will show that it is possible to get the reciprocal of Theorem
2.7. We need to add the additional hypothesis that the mapping ¢ € K — ||x(?)|| is
continuous for all x € X, when X, = E, for all t € K and for some E.

THeorEM 2.8. Let (K, (X))ek, X) be a complex function module where X, = E, for all
t € K for some Banach space E. Suppose that the mapping t € K v ||x(¢)|| is continuous
forall x € X. If X has AHSP, then X, has AHSP forall t € K.

Proor. Let € > 0. Since X has AHSP, there exist n(e), y(€) > 0 that satisfy the
Proposition 2.3. Consider (x;); C Bg and the convex series ;. ; axxx such that

(o]
2,
=1

> 1 - n(e).
E
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For all k € N, we define f; : K = [J;ex X; by fi(£) = xx. So (fi)x € Bx and

ia/kfk iakfk(t)u : tGK} = ”i Xy
k=1 k=1 k=1

Since X has AHSP by Proposition 2.3, there are A CN, {7z : k€ A} Cc Sy and ® € Sx-
such that Y4 ax > 1 — y(€), llzx — fill < € and O(z;) = 1, for all k € A. Now, we claim

that || X res axzill = Xgea . Indeed,
< > adladl = ) e
keA

S i
keA keA

Since for all k € A, ®(z;) = 1, then

CD(Z a/kzk) = Z g,

keA keA

= sup{ . >1- 7](6).

SO

3 vz

keA

= supf( Y )| s s )= Y an

keA keA

Now,

vk}

Z a = Z gy Z arzx (1)
keA keA keA

By hypothesis, the function ¢ € K  |[|Yres @x2k(?)||g is continuous. Then there is
to € K, such that [|3 ;s xzi(to)ll = Dkea @k Thus, X reqs arzi(to) # 0. So, there is a

function x* € S g+ such that
Z azi(to)|| = Z ay.
keA E keA

X*(; aka(to)) =

Now we consider g; := zx(#p) and observe that x*(g;) = 1 for all kK € A. That is, for all
keA, (gk)k C Sg and

= sup{

llgk — xille = llzx(t0) — fulto)lle < llzx — fill <€, Vk € A.
The theorem follows. |

CoroLLARY 2.9. Let X be a dual complex Banach space such that X can be regarded
as a function module space, where X, = E, for all t € K and E a Banach space. Then
X has AHSP if and only if X; has AHSP forall t € K.

Proor. Now for X as a dual space which can be represented as a complex function
module with a base space K (see [7, Proposition 3.10]), then for every x € X, the
function t € K + ||x(¢)|| is continuous [7, Theorem 5.13]. Therefore the assumptions
in both Theorems 2.7 and 2.8 hold. O
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CoroLLARY 2.10. Let L be a locally compact Hausdorff space and X a Banach space.
Then Co(L, X) has AHSP if, and only if X has AHSP.

Proor. Consider K = SL the Stone—Cech compactification of L; the Theorems 2.7
and 2.8 imply the result. O

As a consequence of Corollary 2.10 and Theorem 4.1 in [1] we have that
(€1, Co(L, E)) has BPBP if, and only if £ has AHSP. Generally, if (K, (X;)ek,X) is
a function module space with AHSP, then (¢, X) has BPBP.

CoroLLaRrY 2.11. Let K # 0 be a compact Hausdorff topological space and E be a
Banach space. Then E has AHSP if, and only if C(K, E) has AHSP.

Proor. Since C(K, E) is a function module, with K base space and X; = E for all
t € K (see Examples 2.6(a)) and the mapping ¢ € K + || f(?)|| is continuous for all
f € C(K, E), the result follows straight away by Theorems 2.7 and 2.8. O

S. Y. Choi and S. Kim in [13, Theorem 11] showed that if C(K, E) has AHSP, then
E has AHSP. Here the Corollary 2.11 generalizes, in a sense, the result of Choi and
Kim and we have the reciprocal.

Open problem: We do not know if Theorem 2.8 is true if there are two distinct
component spaces. That means, there are #,#, € K such that X;, # X,.
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