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Abstract. In this paper, we study spectral properties and local spectral properties
of oco-complex symmetric operators 7. In particular, we prove that if 7" is an oo-
complex symmetric operator, then 7 has the decomposition property (§) if and only
if T is decomposable. Moreover, we show that if 7" and S are co-complex symmetric
operators, thensois 7 ® S.

2010 Mathematics Subject Classification. Primary 47A11; Secondary 47B25.

1. Introduction. Let L£(H) be the algebra of bounded linear operators on a
separable complex Hilbert space H. If T € L(H), we write (T), 0,(T), 04,(T), and
oy(T) for the spectrum, the point spectrum, the approximate point spectrum, and the
surjective spectrum of 7, respectively.

A conjugation on H is an antilinear operator C : H — H with C?> = which
satisfies (Cx, Cy) = (y, x) for all x,y € H. For any conjugation C, there is an
orthonormal basis {e,} 72, for H such that Ce, = ¢, for all n (see [6] for more details).
An operator T € L(H) is said to be complex symmetric if there exists a conjugation
C on H such that 7= CT*C. In this case, we say that T is complex symmetric
with conjugation C. This concept is due to the fact that 7" is a complex symmetric
operator if and only if it is unitarily equivalent to a symmetric matrix with complex
entries, regarded as an operator acting on an /2-space of the appropriate dimension (see
[6)).

In 1970, J. W. Helton [9] initiated the study of operators 7 € L(H) which satisfy
an identity of the form

m

(=1 (’]”) YT = 0. (1)

J=0
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In view of complex symmetric operators, using the identity (1), we define m-
complex symmetric operators as follows; an operator 7' € L(H) is said to be an m-
complex symmetric operator if there exists some conjugation C such that

> (= (’;“) TYCT"7/C =0

Jj=0

for some positive integer m. In this case, we say that 7" is m-complex symmetric with
conjugation C. Set A, (T) := > (1)~ <’7> T* CT"C.Then, T is an m-complex
symmetric operator with conjugation C if and only if A,,(T) = 0. Note that

T Ap(T) = Ap(THCTC) = Api(T). (@)

By (2), if T is m-complex symmetric with conjugation C, then T is n-complex
symmetric with conjugation C for all n > m. It is clear that a 1-complex symmetric
operator is complex symmetric. We now introduce the class of co-complex symmetric
operators. An operator T € L(H) is called an co-complex symmetric operator with
conjugation C if

limsup [| A (T)[|7 = 0.

m—0oQ
An operator T € L(H) is called a finite-complex symmetric operator if 7 is m-
complex symmetric for some m > 1. All normal operators, algebraic operators of
order 2, Hankel matrices, finite Toeplitz matrices, all truncated Toeplitz operators,
some Volterra integration operators, nilpotent operators of order &k, and nilpotent
perturbations of Hermitian operator are included in the class of m-complex symmetric
operators. We refer the reader to [5-8, 10, 11], and [2] for more details. The class
of co-complex symmetric operators is the large class which contains finite-complex
symmetric operators.

ExXAMPLE 1.1. Let C be the canonical conjugation on H given by

9] 00
C Z Xn€n | = Z Xn€n,
n=0 n=0

where {e,} is an orthonormal basis of H. Given any € > 0, choose a positive integer N
such that % < €. Fix any m > N. If W is the weighted shift on H defined by We, =
#ewl (n=0,1,2,...) for such m, then T =1+ W is an oco-complex symmetric
operator. Indeed, since W is a quasinilpotent operator, o (W) = {0}, and A, (T) =
A (W), it follows from Theorem 3.2 that

1 1
IAR(D" = | An(W)II" 1

m

m
=X (’7) 1w CwmCl
Jj=0
g 1
m m L - " 1 mT ., 1 1
< Z<j>||W||-’||W|| / 5[2 (2—m) ] =T <y <€

j=0
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By taking limsup as m — oo in the above inequality, we get that

limsup | A(T)| 7 < e.

m—o0
Since ¢ is arbitrary, it follows that 7 is an co-complex symmetric operator.

The paper is organized as follows. In Section 3, we focus on spectral properties
and local spectral properties of co-complex symmetric operators 7. In particular, we
show that if T is an co-complex symmetric operator, then 7 has the decomposition
property (8) if and only if T is decomposable. In Section 4, we prove that if 7 and S
are oo-complex symmetric operators, then so is 7 ® S. As some applications, we give
several examples of such operators.

2. Preliminaries. Anoperator T € L(H)is said to have the single-valued extension

property (or SVEP) if for every open subset G of C and any H-valued analytic function
f on G such that (T — 1)f(A) =0 on G, we have f(A) =0 on G. For an operator
T € L(H) and for a vector x € H, the local resolvent set py(x) of T at x is defined
as the union of every open subset G of C on which there is an analytic function
f : G — H such that (T — A)f(A) = x on G. The local spectrum of T at x is given by
or(x) = C\ pr(x). We define the local spectral subspace of an operator T € L(H) by
Hyp(F)={x € H :or(x) C F} for a subset F of C. An operator T € L(H) is said to
have Bishop’s property (B) if for every open subset G of C and every sequence {f,} of
‘H-valued analytic functions on G such that (7" — X1)f,(%) converges uniformly to 0 in
norm on compact subsets of G, we get that f,(1) converges uniformly to 0 in norm
on compact subsets of G. Given an operator T € L(H) and a closed set F C C, let
X7(F) consist of all x € H such that there exists an analytic function f : C\ F — H
that satisfies

(T'=1f() =x

forall A € C\ F. The space Xr(F) is called glocal spectral subspace of T. In particular,
if T has the SVEP, then X7(F) = Hy(F) holds. In general, X7(F) is strictly smaller
than the corresponding H7(F). We say that T has the decomposition property (8) if for
every open cover {U, V} of C, the decomposition

H =X (U)+ Xr(V)

holds. An operator T € L(H) is said to be decomposable if for every open cover {U, V'}
of C there are T-invariant subspaces X and ) such that

H=X+Y,0(T|lx)Cc U, ando(T|y) C V.
It is well-known that
Decomposable = Bishop’s property (8) = SVEP.

In general, the converse implications do not hold (see [12] and [3] for more details).

3. co-complex symmetric operators. In [2], the authors have studied spectral
relations for an m-complex symmetric operator on H. In this section, we provide
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several spectral properties of co-complex symmetric operators. Recall that for any
X,y € H, two vectors x and y are C-orthogonal if (Cx, y) = 0.

THEOREM 3.1. Let T € L(H) be an oco-complex symmetric operator with conjugation
C and let A and w be any distinct eigenvalues of T. Then, eigenvectors of T corresponding
to A and p are C-orthogonal. Moreover, if {x,} and {y,} are sequences of unit vectors
such that im,,_, oo (T — X)x, = 0 and lim,,_, (T — )y, = 0, thenlim,,_, o {(Cxp, yu,) =
0 where (Cx,,, yn,) is any convergent subsequence of (Cxy,, Yn).

Proof. Let X and u be distinct eigenvalues of T" with respect to the corresponding
unit eigenvectors x and y, respectively. Since 7x = Ax and Ty = uy, it follows that
CTC(Cx) = ACx and so

AT)Cx, y)=< Z(—l)m—f(’;?>T*fCT’"-fc Cx, y>

j=0

< Z( n” ’< )T*]k Cx,y> = ((T* = 1)"Cx, y)
= (Cx, (T = M)"y) <Cx Z( 1)'"—/( )mm—/y>

= (Cx, (u = 1)"y) = (& — K)m Cx, ). 3)

Moreover, since ||C|| = 1, it follows from (3) that

(7 — MI(Cx. p) |7 = (7 — 2)"(Cx, y)l'"
= [ An(T)Cx, P)I7 < [AW(DCX]F Y17 < [ An(T)]7.

By taking limsup as m — oo in the above inequality, we obtain (Cx, y) = 0.

Let {x,} and {y,} be sequences of unit vectors such that lim,,_, (T — A)x, = 0 and
lim,,_, oo(T — 1)y, = 0. Then, lim,,_, ..(CTC — 1)Cx,, = 0and so lim,,_, oo(T" — u')y, =
0 and lim,_,«(CT'C — Xl)an =0 for every / € N. If (Cx,,, yn,) is any convergent
subsequence of (Cx,, y,) such that limy_, o (Cx,,, yu,) = a, then it suffices to show that
a = 0. Note that for each fix m > 1, the following relations hold:

(72 = %)"al = Tm_[(Z = 3)"(Cxu, y)|

nj— 00

= Z( " J( >_m '@ lim (CXpps Vi)
nj—> 00
= Z(—l)"’—-/("?) lim (CT" C)Coxny, Tyn,)
0 J ) me—o0

= | lim { Z( 1" f( )T*JCT'” TC | Cxps )

Nj.—> 00

= lim [{ m(T)anp.Vnk)l < AR(D)]. 4)

nj— 00
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Since T is an co-complex symmetric operator, it follows from (4) that

(7 — 2| Jlim la|7 = limsup (7 — %)"al7 < limsup | A,(T)[» = 0.

m—00 m—00
Since A and p are distinct values, a = 0. Hence, lim,, _, oo (Cxp, 5, ) = 0. ]

THEOREM 3.2. Let Q be a quasinilpotent operator. Then, T = al + Q is an oo-
complex symmetric operator for all a € C.

Proof. We first show that Ax(T) = Ax(Q) for all k € N. If k = 1, it is true clearly.
Assume that it holds when k = m. Then, it holds

Api1(T) = T* A (T) — Ay (T)CTC)
= T"An(Q) — An(ONCTC)
= (al + 0")An(Q) — An(Q)(C(al + O)C)
= 0"An(Q) — An(QNCQC) = Ay 1(Q).

Therefore, A (T) = Ar(Q) for all k € N. We next prove lim sup ||A,,,(Q)||$ = 0. Since
Q is quasinilpotent, for a given € with 0 < € < 1, there exists ny such that |Q"| < €”
for all n > ny. Let M = max{||Q||, |Q*|l, ..., |Q™ ||} and m be sufficiently large. We
may assume M > 1. Then, we have

no—1

An(@) = 3 (~1y" (’;1) o7coric
=0

Yl f( )Q*fCmec
Jj= no

F Y - 1)’"—'( )Q*’CQ e
Jj=m—np+1

Therefore, we obtain that

no—1
1AR(Q)II < MZ ( (Yogell

m— no
+3 <'7)IIQ*’II 10"l + M Z (’;7>||Q*f||
J=no Jj=m—no+1
no—1 m—n
<y ()erreu g ()¢ emen 3 (7)
J=no J=m—np+1
no—1 m—n
_Me’”(Z(T)ej—i- ZO<';1)+
Jj= J=ny

e (T2 (1) £ (1)

Jj=ny Jj=m—ny+1
= Me"e!7mom,

2 (7))

Jj=m—np+1
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due to the fact that max{1, e~ !, ..., e!"™} = ¢!~ > 1. Hence,

limsup | An(Q) 7 < 2e.

m— 00

Since € is arbitrary, lim sup,,_, . || Am(Q)||% = 0. This completes the proof. O

REMARK 3.3. Let T be an m-complex symmetric operator with a conjugation C.
If 1 is an eigenvalue of T, then A is an eigenvalue of 7™ (see [2]). However, if T is an oo-
complex symmetric operator, this does not hold. For example, let C be the conjugation
on H given by

C(anen> Z( 1" xen,
n=0

where {en} is an orthonormal basis of { and let 1 be the weighted shift on H defined by
We, = n+1€"+1 n=0,1,2,..).If T = Al + W*, then T is an co-complex symmetric

operator by Theorem 3.2. Moreover, (T — Al)ey = W*ey =0, but (T* — xI)Cey =
WC€0 = Weo = €] ;é 0.

THEOREM 3.4. If {T,} is a sequence of commuting oo-complex symmetric operators
with conjugation C such thatlim,_, || T, — T|| = 0, then T is also co-complex symmetric
with conjugation C.

Proof. We first claim that if 7 and Q are in £L(H) with TQ = QT, then

|An(T + Q)ll < K"( max [|A,(T)] + max ],

where K = max{K, K>} with K; =2(2||Q|| + 1) and K> = 22| T|| + [|0*| + 1). In
fact, since

[(@a+b)—(c+d)]" [(a —o+B-d]"
_Z( 1)( >(a—c)+b]”’ igi
S ) Yo

i=0 j=0

Z m b (a _ C)ml dm
my, my, s

my+np+msz=m

it follows that

m m /113
AT+Q) = ) <m1 s m3)Q* A (1CQ™C.
my+my+my=m ’ ’

Let / = [5] be the integer part of 5. Put

M= 3 ( " )IIQ*msAmI(T)CQ"”CII

mp, my, m
my+ni+m3=m andm,-zl 1, 12, 3
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for i =1,2,3. Since my + my + m3 = m, it follows that m; >/ for some j =1, 2, 3.
Therefore, we get that

AT+l Y ( " )IIQ*’“AmI(T)CQ’” cl

my, np, m
mi+my+m3=m
< M\ + M, + M. ®)

We will estimate the constant M;. Then, we have

M= (L Jiemamncena

miy,mpy, m
my+my+mz=m and m; >/ 1, 712, 73

2 <m1 n’Z m3) IO Il Ay (DI CN™

my+nip+m3=m and m;>I

m
max A, (1 E * |13 ny
I<n<n ” ( )” < 1, 1, 3)”Q ” ”Q”

my+my+m3=m and m; >/

max [|A(D - (I + 121 + 1)
= max [|A.(T)] - 212l + 1)

= max AT - <%> . (6)

IA

IA

Since || Ax(T)|| < 2¥|| T || for all k, it follows from a similar method of (6) that

m
M, < max Q|- > ( >||Q*||'”3||Aml(T)||
I<n<m mi, mp, mj3
my+my+msz=m and my=>1
m
< max |Q||"- > ( )IIQ*II””(2IITI|)’”‘
I<n<m nmi, nip, ms

my+nmy+m3=m and my>/

< max Q" - QT+ 11Q*] + )"
I<n<m

o (%2 "
= max —_—
]<n<m 2

and
n m ny
Ms < max |O]" ) — el el
my+ma+mz=m and m3>/ 1, 752, 713
m
< max [|Q]" - > QITIY™ Q1™
I<n<m mi, ny, mj

my+my+m3=m and m3>I

< max Q|- CITI + 12l + D)™

I<n<m

K2 m
—_— n . —
- max jor (%)

Hence, (5) implies that

K m
18n(T + Q) < ) max [ 4,(7)] +2( > ) max | O
< K" (m ax 18,(7)] + max 0I).

I=n=
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where K = max{Kj, K»} with K; =2Q2||Q| + 1) and K, =2Q||T|| + |Q*|| + 1). So
this completes the proof of the claim.

If T, Ty = T} T, for all positive integers k, n, then TT,, = T, T for alln > 1. Given
0 < € < 1, there exists ng such that |7 — T}, || <€ and ||A(T;,)|l < €” for all n > ny.
By the above claim, for m > 3ng and / = [§] > no, we get that

1 1
1A = 18Ty + T = Tl |
< K( max | A,(Ty)l + max |7 = T, )"

m

< 2nKen(=2n Kenli)),

Since € is arbitrary, limsup,,_, ., | An(T Y[ = 0. Hence, T is co-complex symmetric
with conjugation C. O

PROPOSITION 3.5. Let R and T be in L(H) and let C be a conjugation on H. Assume
that T is a complex symmetric operator with conjugation C and RT = TR. Then, the
Jfollowing statements hold:

(i) RT is an m-complex symmetric operator with conjugation C if and only if R is
an m-complex symmetric operator on ran(T™).

(ii) If R is an co-complex symmetric operator with conjugation C, then RT is an
oco-complex symmetric operator with conjugation C.

Proof. (1) Since T* = CTC and RT = TR, it follows that
An(RT) = Z(—l)mﬁ' <m> (RT)C(RT)"7 C
j=0 J
=2 =" <m> RITYCT"IR"C
j=0 /

=Y =1y ("_7 ) RITYCT"ICCR" C
j=0 J
m
— Z(—l)’”f(r;)R*m_jCRme — T""An(R).  (7)
j=0

If RT is an m-complex symmetric operator with conjugation C, then from (7),
we have (T*"A,,(R)T™x, x) = 0 and therefore (A,,(R)T"x, T"x) = 0 for all
x € ‘H. Hence, R is an m-complex symmetric operator on ran(7™). If R is an
m-complex symmetric operator, then from (7), we have A,,,(RT) = 0 and hence
RT is an m-complex symmetric operator.

(i1) If R is an co-complex symmetric operator with conjugation C, then we obtain
from (7) that

L 1 1
[AWRT) |7 = T AR < I T 1 Am(R)II.

Therefore, we have limsup,,_, ., | An(RT )||% = 0. Hence, RT is an oo-complex
symmetric operator. (]
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THEOREM 3.6. Let R and T be in L(H) and let C be a conjugationon H. If TS = ST
and S*(CTC) = (CTC)S* for a conjugation C, then
m m
an(T+5) =3 () AT A i), ®)
J=0
where Ao(T) = Ao(S) = I. In particular, if T and S are m-complex symmetric and n-

complex symmetric, respectively, then T + S is (im + n — 1)-complex symmetric.

Proof. We will prove (8) by induction. If m = 1, then it is clear. So we consider
m =2.Since TS = ST and S*(CTC) = (CTC)S*, it follows from (2) that

AT + S) = (T* + SHAUT + S) — A(T + S)[C(T + S)C]
= (T"+ S)NAUT) + A1(S) — [A(T) + A(S][CTC + CSC]

= Ax(T) + T*AL(S) — A((S)CTC + S*A(T) — A(T)CSC + Ax(S)
- AQ(T) + 2AUT)AL(S) + Ax(S)

= Z ( ) A(T) - Ar_i(S),

where Ao(T) = A¢(S) = I. Therefore, (8) is true for m = 2. We assume that (8) holds
for m > 2. Since

R*Ap(R) — Ap(R) CRC = Ay 1(R)
for arbitrary R € L(H), it follows that
Apr1(T+S) = (T + S*)An,f(T +8)—-AT+SCAT+9C
— (T* + 5% Z (’7) A(T)Ap_(S)
=0

- Z ( ) A(T)Ap_(S) C(T + S)C

=T Z <J ) A(T)Ap-(S) + Z ( ) A(T)S* Ap—i(S)

-y (] ) A(T)CTCA, ((S) = <’7> A(T)A,_(S)CSC
J=0
") (AT = (TICT LA (S)

+y (’7) A(T)S* Ap—i(S) = Ap_i(S) CSC]

mgmﬂ@+z<>AGMwJ$

Il
10:
/N N
~ 3
-+ \_/

]1)A(nAW1A$
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where A¢(T) = A¢(S) = I. Therefore, it holds for every m € N. Using (8), we get the
last statement. So this completes the proof. O

We next consider the decomposability of an co-complex symmetric operator. Put
F*:={z:z € F}foranyset FinC.

THEOREM 3.7. Let T € L(H) be an co-complex symmetric operator with conjugation
C. Then, the following statements hold:
(i) Xcrc(F) C Xp+(F) for every closed set F in C.
(ii) T has the decomposition property (8) if and only if T is decomposable.

Proof. (1) Let F be a closed set in C and let x € Xcrc(F). Then, there exists
an analytic function f : C\ F — H that satisfies (CTC — A)f(A) = x for all
AeC\F.

CrLAIM. The infinite series

VAR

n!

g) = (=1)"Au(T)

n=0

is uniformly convergence on all compact subset of C \ F and Ay(7T) = I.

Choose any u € C\ F. Set E={ze€ C:|z— u| < 8} where § is the distance
from pto F. Chooseat € Rwitht < §suchthatthediscD ={ze C: |z — u| <
t} is contained in C \ F. Since f is continuous on the compact set D, it follows
that K = sup{|[f(§)| : & € D} is finite. For each A € D, g D, where Dy = {z €
C:|z— u| <s}withs < rand n € N, Cauchy’s integral formula yields that

e 1 d 1 d K
o0, L [ f@ 1 [ Vnds) K
n! 2mi Jyp (§ — A) 21 Jop (1€ — | — | — A]) (i—s)

Since T is an co-complex symmetric operator, it follows that

: 0 1 1
lim sup sup || Ay (T) " < limsup sup | A,(T)] [ ,
m—o00 reDy m! m—o00  reDy (t — syt

" =0.

Therefore, the series in claim converges uniformly on Dy by the root test. Since
all compact subset of C\ F can be covered by a finite number of such Dy, it
follows that g(1) converges uniformly on compact subset of C \ F.

By Claim, g: C\ F — H is an analytic function in C\ F. Moreover, since
(CTC — 2)f (L) = x, by induction, we have

(CTC —0)f ") =" V() ©
for every positive integer 7. Since
(T" = VAWT) = Apsi(T) + Ap(THCTC = 1),

it follows from (9) that

> (m)
(T =500 = Y17 —nanry =P
m=0 '

https://doi.org/10.1017/50017089516000550 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089516000550

ON co-COMPLEX SYMMETRIC OPERATORS 45

(m)
ST (T + ATHCTC = )
m 0
_Z( l)m m+1(T)f(m ()L)
m=0
ﬂ%w

+(=D)’Ao(T)(CTC — Ay

(m)
£ 1P ALTNCTC - A)f ¢

m=1

o0 (m) ()
- 1 A (- ()+(CTC )

oo . f(mfl)()\) _
Z (=D Am(T)m—

Hence, (T* — A)g(1) = x on C \ F and therefore Xc7c(F) C X7+(F).

(i1) Since T is decomposable if and only if 77 and 7* has the decomposition
property (8) by [12, Theorems 1.2.29 and 2.5.5], it suffices to show that if 7" has
the decomposition property (8), then 7* has the decomposition property ().
Let {U, V} be an arbitrary open cover of C and F € U and G C V be selected
closed sets whose interiors still cover C. Then, F No(7T*) and GN o (T*) are
compact such that FNo(T*) C Uand GNa(T*) C V.

Cram. For a closed set F in C, CXp(F) = Xcrc(F*) holds.

Let F be a closed set in C and let x € Xcrc(F). Then, there exists an analytic
functionf : C\ F — H thatsatisfies (CTC — 1)f(,) = xforall A € C\ F. This
yields that (T — A)Cf (1) = Cxand so (T — A)Cf (1) = Cx forevery A € C\ F*.
Since Cf(1) is an analytic in C \ F*, it follows that Cx € X'7(F*) and therefore
x € CXp(F*). Thus, Xcrc(F) € CXp(F*). The converse inclusion holds by a
similar method.

Moreover, since 7 has the decomposition property (§), it follows that {U, V'} is
an open cover of C such that H = X7(U) + X7(V). From the above claim, we
get that

H=CH = CXp(U)+ CXr(V) = Xcrc(U*) + Xerc(VF).
Hence, CT C also has the decomposition property (§). Thus by (i), we get that

H = Xere(F) + Xere(G) € X7+(F) + A7+(G) _

Thus, X7+(U) + X7-(V) = H. Hence, T* has the decomposition property (8).
So this completes the proof. O

Let us recall that an operator X € L(H) is called a quasiaffinity if it has trivial
kernel and dense range. An operator S € L(H) is said to be a quasiaffine transform
of an operator T € L(H) if there is a quasiaffinity X € £(H) such that XS = TX.
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Furthermore, two operators S and T are quasisimilar if there are quasiaffinities X and
Y such that XS = TX and SY = YT. A closed subspace M is hyperinvariant for T if
it is invariant for every operator in {7} = {S € L(H) : TS = ST} of T. Next, we give
various useful results from Theorem 3.7 and [12].

COROLLARY 3.8. Let T € L(H) be an oo-complex symmetric operator. If T has the
decomposition property (8), then the following statements hold.
(i) If F C Cis closed, then the operator S =: T/ p,(r), induced by T, on the quotient
space H/Hr(F) satisfies o(S) C o(T) \ F.
(1) If M is a spectral maximal space of T, then M = Hy(o(T|p)).
(ii1) f(T) is decomposable where f is any analytic function on some open neighbourhood
of o(T).
(iv) If T has real spectrum on H, then exp(iT) is decomposable.
(v) If o(T) is not singleton and S € L(H) is quasisimilar to T, then S has a non-trivial
hyperinvariant subspace.
(Vi) 0(T) = 0g(T) = 0(T) = Ufor(x) : x € H}.

4. Tensor products of co-complex symmetric operators. Let H; ® H, denote the
completion (endowed with a sensible uniform cross-norm) of the algebraic tensor
product H; ® H, of H; and H, where H; and H, are separable complex Hilbert
spaces. For operators 7' € L(H;) and S € L(H,), we define the tensor product operator
T® S on L(H; ® Hy) by

n n
(TS| D x| =Y oTx®Sy.
j=1 j=1

Then, it is well known that T® S € L(H1 ® H3). Since TS =T HIR®S) =
IRS)NT®I) and T®I =@°T, it is clear that an operator 7" is an m-complex
symmetric operator with conjugation C if and only if 7 ® I and I ® T are m-complex
symmetric operators with conjugation C. We replace the notation A,,(7; C) with
A, (T) as follows if necessary:

m

Ap(T:C) =) (=17 ('") VT C.
=0 /
Similarly, for conjugations C and D on ‘H, we define C ® D on H ® H by

(C®D) ZO[ij ®yj = ZEC)C]@D)/]
j=1 j=1

Then, C ® D is a conjugation on H ® H (see Lemma 4.6 or [6, Lemma 6]). In this
section, we prove the following results.

THEOREM 4.1. Let T and S be an m-complex symmetric operator and n-complex
symmetric operator with conjugations C and D, respectively. Then, T ® Sisan (m +n —
1)-complex symmetric operator with conjugation C @ D.
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THEOREM 4.2. Let T and S be oco-complex symmetric operators with conjugations C
and D, respectively. Then, T ® S is an co-complex symmetric operator with conjugation
C®D.

COROLLARY 4.3. Let T and S be oco-complex symmetric operators with conjugations
C and D, respectively. Then, (T ® S)* has the property (B) if and only if T ® S is
decomposable.

Proof. The proof follows from Theorem 4.2 and [12]. ]

Recall that an operator 7' € L(H) is called a 2-normal operator if T is unitarily

Ny N, _
Ns N4> € L(H & H) where N; are

mutually commuting normal operators for i = 1, 2, 3, 4.

equivalent to an operator matrix of the form (

COROLLARY 4.4. If T is an m-complex symmetric operator with a conjugation C and
S is a 2-normal operator, then T ® U*N U is an m-complex symmetric operator where

— [J* : _ N1 N, .
S=U*NUwith N = (N3 N4) and a unitary U.

Proof. If S is a 2-normal operator, then there exists a unitary operator U such that

S = U*NU where N = xl xz) Thus, S is a complex symmetric operator from [8,
3 V4
Theorem 1]. Hence, T ® U*N U is an m-complex symmetric operator from Theorem
4.1. ]
EXAMPLE 4.5. Let C be a conjugation given by C(zy, 22, z3) = (Z1, Z2, Z3) on C3.
010
Assume that N is normaland 7= | 0 0 2 | on C*. Then, T is a 5-complex symmetric
000
ON O
operator with conjugation C from [2, Example 3.2]. Hence, T@ N = [0 0 2N | is
00 0

5-complex symmetric from Theorem 4.1.

Before the proof of Theorems 4.1 and 4.2, we first recapture the following lemma
from [1].

LEMMA 4.6 [1]. If C and D be conjugations on 'H, then C ® D is a conjugation on
H®H.

Assume that operators 7, S € L(H) satisfy 7S = ST and S*(CTC) = (CTC)S*.
Since SY(CT*C) = (CT*C)S* holds for all j, k € N and

(ab—cd)" =[(a—c)b+c(b—d))" = Z <rJn> (a— )" 7" (b —dy,

j=0

it follows that

Ap(TS) =Y (=)™ <?>(TS)*I c(rs)y"7c
j=0

= [(T* - CTCO)S* + CTC(S* — CSC))”
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=Y (”,’)(T* — CTCY" /S CT/C(S* — CSCY
= \J
J
— S ("M (DS CTICALS 10
= ; m—i(T) i(S), (10)
j=0

where A,,(T) = (T* — CTC)™.
From (10), we have the following result.

LEMMA 4.7. Let T and S be m-complex symmetric and n-complex symmetric with
conjugation C, respectively. If T commutes with S and S*(CTC) = (CTC)S*, then TS
is (m + n — 1)-complex symmetric with conjugation C.

Proof. From (10), it holds

m+n—1
m+n—1 i :
Apin-1(TS)= ( ; )Am+,,_1_,(T) LSS CTIC . ALS).
=0

(i) f0<j<n—1,thenm+n—1—j>mandhence A,;,—1_;(T) =0.
(i) If n < j, then A;(S) = 0.
Therefore, A,,,1,—1(T'S) = 0. This completes the proof. 0

Proof of Theorem 4.1. By Lemma 4.6, C ® D is a conjugation on H ® H. It is
clear that T ® I and I ® S are m-complex symmetric and n-complex symmetric with
conjugation C ® D, respectively. Since operators 7 ® I and I ® S satisfy

(TRNI®S)=(I®S(T®I) and

IS (CeD(T®NC®D)=((CeDATHCeD)I®S),

it follows from Lemma 4.7 that (T NI ®S)=T® S is (m+ n— 1)-complex
symmetric with conjugation C ® D. This completes the proof. O

LEMMA 4.8. Let T and S be oco-complex symmetric operators with conjugation
C. Assume that TS = ST and S*(CTC) = (CTC)S*. Then, TS is an oo-complex
symmetric operator with conjugation C.

Proof. Suppose that T and S are co-complex symmetric operators. Then, for a
given 0 < € < 1, there exist N and N, such that ||A,, (T)| < €” and ||A,,(S)|| < €” for
ny > Ny and np, > N,. Put N = max{N, N>}. Then, it suffices to show that there is a
constant K > 0 such that for m > 2N,

IAWTS)| < K™e?.

Put / = [5] denote the integer part of 7. Then by Equation (10), we have
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/ m )
Am(TS; C) = Z < .)Amj(T; C)S*m_']CTjCAj(S; C)
|\
j=0
+ ) <m> A (T; O)S™ I CTICALS; C). (11)
j

j=l+1

Forj<I=[3], m—j>[3]=[=N, |[An (DI < €7 < €' holds. Since ||C|| = 1,
1A;(S)I < 2|IS) for allj > 1. Thus by (11), we obtain

!
1y (’7) A (T; C)S™" I CTI CALS; O)
Jj=0
!

m i :
< Z (].)”Amj(T; OIS IICT CIIALS; Ol
j=0

IA
~ 1

< .)Em]||S||mj||Tj||(2j||S||])
=0 N

m .
<eIsImy (j)||T||12/ = ISIMA + 20T (12)

J=0

Similarly, forj > I+ 1 > N, [A(S)|| < €/, we get

m m . )
||Z<J.)Amj(T;C)S* ICTCA(S: Ol < 1T +21SI". (13)
j=I+1

From (12) and (13), we know that for n > 2N

1AW(TS; O < BISI™L + 21T + 1 TI™(1 + 2)|SI)™).

Thus, limsup,,_, . |AW(TS; C)||$ =0. Hence, TS is an oco-complex symmetric
operator with conjugation C. ]

Proof of Theorem 4.2. It is clear that T ® I and I ® S are co-complex symmetric
operators on H ® H, respectively. Since C ® D is a conjugation on H ® H by Lemma
4.6 and (T ® I, I ® S) is a commuting pair and satisfies

I®S)(CRDNTQRINC®D))=((C®DNT ®I)CQD)IRS)",

it follows from Lemma 4.8 that (T ® I)(I ® S) = T ® S is an co-complex symmetric
operator with conjugation C ® D. ]
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