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1. Introduction

The theory of group representations has been a motivating force for operator algebra
theory since the very beginnings of the subject. If 7 is a unitary representation of a
group G, a much studied object is the weak-x closed algebra generated by {7 (g): g € G}.
A special case of particular importance arises when 7 is the left regular representation
g — Ly acting on L?(G); the algebra obtained in this way is the von Neumann algebra
VN(G) of the group G.

These algebras are all self-adjoint. If S C G is a semigroup, one can consider instead
the non-self-adjoint algebra generated by {m(g): g € S}, possibly restricted to a common
invariant subspace. The algebra of analytic Toeplitz operators is an instance of this con-
struction. Such algebras have recently attracted considerable attention in the literature.

Let F! be the free semigroup on n generators. The ‘non-commutative Toeplitz algebra’
is the weakly closed algebra L,, generated by the operators Ly, g € F;', restricted to
the invariant subspace ¢2(F;}). It was introduced by Popescu in [19] and studied by
him in a subsequent series of papers, and by Arias and Popescu in [1]. Later, Popescu
[20] considered free products of semigroups satisfying certain additional properties, and
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Davidson and and Pitts [8,9] and Davidson et al. [7] studied the algebra £,, within the
more general framework of free semigroup algebras. On the other hand, non-self-adjoint
algebras arising from representations of some Lie groups such as the Heisenberg group,
the ‘ax + b group’ and SLg(R) were considered by Katavolos and Power [13,14], by
Levene [16] and by Levene and Power [17]. These authors studied problems including
reflexivity and hyperreflexivity, determination of the invariant subspace lattice and semi-
simplicity.

In this paper, we study operator algebras arising from representations of the discrete
Heisenberg semigroup. Recall that the discrete Heisenberg group H consists of all matrices
of the form

S = o

1 n

0 m|, k,m,n¢€Z.

0 1

Let HT be the semigroup consisting of all matrices in H with k, m € Z*. We are interested
in the weak-* closed algebra Tp,(H™) generated by the operators Ly, g € HY, restricted
to the invariant subspace ¢?(H*). In §4, we show that 77 (H") contains no non-trivial
quasi-nilpotent or compact elements; in particular, it is semi-simple. We show that the
commutant of 7T, (H™) is the corresponding right regular representation and we identify
the centre and the diagonal. In § 5 we prove that 7z (H™) is reflexive using a direct integral
decomposition and the results of § 3.

In §6 we study a class of representations of HT that arise from representations of the
irrational rotation algebra studied by Brenken [4]. The latter, in the multiplicity free case,
are parametrized by a cocycle and a measure. When the cocycle is trivial, we show that
the weak-* closed algebras generated by the restriction to HT are unitarily equivalent
to nest algebras or equal to B(H). We also exhibit a representation (corresponding to
a non-trivial cocycle) that generates a non-reflexive algebra even for the weak operator
topology.

In §§2 and 3 we develop a technique that allows us to handle the question of reflexivity
of T (H™). We introduce and study a notion of reflexivity for spaces of operators acting
on tensor products of Hilbert spaces, which we think is of independent interest. Using
this notion, we generalize previous results of Kraus [15] and Ptak [21], establishing
reflexivity for a class of subspaces of T ® B(#H) (where T is the algebra of analytic
Toeplitz operators).

1.1. Preliminaries and notation

The discrete Heisenberg group H is generated by

O =

0 1
o, v=10
1 0

o = O

0 1
1 and w= |0
1 0

o = O
—_ O =

1
u= 1|0
0

The element w is central and uwv = wvu.
We write B(H) for the algebra of all bounded linear operators on a Hilbert space H.
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If P € B(H) is an (orthogonal) projection, we set P+ = I — P, where [ is the identity
operator. We denote by B(H). the predual of B(H), that is, the space of all weak-x
continuous functionals on B(#H). If z,y € H, we write w,, for the vector functional in
B(H). given by w, (A) = (Az,y), A € B(H). If £ is a subset of a vector space, [€] will
stand for the linear span of .

The pre-annihilator S| of a subspace S C B(H) is

S ={weB(H).: w(A) =0 for all A€ S}.
The reflexive hull of S [18] is
Ref S ={A € B(H): wy 4(S) = {0} = wy y(A) =0 for all z,y € H}.

The subspace S is called reflezive if S = Ref S.
If £ is a collection of projections on H,

AlgL ={A e B(H): AL=LAL}

is the algebra of all operators leaving the ranges of the elements of £ invariant. It is easy
to see that a unital subalgebra A C B(H) is reflexive if and only if A = Alg £ for some
collection L of projections on H.

Let H1 and H2 be Hilbert spaces and let H1 ® Ho be their Hilbert space tensor product.
If S; C B(H;), i = 1,2, we let S; ® Sz be the weak-* closed subspace of B(H1 ® Hs)
generated by the operators A; ® As, where 4; € S;, i = 1,2. If A € B(H1), we write
A® S, for the space CA® Ss. If w; € B(H;)x, i = 1,2, we let w1 @ wa € B(H1 ® Ha). be
the unique weak-* continuous functional satisfying (w; ® w2)(A; ® Az) = w1 (A1)wa(As2),
A; € B(H;),i=1,2.

Finally, we let H? be the Hardy space corresponding to p (p = 2,00), that is, the
space consisting of all functions in LP(T) whose Fourier coefficients indexed by negative
integers vanish. For each ¢ € H>, we let T,, € B(H?) be the analytic Toeplitz operator
with symbol ¢, that is, the operator given by T, f = ¢f, f € H?. We let

T=A{T,: pc H*}

be the algebra of all analytic Toeplitz operators on H?2.

2. A reflexive hull for subspaces of B(H1 ® H2)

In this section, we introduce a reflexive hull for spaces of operators that act on the tensor
product of two given Hilbert spaces. The results will be applied in § 3 to study reflexivity
of subspaces of T ® B(K) for a given Hilbert space K.

Suppose a Hilbert space H decomposes as a tensor product H; ® Ho of two Hilbert
spaces. If w € B(H1)s, then the right slice map R, : B(H1 ® Hs) — B(H2) is the unique
weak-* continuous linear map with the property that R, (A ® B) = w(A)B, whenever
A € B(H1) and B € B(H>). Similarly, one defines the left slice maps, denoted by L.,
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where 7 € B(Hz)«. We note that if w = we, for some vectors &,n € Hi, then for all
T,y € Ha,
(Ro(T)z,y) = (T @z),ny), TecB(HiHa). (2.1)

This equality shows that, when w is a vector functional or, more generally, a weakly
continuous functional, then R, is also weakly (that is, WOT-WOT) continuous (where
WOT denotes weak operator topology).

If S is a weak-* closed subspace of B(H;1) and T' € S ® B(#H2), then clearly L, (T) € S
for all w € B(Hz).. The converse was proved in [15].

Lemma 2.1 (Kraus [15]). Let S be a weak-x closed subspace of B(H;) and let
T € B(H1®@Hs). If L,(T) € S for all w € B(Hz)+, then T € S @ B(H2).

Consider the set of vector functionals
&= {w§®x,n®y: &EneHy, x,y € HQ} - B(Hl ®H2)*.

The set € (as any subset of the dual of B(H1 ® Hz) [10]) can be used to define a reflexive
hull for subspaces of B(H1 ® Hs). Namely, if S C B(H1 ® Ha), let

Refe S ={T € B(H1 ®@ H2): w(S) = {0} = w(T) =0 for all w € £}.

It is clear that Ref.(S) depends on the tensor product decomposition H = H; ® Ha.
The following statements are easy consequences of the definition; we omit their proofs.

Lemma 2.2. Let § C B(H1 ® Hz). Then

(i) Ref. S is a reflexive, hence weakly closed, subspace of operators,
(ii) RefS C Ref. S,
(iii) Ref. S = Ref. Ref S = Ref, Ref. S.

It follows from Lemma 2.2 that if a subspace S C B(H; ® Hs) satisfies Ref, S = S,
then S is reflexive. Remark 2.8 shows that the converse does not hold.

Lemma 2.3. Let Y C B(H1) and V C B(H2) be subspaces. Then
Ref, (U @ V) = (B(H1) @ Ref V) N (RefU @ B(Hs)).

Proof. Note that a vector functional wegs noy = We,n ® we y annihilates Y ® V if and
only if either we, annihilates ¢/ or w,, annihilates V. For if there exists U € U with
we (U) # 0, then for all Ve V we have we ,(U)wg (V) =0, and hence w, (V) = 0.

Now let T € Ref (U ® V). Suppose that we , € U; . Then wegz ney annihilates U @ V
for all z,y € Hs, and hence

we (L, (1)) = (we,y ® wey)(T) = 0.

This shows that L, , (T') € ReflUd. Since z,y € Hy are arbitrary, linearity and (norm)
continuity of the map w — L, yield L, (T') € RefU for all w € (B(Hz2))+«. By Lemma 2.1,
T € RefU ® B(H>). Similarly, one obtains T' € B(H1) ® Ref V.
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Conversely, if T € (B(H1) @Ref V)N(Ref U @ B(Hz)), then for each ¢ = we ,,(&,n € Hi)
we have Ry(T') € Ref V. So, if w,, is a vector functional annihilating V, then it must
annihilate Ry(T'), and hence

(Lo, , (T)) = (0 ® Wy )(T) = wa (R (T)) = 0.

Since ¢ = we,, with &, n arbitrary in #H,, this implies L,,,  (7) = 0. Similarly, using the
fact that all left slices of T' must lie in Ref U, we see that

We.n € U = ngvn (T) =0.

Therefore, if we , ® wy,, annihilates U ® V), then either we , annihilates I/, in which case
Ry, ,(T) =0, or w,, annihilates V, in which case L., ,(T') = 0. In either case,

(wep @way)(T) = we (L, , (T)) = way (R, (T)) = 0,
which shows that T € Ref.(U ® V). O

Remark 2.4. The intersection (B(H1) ® V) N (U @ B(Hz)) coincides with the Fubini
product F(U,V) defined by Tomiyama in [23] for von Neumann algebras and by Kraus
in [15] for weak-* closed spaces of operators.

Let £, and L5 be subspace lattices on the Hilbert spaces H1, Ha, and let £ ® L5 be the
smallest subspace lattice generated by P; ® Py, where P; € £;, i = 1,2. It follows from a
result of Kraus [15, (3.3)] that the Fubini product F(Alg £, Alg £5) equals Alg(L1 ®@Ls).
Combining this with Lemma 2.3, we obtain

Ref.(Alg L1 @ Alg L3) = Alg(L1 ® Ls).
Corollary 2.5.
(i) If A € B(H,), then Ref.(A® V) = A®@ Ref V.
(il) If U C B(H1), then Ref . (U @ B(Hz)) = RefU @ B(Hz).

Proof. (i) Clearly, we may assume that A # 0. If T € Ref.(A ® V), then by
Lemma 2.3, T € (B(H1) ® Ref V) N (Ref CA ® B(H2)). But Ref CA = CA, since one-
dimensional subspaces are reflexive (see, for example, [5, Proposition 56.5]),s0 T = AQ B
for some B € B(Hz). Thus, A® B € B(H1) ® Ref V, which implies that B € Ref V.

Part (ii) follows from Lemma 2.3. O

Lemma 2.6. Let S C B(H; ® Ha) be a subspace of operators and w € B(H1). be a
vector functional. Then R, (Ref. S) C Ref R, (S).
Similarly, if T € B(Hz)+ Is a vector functional, then L,(Ref.S) C Ref L (S).

Proof. Let w = we,, where {,n € H;. Fix T' € Ref. S and suppose that =,y € H,
are such that w, , (R, (S)) = {0}. It follows from (2.1) that

weezney(S) = {0}.
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Since T' € Ref. S, we have that wegq ney(T) = {0}. By (2.1) again, w, (R, (T)) = {0}.
We have thus shown that R,(T) € Ref R,(S). The first claim is proved. The second
claim follows similarly. O

Proposition 2.7. For a projection L € B(H1 ® Ha), let L be the projection onto the
subspace {§ @ z: L(¢ @ x) = 0}*. Let P,Q € B(H, ® Hz) be projections. Then

Ref, QB(H1 ® Ha)P = QB(H1 @ Ha)P.

In particular, there exists a subspace & C B(H1 ® Hsa) such that Ref. S is strictly
bigger than Ref S.

Proof. Fix projections P,Q € B(Hi ® Hz) and let S = QB(H1 ® Ho)P. It is clear
that

510E = {Wepansy: PE@ ) =0 0r Qo y) = 0}, (2.2)

Hence, T € Ref, S if and only if (T(§ @ x),n®@y) =0 for all &, n € Hy and all 2,y € H,
such that either P(é @ ) =0 or Q(n®y) = 0.

Suppose that T' € Ref,S. If £ € Hy, and « € Hz are such that P(§ ® ) = 0, then
for any n € H; and y € Ha we have (T(§ ® z),n®y) = 0 and so T({ ® ) = 0.
But PL(H; ® Hy) = [E@z: P(E®x) = 0]. It follows that TP+ = 0, or T = TP. By
considering adjoints, we conclude that T = QT, and thus T = QT P. Conversely, if T is
of this form, then 7" € Ref. S by the previous paragraph.

For the last statement, it is sufficient to exhibit a projection P € B(H; ® Ha) such
that P is strictly greater than P. It suffices to choose any P # I that does not annihilate
any non-trivial elementary tensors. For example, take P = F-, where F is the projection
onto {A(e1 ® f1 +e2® f2): A € C} and where the set {e1,ea} C Hy (respectively, the set
{f1, f2} C Hs) is linearly independent. Here P # I but P = I. O

Example 2.8. Let H; be infinite dimensional, let V' € B(#;) be an isometry and let
S C B(H3) be a weak-* closed subspace. Then

(i) Ref(V®S) =V &S,

(i) if S is not reflexive,

Ref(V ®S) G Ref(V®S).

Proof. The equality Ref(V @ §) =V ® S is well known when V' is the identity (see,
for example, [5, Corollary 59.7]), and the proof readily extends to the general case.

Since Ref.(V ®S) = V ®@Ref § by Corollary 2.5, if S is not reflexive, then Ref(V ® S)
is strictly contained in Ref.(V ® S). O
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3. Reflexive hulls and Fourier coefficients

We recall that for each ¢ € H> we denote by T,, the analytic Toeplitz operator on H?
with symbol ¢ and by 7 the collection of all analytic Toeplitz operators on H?2. Let
¢, € H? be the function given by (,(z) = 2", z € T. We note that {(,: n > 0} is an
orthonormal basis of H2. Let S =T, € T be the unilateral shift.

For the rest of this section, we fix a Hilbert space K. We note that (T®B(K)) = T&I.
Indeed, if T € (T ® B(K))!, then T € (I ® B(K))" and hence T = A ® I for some
A € B(H?). It now follows that A € 7/ = T [22]. Thus, (T ® B(K))"” = (T @ I)’. Now, if
X € (T®I), then X(T®I) = (T®I)X for all T € T. Applying left slice maps, we obtain
L,(X)T =TL,(X) for all normal functionals w and all '€ T. Thus, L,(X) € T' =T
for all normal functionals w, which means by Lemma 2.1 that X € T®B(K). We conclude
that (T @ B(K))” =T @ B(K) and, in particular, that 7 ® B(K) is automatically weakly
closed.

If T e T®BK), let T,,, n >0, be the operators determined by the identity

T ®x) = Z (o ®Thz, z€Kk.
n>=0
Alternatively, T}, = R, (T), where wy, = we¢,.c,, n = 0.

Wecall 30 -, 5" ® T,, the formal Fourier series of 7. When K is one dimensional, this
is the usual Fourier series of an operator T' € 7. By standard arguments, as in the scalar
case, the Cesaro sums of this series converge to T in the weak-* topology.

If S is a family (S,,)n>0 of subspaces of B(K), we let

AS)={T e T®B(K): T, € S,, n > 0}.

It is obvious that A(S) is a linear space; it is a subalgebra of B(H? @ K) if and only if
SnSm C Spym for all n,m > 0.

Remark 3.1. If S,, is closed in the weak operator (respectively, the weak-*) topology
and S = (S,)n>0, then A(S) is closed in the weak operator (respectively, the weak-x)
topology.

This follows from the fact that the slice maps R,,, are continuous in both the weak-
weak and the weak-+—weak-* sense.

Remark 3.2. If S C B(K) is a weak-* closed space and S, = S for each n > 0, then
AS)=T®S.

Indeed, if A € S and k > 0, then obviously S* ® A € A(S) and hence T ® S C A(S),
since the latter is weak-* closed.

Conversely, suppose that T € T ® B(K) is such that T, € S for each n > 0. Then
S"® T, € T®S and hence the Cesaro sums of the Fourier series of T are in 7 ® S. But
T ® S is weak-# closed, andso T € T ® S.

If S = (Sp)n>0, we let Ref' S := (Ref Sp,)n>o0-
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Theorem 3.3. IfS = (S,,)n>0 Is a sequence of subspaces of B(K), then Ref. A(S) =
A(Ref S). In particular, if S, is reflexive for each n > 0, then A(S) is reflexive.

Proof. First observe that Ref.(T ® B(K)) = (Ref T) ® B(K) by Corollary 2.5. But T
is reflexive [22] and hence Ref (T @ B(K)) = T @ B(K).

Let T € Ref,. A(S). As just observed, T € T ® B(K). By Lemma 2.6, for each n > 0,
writing wy, = we,.¢,, we have

R, (T) € Ref R, (A(S)) C Ref S,,,

since R, (A(S)) C S, by the definition of A(S). In other words, 7, € RefS, for all
n >0, and so T € A(RefS).

Conversely, suppose that T' € A(RefS), that is, T, € RefS,, for each n > 0. By
Corollary 2.5, S™ ® T, € Ref (5™ ® Sp,), n = 0. Since S" ® S,, C A(S), we conclude
that S™ ® T}, € Ref, A(S), n > 0. By Lemma 2.2 (i) and the fact that T is in the weak-x
closed linear hull of {S” ® T},: n > 0} we have that T' € Ref, A(S).

Suppose that S, is reflexive for each n > 0. By Lemma 2.2 (ii) and the first part of the
proof,

A(S) C Ref A(S) C Ref. A(S) = A(S)
and hence A(S) is reflexive. O

As an immediate corollary of Theorem 3.3 we obtain the following result, proved for
reflexive algebras by Kraus [15] and Ptak [21].

Corollary 3.4. Let S C B(K) be a reflexive subspace. Then T ® S is reflexive.

Remark 3.5. We note that Ref. A(S) is in general strictly larger than Ref A(S).
Indeed, let S C B(K) be a non-reflexive weak-* closed subspace and S = (S,,)n>0 be
the family with §; = S and S, = {0} if n # 1. Then A(S) = S ® S is reflexive
(Example 2.8 (i)). However, by Theorem 3.3, Ref. A(S) = S ® Ref S, which strictly
contains A(S).

The following corollary will be used in Theorem 5.2.

Corollary 3.6. Let U,V € B(K) satisfy UV = A\VU for some \ € C. Suppose that V'
is invertible and that the weak-x closure W, of the polynomials in U is reflexive. Then
the weak-* closed unital operator algebra W C B(H? ® K) generated by I @ U and S®V
is reflexive.

Proof. The commutation relation UV = AVU implies that W is the weak-* closed
linear hull of the set {S* @ VFU™: k,m > 0}.

Let S = (V™Wy)n>0. We claim that W = A(S). Suppose that T' € 7 ® B(K) and that
T, € V"W, n > 0. Then

ST, € STV W,y = (S" @ V) (I @ W) C W.

It follows by approximation (in the w*-topology) that T'€ W. Thus, A(S) C W.
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To show that W C A(S), it suffices to prove that S*@V*U™ ¢ A(S), for each k,m > 0.
So, fix such k and m and note that if x,y € IC, then

(Rug, o, (S* @ VEU™ )z, y) = (S* @ VFU™)(Go @ 2), (n @ 1)
= (G @ VU™, ¢, @ y)
= S (VFU™ 2, y).

Thus, Ry, .. (SkRVFU™) = 6, VEU™ € V"W for all n and hence S*F@VEU™ € A(S)
as required.

Now observe that, since V' is invertible and W, is reflexive, each S,, = V"W, is
reflexive. It therefore follows from Theorem 3.3 that W = A(S) is reflexive. O

Remark 3.7. Both a special case of Theorem 3.3 and Corollary 3.4 were obtained
independently by Kakariadis in [12, Theorem 2.8].

4. The structure of 77, (HT)

In this section we study the weak-* closed operator algebra 77, (H™*) generated by the
image of the left regular representation of H restricted to the invariant subspace H =
(2(H™T). We identify H with ¢*(Z) @ (?(Z) ® £*(Z.), where the element of the canonical
orthonormal basis of H corresponding to w"u*v™ € HT is identified with the elementary
tensor w" ® u* ® v™. Then 7'L(H+) is generated by the operators L., L, and L,, on H,
which act as follows:

Lu(wn ® ulc ® ,Um) —Ww"® ukJrl ® ,Um’
Ly(w" @ u* @ v™) = w"* @ u* @ v™H, (n,k,m) €Z XLy xLy.
Lw(wn ® uk ® Um) — wn+1 ®uk ® ,Um,
By the commutation relations, 77, (H; ) coincides with the weak-x closed linear span of
the set
{LRLEL™: (nk,m) € Zx Zy x 7}

Throughout this section we will identify ¢2(Z) with L?(T) via Fourier transform in the
first coordinate w. In this way, the identity function (; on T is identified with w and
Tz (H*) is identified with an operator algebra acting on L?(T) ® £2(Z, x Z. ). Let C be
the weak-* closed linear span of {L!: n € Z}. This is an abelian von Neumann algebra;
it consists of all operators {L¢: f € L>(T)}, where

Lf(,wn ® uk ® ,Um) _ (fwn) ® uk ® ™.

Thus, C = M ® 1 ® 1, where M C B(L?*(T)) is the multiplication maximal abelian
self-adjoint subalgebra (MASA) of L>°(T).
If (e'*,e'") € Tx T (s,t € [0,2m)), let Wy, € B(H) be the unitary operator given by

W (0" @ u* @ 0v™) = w" @ e*Fuk @ ™™, (n,k,m) €Zx Ly X Ly.

https://doi.org/10.1017/50013091510000143 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091510000143

10 M. Anoussis, A. Katavolos and I. G. Todorov
We define an action of the 2-torus T x T on B(H) by

poi(A) = W AW, A€ B(H).
Observe that

ps,t(Lu) = eisLU7 ps,t(Lv) = eith ps,t(Lw) = Lw~

Hence, ps; leaves T (H') invariant. Since Ps,¢ is unitarily implemented, it also leaves
Ref T, (H") invariant.
If Ae TL(HY) is a ‘trigonometric polynomial’, namely a sum

A= Z Lfk,m,L’IZLZI7
(k,m)eN

where 2 C Z, X Z4 is finite and fi,, € L>(T)((k,m) € £2), then it is easy to observe
that

1 27 2m ) )
ypss /0 /0 psi(A)e *Fe M dtds = Ly, | LKL
We will need the following proposition, which is a version of well-known facts adapted

to our setting.

Proposition 4.1. For k,m € Z,, let Qrm € B(H) be the orthogonal projection
onto the subspace L?(T) ® [u¥] ® [v™] spanned by the vectors of the form f ® u* @ v™,
feL?T). If Ac B(H) and p,q € Z, set

dsp-,q (A) = Z QkJr;D,erqAQk,ma

k,m

where the sum is taken over all k,m € Z, such that k 4+ p,m + q € Z. The following
statements hold.

. 1 27 27 . »
(i) Ppq(A) = ﬁ/o /0 ps.i(A)e Pe 1 dt ds.

(ii) If0 < r < 1, then the series

Z @p)q(A)Tlpl-s-lql

P,qE€EZ

converges absolutely in norm to an operator A,; moreover, ||A.|| < ||4| and
w*-lim, ~ A, = A.

(iii) If @, 4(A) =0 for all p,q € Z, then A= 0.

(iv) If A € T, (H") and B € Ref T,(H"), then @, ,(A), A, € Tp,(H') and &, ,(B), B, €
Ref Tr,(H'), for all p,q € Z.
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Proof. (i) Let © = Qg ,m,® and y = Qg, m,y. We have
(Ppq(A)z,y) = <Z Qrtp,m+qAQk,m T y> = Oky+p,ksOmy +q,ms (A2, Y),

where the summation takes place over all k,m € Z, with k 4+ p,m + ¢ € Z,. On the
other hand, we have

(pst(A)z,y) = (W AW 2, y) = e ishimitmugishatiima (Ag o)

and hence

1 27 27 . )
o) / <ps7t(A)e*‘Spe*1th, y)dtds
o Jo

2m 2m
= 4% / <Aa:,y>eis(k2_k1_p)eit(mrml_q) dtds
™ Jo 0

= 6k1+p,k2 6m1+q,m2 <A£L’, y>~

(ii) Let F' be the operator-valued function defined on T x T by F(s,t) = ps.(A),

and let F' be its Fourier transform. By (i), F(p,q) = D, 4(A). If P.(s,t) denotes the
two-dimensional Poisson kernel, then one readily sees that A, = (F x P,.)(0,0).

The claim therefore follows from the well-known properties of the Poisson kernel.

Part (iii) is an immediate consequence of (ii).

(iv) It follows from (i) that @, ,(A) € T (H') and @, 4(B) € Ref T, (H™), since ps 4

leaves 77, (H™') and Ref 77 (H™) invariant. Now (ii) implies that A, € T, (H") and B, €
Ref 77, (H').

O
We isolate some consequences of Proposition 4.1, as follows.

Corollary 4.2. If A € T,(H"), then we have the following.

(1) Pg,m(A) =0 unless k > 0 and m > 0.

(ii) For each k,m > 0, the operator Ly ,, = (L™)*(LF)*®y ,(A) is in C. Hence,

there exists fym(A) € L*(T) such that Ly ., = Ly, (a). We have @y ,,,(A)
Lfk,m,(A)LI’ZLZL'

Proof. Since 7z (H™") is the weak-* closed hull of its trigonometric polynomials and

the map P, is weak-* continuous, it suffices to assume that A is of the form A =
k
Z(k,m)eQLfk,mL Ly

u—v

where 2 C Z; x Z is finite. Now (i) is obvious. For (ii), we have

1 ot —isk —itm m m
)=z [ e e s = Ly ALY = IELY L,
hence (LI")*(LE)*®y, 1, (A) = Ly, ., which is in C.

We can now identify the diagonal and the centre of 77, (H™).
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Corollary 4.3. The diagonal and the centre of Tr,(H") both coincide with C.

Proof. The maps ps; are automorphisms of 77 (H") and hence leave its centre Z
invariant. By Proposition 4.1 (i), if A € Z, then & ,,(4) € Z. By Corollary 4.2 (ii),
Lfkwm(A)LﬁLvm € Z for each k,m > 0. It is now immediate that if such an operator com-
mutes with all L, and L,, then Ly, (1) =0 unless k =m = 0. Thus, A= Ly, ;a) €C.

It follows from Proposition 4.1 (i) that @ ., (A)* = P_g _,(A*). Hence, by Corol-
lary 4.2 (i), if A and A* are both in 77 (H™), then & ,,,(A) = 0 unless k = m = 0. Thus,
each A, is in C and hence so is A.

We have shown that the centre and the diagonal are contained in C. The opposite
inclusions are obvious. O

In some of the results that follow we adapt techniques used by Davidson and Pitts
in [9]. Along with the left regular representation L of H* defined above, we consider the
restriction of its right regular representation to H = ¢2(H™"). This is generated by the
operators

Ru(wn ® uk ® ,Um) =" "R uk+1 ® ,Um,
R,(w" @ uF @ v™) = w" @ uf @ o™, (n,k,m) €Z XLy x L.

Ry(w" @ u* @ v™) = w" ™ @ ub @™,
We denote by Tr(H™) the weak-* closed subalgebra of B(¢?(H™)) generated by

{R. R R™: (n,k,m) € Z x Zy x 7. }.

It is trivial to verify that 7 (H') and Tz(H") commute.

Lemma 4.4. Suppose that the operator A € B(H) commutes with Tr(H™T) and that
A(w® @ u® ®v°%) = 0. Then A = 0.

Proof. For each (n,k,m) € Z x Z, x Z; we have

A(w"™ @ u” @ v™) = ARym Ryr Ry (0° @ u® ® v°)
= Rym Ry Ry A(w° @ u® @ 0°)
=0.

Hence, A = 0. (]

The argument below is standard; for the case of the unilateral shift, see [6, Proposi-
tion V.1.1]. We include a proof for the convenience of the reader.

Proposition 4.5. If A € B(H) commutes with R,, or R,, then || A|| equals the essential
norm ||A]|. = inf{||A + K||: K compact}. In particular, the algebra Tr,(H") does not
contain non-zero compact operators.
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Proof. Assume that A commutes with R, (the other case is similar). It is easy to see
that (R}}), tends to 0 weakly. Indeed, if z,y are in H and we write =) x, @ v™,
Y=, Ym @™, where ,,,y, are in L*(T) ® (*(Z4), then

<RZ}5L‘, y> = Z<$ma ym+n> — 0,

since (||z,]|) and (||ym||) are square integrable.

Suppose, by way of contradiction, that there is a compact operator K € B(H) such
that ||A+ K| < ||A|. Then there is a unit vector z € H which satisfies ||Az| > ||A+ K||.
But ||[(A+ K)Rz|| < ||A+ K|, since R is an isometry. On the other hand, since R}
tends to 0 weakly, we have lim,, || K R}z| = 0. Thus,

lim [[(A+ K)Ryz| = lim || AR} x| = lim | R}, Az| = || Az,

a contradiction. O

Theorem 4.6. The algebra T, (H") does not contain quasi-nilpotent operators. In
particular, Tr,(H™) is semi-simple.

Proof. Let A € T, (H") be non-zero and define fi,, = fem(A) € L>®(T) as in
Corollary 4.2. Recall that for r € (0,1) we have set

Ap= > okt LR

k,m=>=0
Let
E={(k,m): frm # 0},
p =1inf{k +m: (k,m) € E},
ko = inf{k: (k,m) € E.k+m = p},

mo :p—ko.
If g,h € L*(T) and n € Z,, we have

(AT (g @u’ @°), (h@u™ @v™mo))
= ZTZkirzmi«fh,ml T fkn,mn)(ng ®u2ki ® vzmiv (h® unko ® ,Unmo)>’
Y

where the summation is over all v = ((k1,m1), (ka,m2), ..., (kn, my)) with (k;,m;) € E
and ¢~ is a function of modulus 1 such that

Lhvpm . Lhnpmn = Ly L3R L™,

For a term in the above sum to be non-zero, we must have > k; = nkg and > m; = nmy.
Thus, since k; + m; = p = ko + mg for each ¢ and Y (k; + m;) = n(ko + myp), we obtain
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ki +m; = ko +mg for all i = 1,...,n. But k; > ko for all 4; hence, the condition
> ki = nko gives k; = ko for all i and so m; = my for all 4.
Hence, there is only one non-zero term in the above sum and we obtain

(AMg@u® @v"), (h@u™e @vmmo)) = prlkotmol((gn 6. 9), k),

where v9 = ((ko, mo), (ko,m0), - .., (ko,mo)) (and the term (kg,mg) appears n times).
Now, since ||A,|| < ||A]| for each r and A, — A in the weak-* topology,

(A" (g @ u’ @ "), (h@u"™ @u™™))| = lim [(4r (g @ u’ ®0°), (h@u" @v"™))]

_ }1}% T?L(ko+mo)|<( ]?O’moqs%g),hﬂ

= [{(fo,mo 209)> M-

Since ¢., is unimodular,

1A™ | > sup{[(A" (g ® u” @ v°), h @ w™ @ v"™)|: |lgll2 <1, [|A]l2 < 1}
= Sup{|(fiy,mo P9, M= llgll2 < 1, [[All2 <1}

= Hfl?o,mo”OO'

Thus,
TA™ 17 2 1| fiog moloo

for all n, and hence the spectral radius of A is non-zero. O
Theorem 4.7. The commutant of Tr(H") is T, (H").
Proof. Let A be in the commutant of Tz(H™). Then
A’ @u’ @1°) = Z Brem @ uF @ 0™
k,m>0

for some ¢y, ,,, € L*(T).
We show that ¢y, € L>(T). Let g € L°>(T). Since LyA = AL, (note that L, € Z C
Tr(HT)), we have
A(geu® @1%) = LyA(w’ @ u® @0°)
= Z L9(¢k,m & uk ® Um)

k,m>0

= Z (9bk,m @ u* @0v™)

k,m>0

and so

1 2T
<A<g®u°®v°)7(g®u’“®vm>>=<g¢k,m,g>=§ i Grem (1) g(t)|? dt.
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Therefore,
2

1
o | enmlato | < allgl
T Jo
Using this inequality for characteristic functions in the place of g, one sees that ¢y m,
induces a linear functional on L!(T) of norm not larger than || Al|; thus, ¢, € L>(T).
We show that if r» € (0,1), the operator

A, = Z By (A)rlEIHIm]
k,meZ

defined in Proposition 4.1 is in the commutant of Tz(H™). It suffices to show that
Prm(A) = Z Qryimt+iAQij
%]

is in the commutant of Tr(H") for all k,m € Z. We have R,Qk.m = Qr+1,mRy and
hence

> Qrtim+iAQi iRy =Y QurimijARUQi 1
i,j )

= Z Qrtimej RuAQi 1,5

.7

=R, Z Qr—11i,m+;AQi—1,5.

.3

Similarly, R,Qg,m = Qk,m+1R, and hence

Z Qr+im+;AQi j Ry = Z Qrvimti AR Qi j 1

07 i
=Y Qurim+iRoAQi
i
=Ry ) Qrrim-145A4Qi 1.
i

Now set
By= > "Ly, LyLym.
k,m>=0

Since ¢y m € L°°(T), the series converges absolutely to an operator in 7z, (H™).

Clearly, @ 1 (A) (W’ @ u® @1°) = ¢ m @ u* @ v™ and so A, (W’ @ u’ ® %) = B, (v’ ®
u® ® v%). Since both A, and B, are in the commutant of 7z(HT), Lemma 4.4 implies
that A, = B,.. Hence, A, € T(H"). Since T (H") is weak-* closed, Proposition 4.1 (ii)
implies that A € T (H™"). O

The following properties of 77 (H™) follow from Theorem 4.7.
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Corollary 4.8.
(i) The algebra Tr,(H™*) has the bicommutant property Tr,(H")" = T (H™).
(i) 7z(H™) is an inverse closed algebra.

(iii) T (HT) is closed in the weak operator topology.

5. Reflexivity of 77 (H1)

In this section we establish the reflexivity of the algebra Tz (H*). Let F': L*(T)® L*(T)®
L3(T) — (*(Z) ® (*(Z) ® (*(Z) be the tensor product of three copies of the Fourier
transform. Let K = H?(T) ® H(T) and H = L*(T) ® K = L*(T,K); we have that
H = F~1((2(H")). We will use the same symbol for the restriction of F to .

Let W =F 'L ,F,U=F'L,F,V =F'L,F (actingon ) and £ = F~ 7, (H")F.
For a fixed £ € T, let Ve = A; ® S € B(H?> @ H?), where S = T¢, is the shift on H? and
Ag¢ is given by (A¢f)(2) = f(2/€), f € H2. }

Write p for the normalized Lebesgue measure on T. We consider the Hilbert space H
as a direct integral over the measure space (T, u) of the constant field £ — K(£) = K of
Hilbert spaces. Thus, an operator T is decomposable [3] with respect to this field if and
only if it belongs to M ® B(K), where M denotes the multiplication MASA of L>(T);

we write

T = / T(€) du().

We note that W, U and V are decomposable. In the next proposition we identify their
direct integrals.

Proposition 5.1. When H is identified with the direct integral over (T, p) of the
constant field £ — K of Hilbert spaces, we have

W=/T£(I®I)du(§)7 U=/T(5®I)du(£)> VZ/TVsdu(Q

Proof. We identify the elements of H = L?(T, K) with functions on three variables,
f = f(&, 21, 22), such that for almost every £ € T, the function on two variables f(¢,-, )
is analytic. To show that

W= /T €I ® I)du(e),

note that if f € 7:[7 then Iii/f(gv 21, ZQ) = ff(fa 21, 22)7 ga 21,22 € T;
The claim concerning U is immediate from its definition. For V' we argue as follows:
let f(&,21,20) = ™28 20 (that is, f = F~(w" ® uF ® v™)); then
Vi=VF Yw"@u ™)
= F 'L, (w" @ u* @ ™)

— F—l(wn—k ® uk ® Um+1)
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and thus Vf(f, 21, 22) = £ F2F 2L On the other hand, the direct integral

/T (A¢ © 1) du(€)

transforms the function f into the function g(&, 21, z2) = €"*2¥27". We thus have that

V=e5) [(conaue = [ (e 5)aue)
O

For £ € T, let L¢ C B(K) be the weak-* closed subalgebra generated by S ® I and V.
The operators A¢, S € B(H?) are easily seen to satisfy the assumptions of Corollary 3.6
with A = £. Tt follows that Ly is reflexive; in particular, it is weakly closed. We note that
the algebra L¢ was studied by Hasegawa in [11], where a class of invariant subspaces of
L¢ was exhibited.

In the next theorem, we use the notion of a direct integral of non-self-adjoint operator
algebras developed in [3].

Theorem 5.2. The algebra Ty, (H™) is reflexive.

Proof. By definition, £ = F~17,(H")F is generated, as a weak-* closed algebra, by
the operators U, f/, W and W1,

Note that £ C M ® B(K); moreover, L is weakly closed, since 77, (H™") is a commutant
(Theorem 4.7). Hence, by [3], £ gives rise to a direct integral

/ A) dp©),
T

where A(€) is the weakly closed algebra generated by U(€), V(€), W () and W—1(€).
Since the operators W(g) and W‘l(f) are scalar multiples of the identity, we have that
A(§) = L¢. On the other hand, since M ® Ix C L, all diagonal operators of the integral
decomposition are contained in £. Proposition 3.3 of [3] shows that an operator

T = /T T(€) du(€)

belongs to L if and only if almost all T'(§) belong to L¢. As observed above, L is reflexive
for each ¢ € T. Proposition 3.2 of [3] now implies that £ is reflexive. Therefore, so is
Ti (). O

6. Other representations

Until now we were concerned with the left regular representation of the Heisenberg semi-
group. In this section, we consider another class of representations defined as follows.
Let A = e?>™% with @ irrational and let a: T — T be the rotation corresponding to 6,
that is, the map given by a(z) = Az. We let v be a Borel probability measure on T
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which is quasi-invariant (that is, ¥(E) = 0 implies v(a(E)) = 0, for every measurable set
E C T) and ergodic (that is, foa®* = f for all k € Z implies that f is constant, for every
f € L>=(T,v)). Let W,(H") be the weak-+ closed subalgebra of B(L?(T,v)) generated
by the operators

dV,\

w(w) = Mgy, m(0)f =22

(foa) and w(w)= A,
where M, is the operator of multiplication by the function ¢; on L?(T,v) (recall that
Cn(z) = 2™) and vy (A) is the Borel measure on T given by vy(A) = v(a(A4)).

We will need the following two lemmas; the results are probably known in some form,
but we have been unable to locate a precise reference and so we include their proofs.
Below, the terms singular and absolutely continuous are understood with respect to
Lebesgue measure pu.

Lemma 6.1.

(i) The measure v is either absolutely continuous or singular.

(ii) If v is absolutely continuous, it is equivalent to Lebesgue measure.
(iii) If v is singular and not continuous, it is supported on an orbit of a.

Proof. (i) Denote by v, (respectively, vs) the absolutely continuous (respectively,
singular) part of v. Suppose that 15 # 0 and v, # 0 and let A be a Borel set of Lebesgue
measure zero such that vs(T \ A) = 0. Then |J,,.5 a"(A) is an invariant set of positive
v-measure. On the other hand, the Lebesgue measure of (J,, ., a™(A) is zero and hence
Unez @™ (A) is not of full v-measure. This contradicts the ergodicity of v.

(ii) Let £ C T be the set on which the Radon-Nikodym derivative dv/dy vanishes;
clearly, v(E) = 0. Setting F = |J,,c, @™ (E), we have that I is invariant and v(F) = 0.
By the ergodicity of u, either p(F) =0 or u(T \ F) = 0. However, if (T \ F) = 0, then
v(T\ F) = 0 and hence v = 0. Thus, p(F) = 0 and hence u(E) = 0. It follows that v is
equivalent to p.

(iii) Let 29 € T be such that v({z0}) # 0. Then the orbit X = {a™(20): n € Z} of z is
an invariant set of positive v-measure and it follows from ergodicity that its complement
is v-null. O

Note that the following lemma could also be deduced from the results of Wermer [24].
(We thank the referee for bringing this reference to our attention.) We include a direct
proof using the F. and M. Riesz Theorem.

Lemma 6.2. Let v be a singular continuous measure. Then the weak-x closed hull of
the linear span of the set {M,, :n=1,2...} is equal to {M;: f € L>(T,v)}.

Proof. Let f € L*(T,v) be such that

/f(nduz() foralln=1,2,....
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It follows from the F. and M. Riesz Theorem that the measure fdv is absolutely con-
tinuous. Since v is singular, we obtain that f = 0 v-almost everywhere, and hence it is
equal to 0 as an element of L!(T,v). O

The next theorem describes completely the operator algebras arising from the class of
representations that we consider.

Theorem 6.3. Let N' = {(,H?: k € Z}.

(i) Ifv is equivalent to Lebesgue measure, then the algebra W, (H™) is unitarily equiv-
alent to the nest algebra Alg N

(ii) If v is singular and not continuous, then W, (H") is again unitarily equivalent to
Alg V.

(iii) If v is singular and continuous, then W, (H") = B(L?(T,v)).

Proof. (i) Since v is equivalent to Lebesgue measure, we may assume that W, (H™)
acts on L*(T), m(u) = M¢, and 7(v)f = foa.

If a = (ap)nez € 1°°(Z), let D, be given by D/a\f(n) = anf(n); thus, D, is the image,
under conjugation by the Fourier transform, of the diagonal operator on [?(Z) given
by (z;) = (a;x;). Let D = {D,: a € {*(Z)}; clearly, D is a MASA on L?*(T). Since
the map o — D(,n), is weak-+ continuous from T into B(L?(T)) and {\*: k € Z,}
is dense in T, the weak-* closed linear span of {D\kn), : k € Zy} = {m(v)*: k € Z4}
contains {D,ny, : 0 € T}; it is hence a self-adjoint algebra and so must equal D by
the Bicommutant Theorem. On the other hand, if a € £°°(Z) and p > 0, the matrix of
m(u)? D, with respect to the basis {(x }rez has the sequence a at the pth diagonal and
zeros elsewhere. It follows that all lower triangular matrix units belong to the algebra
W, (HT), and hence this equals Alg N

(ii) By Lemma 6.1 (iii), v is supported on the orbit of a point zy € T. For k € Z,
write z;, = a~F(20) and 87 = v({2zx}). Since v ({z}) = v({a(zk)}) = v({zk-1}) we have
Br—1 = B(zk)Bk, where 3 is the function determined by the identity 5% = dv,/dv.
If fo = X{z:}/Br, then {fr: k € Z} is an orthonormal basis of L?(T,v) and we have

7T(U)><{Z)¢} = ﬁ ' (X{Zk} © a) = ﬁx{zk+1}' ThuS,

X{zi41} Bk X{zit1}
v = = = s
() fr =20 Be Bes n Sra

and so 7(v) is the bilateral shift with respect to {fi}. Also 7(u)fx = zxfx = Nz0fx for
each k and hence, as in the proof of (i), the weak-* closed linear span of the positive
powers of 7(u) contains all operators diagonalized by {fi}. It follows as in (i) that
W, (H™) consists of all operators which are lower triangular with respect to { fx }; hence,
it is unitarily equivalent to Alg \.

(iii) By Lemma 6.2, the algebra W, (H™) contains a MASA, namely, the multiplication
MASA of L>®(T,v). Since a acts ergodically, it is standard that W, (H') has no non-
trivial invariant subspaces. It follows from [2] that it is weak-* dense in, and hence equal
to, B(L*(T,v)). O
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Remark 6.4. Note the different roles of 7(u) and 7 (v) in (i) and (ii) of Theorem 6.3:
in (i), the diagonal MASA is generated by (the non-negative powers of) m(v); in (ii)
the MASA is generated by 7(u). These two representations generate inequivalent rep-
resentations of the irrational rotation algebra, as the corresponding measures are not
equivalent [4].

6.1. A non-reflexive representation

We now construct an example of a representation of Ht which generates a non-reflexive
weakly closed operator algebra. This representation, p, acts on H? and is defined as
follows: if S = T, is the shift and V € B(H?) is the operator given by (Vf)(z) =
f(Az) = (f o a)(z), we define

plu) =25, p)=S5V and p(w)=AI

with A = €>™% and @ irrational. Let A be the weakly closed unital algebra generated by
p(u) and p(v). Using Fourier transform, we identify H? with ¢2(N) and let E: B(H?) —
D ~ (*(N) be the usual normal conditional expectation onto the diagonal given by
E((a;;)) = (bij), where b;; = a;;6;;. Define Ej, for k > 0 by Ey(A) = E((S*)*A).

We recall that [S] denotes the linear span of a subset S of a vector space.

Proposition 6.5. If A € A, then E,,(A) € [I,V,...,V™].

Proof. The operator A is the weak limit of polynomials of the form

> cknSHVT

k,n>0

Thus, F,,(A) is a weak limit of polynomials of the form

Z ck,nvn7

where the summation is over all k,n € Z, with Kk +n = m and hence E,,(A) €
(LV,...,vm]. O

Proposition 6.6. If K € Lat{S, SV}, then in fact K € Lat{S, V} and hence K = (,, H?
for some k € Z.

Proof. Since S(K) C K and K C H?, by Beurling’s Theorem there is an inner function
¢ such that K = ¢H?. Since SV (K) C K, we have SV (¢) € K = ¢H?, so zp(A2)/9(z) €
H*°. Thus, there exists h € H* such that

zp(Az) = h(z)p(z) for all z € D. (6.1)

Let ¢ be an analytic function and ! be a non-negative integer such that ¢;(0) # 0 and
é(z) = 2'¢1(2) for all z € D. We obtain

2N g (\2) = h(2)2'p1(2) forall z€D (6.2)
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and hence
M1 (A\2) = h(2)p1(z)  for all z € D. (6.3)

Setting z = 0 in (6.3), we obtain that h(0) = 0. Thus, there exists hy € H* such that
h(z) = zh1(z). The relation z¢(Az) = h(2)d(z) = zh1(2)¢(z) implies ¢ o @ = h1¢ and
hence (¢ o a)H? C ¢H?. Therefore,

V(K)=V(¢H?) = (poa)H? C pH? = K.

Considering K as a subspace of L?(T), Theorem 6.3 (i) gives that K = (, H? for some k
(note that here v equals Lebesgue measure); since K C H?, k must be non-negative. [

Theorem 6.7. The algebra A is not reflexive; in fact Ref A = Alg N, where N =
{GoH?: ke Z,}.

Proof. By Proposition 6.6, Ref A = Alg N It follows from Proposition 6.5 that A is
strictly contained in Ref A. O
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