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1. Introduction

The theory of group representations has been a motivating force for operator algebra
theory since the very beginnings of the subject. If π is a unitary representation of a
group G, a much studied object is the weak-∗ closed algebra generated by {π(g) : g ∈ G}.
A special case of particular importance arises when π is the left regular representation
g → Lg acting on L2(G); the algebra obtained in this way is the von Neumann algebra
VN(G) of the group G.

These algebras are all self-adjoint. If S ⊆ G is a semigroup, one can consider instead
the non-self-adjoint algebra generated by {π(g) : g ∈ S}, possibly restricted to a common
invariant subspace. The algebra of analytic Toeplitz operators is an instance of this con-
struction. Such algebras have recently attracted considerable attention in the literature.

Let F+
n be the free semigroup on n generators. The ‘non-commutative Toeplitz algebra’

is the weakly closed algebra Ln generated by the operators Lg, g ∈ F+
n , restricted to

the invariant subspace �2(F+
n ). It was introduced by Popescu in [19] and studied by

him in a subsequent series of papers, and by Arias and Popescu in [1]. Later, Popescu
[20] considered free products of semigroups satisfying certain additional properties, and
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Davidson and and Pitts [8,9] and Davidson et al . [7] studied the algebra Ln within the
more general framework of free semigroup algebras. On the other hand, non-self-adjoint
algebras arising from representations of some Lie groups such as the Heisenberg group,
the ‘ax + b group’ and SL2(R) were considered by Katavolos and Power [13, 14], by
Levene [16] and by Levene and Power [17]. These authors studied problems including
reflexivity and hyperreflexivity, determination of the invariant subspace lattice and semi-
simplicity.

In this paper, we study operator algebras arising from representations of the discrete
Heisenberg semigroup. Recall that the discrete Heisenberg group H consists of all matrices
of the form ⎡

⎢⎣1 k n

0 1 m

0 0 1

⎤
⎥⎦ , k, m, n ∈ Z.

Let H+ be the semigroup consisting of all matrices in H with k, m ∈ Z+. We are interested
in the weak-∗ closed algebra TL(H+) generated by the operators Lg, g ∈ H+, restricted
to the invariant subspace �2(H+). In § 4, we show that TL(H+) contains no non-trivial
quasi-nilpotent or compact elements; in particular, it is semi-simple. We show that the
commutant of TL(H+) is the corresponding right regular representation and we identify
the centre and the diagonal. In § 5 we prove that TL(H+) is reflexive using a direct integral
decomposition and the results of § 3.

In § 6 we study a class of representations of H+ that arise from representations of the
irrational rotation algebra studied by Brenken [4]. The latter, in the multiplicity free case,
are parametrized by a cocycle and a measure. When the cocycle is trivial, we show that
the weak-∗ closed algebras generated by the restriction to H+ are unitarily equivalent
to nest algebras or equal to B(H). We also exhibit a representation (corresponding to
a non-trivial cocycle) that generates a non-reflexive algebra even for the weak operator
topology.

In §§ 2 and 3 we develop a technique that allows us to handle the question of reflexivity
of TL(H+). We introduce and study a notion of reflexivity for spaces of operators acting
on tensor products of Hilbert spaces, which we think is of independent interest. Using
this notion, we generalize previous results of Kraus [15] and Ptak [21], establishing
reflexivity for a class of subspaces of T ⊗ B(H) (where T is the algebra of analytic
Toeplitz operators).

1.1. Preliminaries and notation

The discrete Heisenberg group H is generated by

u =

⎡
⎢⎣1 1 0

0 1 0
0 0 1

⎤
⎥⎦ , v =

⎡
⎢⎣1 0 0

0 1 1
0 0 1

⎤
⎥⎦ and w =

⎡
⎢⎣1 0 1

0 1 0
0 0 1

⎤
⎥⎦ .

The element w is central and uv = wvu.
We write B(H) for the algebra of all bounded linear operators on a Hilbert space H.
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If P ∈ B(H) is an (orthogonal) projection, we set P⊥ = I − P , where I is the identity
operator. We denote by B(H)∗ the predual of B(H), that is, the space of all weak-∗
continuous functionals on B(H). If x, y ∈ H, we write ωx,y for the vector functional in
B(H)∗ given by ωx,y(A) = 〈Ax, y〉, A ∈ B(H). If E is a subset of a vector space, [E ] will
stand for the linear span of E .

The pre-annihilator S⊥ of a subspace S ⊆ B(H) is

S⊥ = {ω ∈ B(H)∗ : ω(A) = 0 for all A ∈ S}.

The reflexive hull of S [18] is

Ref S = {A ∈ B(H) : ωx,y(S) = {0} ⇒ ωx,y(A) = 0 for all x, y ∈ H}.

The subspace S is called reflexive if S = Ref S.
If L is a collection of projections on H,

Alg L = {A ∈ B(H) : AL = LAL}

is the algebra of all operators leaving the ranges of the elements of L invariant. It is easy
to see that a unital subalgebra A ⊆ B(H) is reflexive if and only if A = Alg L for some
collection L of projections on H.

Let H1 and H2 be Hilbert spaces and let H1⊗H2 be their Hilbert space tensor product.
If Si ⊆ B(Hi), i = 1, 2, we let S1 ⊗ S2 be the weak-∗ closed subspace of B(H1 ⊗ H2)
generated by the operators A1 ⊗ A2, where Ai ∈ Si, i = 1, 2. If A ∈ B(H1), we write
A ⊗ S2 for the space CA ⊗ S2. If ωi ∈ B(Hi)∗, i = 1, 2, we let ω1 ⊗ ω2 ∈ B(H1 ⊗ H2)∗ be
the unique weak-∗ continuous functional satisfying (ω1 ⊗ ω2)(A1 ⊗ A2) = ω1(A1)ω2(A2),
Ai ∈ B(Hi), i = 1, 2.

Finally, we let Hp be the Hardy space corresponding to p (p = 2,∞), that is, the
space consisting of all functions in Lp(T) whose Fourier coefficients indexed by negative
integers vanish. For each ϕ ∈ H∞, we let Tϕ ∈ B(H2) be the analytic Toeplitz operator
with symbol ϕ, that is, the operator given by Tϕf = ϕf , f ∈ H2. We let

T = {Tϕ : ϕ ∈ H∞}

be the algebra of all analytic Toeplitz operators on H2.

2. A reflexive hull for subspaces of B(H1 ⊗ H2)

In this section, we introduce a reflexive hull for spaces of operators that act on the tensor
product of two given Hilbert spaces. The results will be applied in § 3 to study reflexivity
of subspaces of T ⊗ B(K) for a given Hilbert space K.

Suppose a Hilbert space H decomposes as a tensor product H1 ⊗ H2 of two Hilbert
spaces. If ω ∈ B(H1)∗, then the right slice map Rω : B(H1 ⊗ H2) → B(H2) is the unique
weak-∗ continuous linear map with the property that Rω(A ⊗ B) = ω(A)B, whenever
A ∈ B(H1) and B ∈ B(H2). Similarly, one defines the left slice maps, denoted by Lτ ,
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where τ ∈ B(H2)∗. We note that if ω = ωξ,η for some vectors ξ, η ∈ H1, then for all
x, y ∈ H2,

〈Rω(T )x, y〉 = 〈T (ξ ⊗ x), η ⊗ y〉, T ∈ B(H1 ⊗ H2). (2.1)

This equality shows that, when ω is a vector functional or, more generally, a weakly
continuous functional, then Rω is also weakly (that is, WOT–WOT) continuous (where
WOT denotes weak operator topology).

If S is a weak-∗ closed subspace of B(H1) and T ∈ S ⊗ B(H2), then clearly Lω(T ) ∈ S
for all ω ∈ B(H2)∗. The converse was proved in [15].

Lemma 2.1 (Kraus [15]). Let S be a weak-∗ closed subspace of B(H1) and let
T ∈ B(H1 ⊗ H2). If Lω(T ) ∈ S for all ω ∈ B(H2)∗, then T ∈ S ⊗ B(H2).

Consider the set of vector functionals

E = {ωξ⊗x,η⊗y : ξ, η ∈ H1, x, y ∈ H2} ⊆ B(H1 ⊗ H2)∗.

The set E (as any subset of the dual of B(H1 ⊗H2) [10]) can be used to define a reflexive
hull for subspaces of B(H1 ⊗ H2). Namely, if S ⊆ B(H1 ⊗ H2), let

Refe S = {T ∈ B(H1 ⊗ H2) : ω(S) = {0} ⇒ ω(T ) = 0 for all ω ∈ E}.

It is clear that Refe(S) depends on the tensor product decomposition H = H1 ⊗ H2.
The following statements are easy consequences of the definition; we omit their proofs.

Lemma 2.2. Let S ⊆ B(H1 ⊗ H2). Then

(i) Refe S is a reflexive, hence weakly closed, subspace of operators,

(ii) Ref S ⊆ Refe S,

(iii) Refe S = Refe Ref S = Refe Refe S.

It follows from Lemma 2.2 that if a subspace S ⊆ B(H1 ⊗ H2) satisfies Refe S = S,
then S is reflexive. Remark 2.8 shows that the converse does not hold.

Lemma 2.3. Let U ⊆ B(H1) and V ⊆ B(H2) be subspaces. Then

Refe(U ⊗ V) = (B(H1) ⊗ Ref V) ∩ (Ref U ⊗ B(H2)).

Proof. Note that a vector functional ωξ⊗x,η⊗y = ωξ,η ⊗ ωx,y annihilates U ⊗ V if and
only if either ωξ,η annihilates U or ωx,y annihilates V. For if there exists U ∈ U with
ωξ,η(U) �= 0, then for all V ∈ V we have ωξ,η(U)ωx,y(V ) = 0, and hence ωx,y(V ) = 0.

Now let T ∈ Refe(U ⊗ V). Suppose that ωξ,η ∈ U⊥. Then ωξ⊗x,η⊗y annihilates U ⊗ V
for all x, y ∈ H2, and hence

ωξ,η(Lωx,y (T )) = (ωξ,η ⊗ ωx,y)(T ) = 0.

This shows that Lωx,y
(T ) ∈ Ref U . Since x, y ∈ H2 are arbitrary, linearity and (norm)

continuity of the map ω → Lω yield Lω(T ) ∈ Ref U for all ω ∈ (B(H2))∗. By Lemma 2.1,
T ∈ Ref U ⊗ B(H2). Similarly, one obtains T ∈ B(H1) ⊗ Ref V.
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Conversely, if T ∈ (B(H1)⊗Ref V)∩(Ref U ⊗B(H2)), then for each φ = ωξ,η(ξ, η ∈ H1)
we have Rφ(T ) ∈ Ref V. So, if ωx,y is a vector functional annihilating V, then it must
annihilate Rφ(T ), and hence

φ(Lωx,y
(T )) = (φ ⊗ ωx,y)(T ) = ωx,y(Rφ(T )) = 0.

Since φ = ωξ,η with ξ, η arbitrary in H1, this implies Lωx,y (T ) = 0. Similarly, using the
fact that all left slices of T must lie in Ref U , we see that

ωξ,η ∈ U⊥ ⇒ Rωξ,η
(T ) = 0.

Therefore, if ωξ,η ⊗ ωx,y annihilates U ⊗ V, then either ωξ,η annihilates U , in which case
Rωξ,η

(T ) = 0, or ωx,y annihilates V, in which case Lωx,y (T ) = 0. In either case,

(ωξ,η ⊗ ωx,y)(T ) = ωξ,η(Lωx,y
(T )) = ωx,y(Rωξ,η

(T )) = 0,

which shows that T ∈ Refe(U ⊗ V). �

Remark 2.4. The intersection (B(H1) ⊗ V) ∩ (U ⊗ B(H2)) coincides with the Fubini
product F (U ,V) defined by Tomiyama in [23] for von Neumann algebras and by Kraus
in [15] for weak-∗ closed spaces of operators.

Let L1 and L2 be subspace lattices on the Hilbert spaces H1, H2, and let L1⊗L2 be the
smallest subspace lattice generated by P1 ⊗ P2, where Pi ∈ Li, i = 1, 2. It follows from a
result of Kraus [15, (3.3)] that the Fubini product F (Alg L1, Alg L2) equals Alg(L1⊗L2).
Combining this with Lemma 2.3, we obtain

Refe(Alg L1 ⊗ Alg L2) = Alg(L1 ⊗ L2).

Corollary 2.5.

(i) If A ∈ B(H1), then Refe(A ⊗ V) = A ⊗ Ref V.

(ii) If U ⊆ B(H1), then Refe(U ⊗ B(H2)) = Ref U ⊗ B(H2).

Proof. (i) Clearly, we may assume that A �= 0. If T ∈ Refe(A ⊗ V), then by
Lemma 2.3, T ∈ (B(H1) ⊗ Ref V) ∩ (Ref CA ⊗ B(H2)). But Ref CA = CA, since one-
dimensional subspaces are reflexive (see, for example, [5, Proposition 56.5]), so T = A⊗B

for some B ∈ B(H2). Thus, A ⊗ B ∈ B(H1) ⊗ Ref V, which implies that B ∈ Ref V.

Part (ii) follows from Lemma 2.3. �

Lemma 2.6. Let S ⊆ B(H1 ⊗ H2) be a subspace of operators and ω ∈ B(H1)∗ be a
vector functional. Then Rω(Refe S) ⊆ Ref Rω(S).

Similarly, if τ ∈ B(H2)∗ is a vector functional, then Lτ (Refe S) ⊆ Ref Lτ (S).

Proof. Let ω = ωξ,η, where ξ, η ∈ H1. Fix T ∈ Refe S and suppose that x, y ∈ H2

are such that ωx,y(Rω(S)) = {0}. It follows from (2.1) that

ωξ⊗x,η⊗y(S) = {0}.
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Since T ∈ Refe S, we have that ωξ⊗x,η⊗y(T ) = {0}. By (2.1) again, ωx,y(Rω(T )) = {0}.
We have thus shown that Rω(T ) ∈ Ref Rω(S). The first claim is proved. The second
claim follows similarly. �

Proposition 2.7. For a projection L ∈ B(H1 ⊗ H2), let L̃ be the projection onto the
subspace {ξ ⊗ x : L(ξ ⊗ x) = 0}⊥. Let P, Q ∈ B(H1 ⊗ H2) be projections. Then

Refe QB(H1 ⊗ H2)P = Q̃B(H1 ⊗ H2)P̃ .

In particular, there exists a subspace S ⊆ B(H1 ⊗ H2) such that Refe S is strictly
bigger than Ref S.

Proof. Fix projections P, Q ∈ B(H1 ⊗ H2) and let S = QB(H1 ⊗ H2)P . It is clear
that

S⊥ ∩ E = {ωξ⊗x,η⊗y : P (ξ ⊗ x) = 0 or Q(η ⊗ y) = 0}. (2.2)

Hence, T ∈ Refe S if and only if 〈T (ξ ⊗ x), η ⊗ y〉 = 0 for all ξ, η ∈ H1 and all x, y ∈ H2

such that either P (ξ ⊗ x) = 0 or Q(η ⊗ y) = 0.
Suppose that T ∈ Refe S. If ξ ∈ H1 and x ∈ H2 are such that P (ξ ⊗ x) = 0, then

for any η ∈ H1 and y ∈ H2 we have 〈T (ξ ⊗ x), η ⊗ y〉 = 0 and so T (ξ ⊗ x) = 0.
But P̃⊥(H1 ⊗ H2) = [ξ ⊗ x : P (ξ ⊗ x) = 0]. It follows that T P̃⊥ = 0, or T = T P̃ . By
considering adjoints, we conclude that T = Q̃T , and thus T = Q̃T P̃ . Conversely, if T is
of this form, then T ∈ Refe S by the previous paragraph.

For the last statement, it is sufficient to exhibit a projection P ∈ B(H1 ⊗ H2) such
that P̃ is strictly greater than P . It suffices to choose any P �= I that does not annihilate
any non-trivial elementary tensors. For example, take P = F⊥, where F is the projection
onto {λ(e1 ⊗ f1 + e2 ⊗ f2) : λ ∈ C} and where the set {e1, e2} ⊆ H1 (respectively, the set
{f1, f2} ⊆ H2) is linearly independent. Here P �= I but P̃ = I. �

Example 2.8. Let H1 be infinite dimensional, let V ∈ B(H1) be an isometry and let
S ⊆ B(H2) be a weak-∗ closed subspace. Then

(i) Ref(V ⊗ S) = V ⊗ S,

(ii) if S is not reflexive,

Ref(V ⊗ S) � Refe(V ⊗ S).

Proof. The equality Ref(V ⊗ S) = V ⊗ S is well known when V is the identity (see,
for example, [5, Corollary 59.7]), and the proof readily extends to the general case.

Since Refe(V ⊗S) = V ⊗Ref S by Corollary 2.5, if S is not reflexive, then Ref(V ⊗S)
is strictly contained in Refe(V ⊗ S). �
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3. Reflexive hulls and Fourier coefficients

We recall that for each ϕ ∈ H∞ we denote by Tϕ the analytic Toeplitz operator on H2

with symbol ϕ and by T the collection of all analytic Toeplitz operators on H2. Let
ζn ∈ H2 be the function given by ζn(z) = zn, z ∈ T. We note that {ζn : n � 0} is an
orthonormal basis of H2. Let S = Tζ1 ∈ T be the unilateral shift.

For the rest of this section, we fix a Hilbert space K. We note that (T ⊗B(K))′ = T ⊗I.
Indeed, if T ∈ (T ⊗ B(K))′, then T ∈ (I ⊗ B(K))′ and hence T = A ⊗ I for some
A ∈ B(H2). It now follows that A ∈ T ′ = T [22]. Thus, (T ⊗B(K))′′ = (T ⊗ I)′. Now, if
X ∈ (T ⊗I)′, then X(T ⊗I) = (T ⊗I)X for all T ∈ T . Applying left slice maps, we obtain
Lω(X)T = TLω(X) for all normal functionals ω and all T ∈ T . Thus, Lω(X) ∈ T ′ = T
for all normal functionals ω, which means by Lemma 2.1 that X ∈ T ⊗B(K). We conclude
that (T ⊗ B(K))′′ = T ⊗ B(K) and, in particular, that T ⊗ B(K) is automatically weakly
closed.

If T ∈ T ⊗ B(K), let T̂n, n � 0, be the operators determined by the identity

T (ζ0 ⊗ x) =
∑
n�0

ζn ⊗ T̂nx, x ∈ K.

Alternatively, T̂n = Rωn(T ), where ωn = ωζ0,ζn
, n � 0.

We call
∑

n�0 Sn ⊗ T̂n the formal Fourier series of T . When K is one dimensional, this
is the usual Fourier series of an operator T ∈ T . By standard arguments, as in the scalar
case, the Cesàro sums of this series converge to T in the weak-∗ topology.

If S is a family (Sn)n�0 of subspaces of B(K), we let

A(S) = {T ∈ T ⊗ B(K) : T̂n ∈ Sn, n � 0}.

It is obvious that A(S) is a linear space; it is a subalgebra of B(H2 ⊗ K) if and only if
SnSm ⊆ Sn+m for all n, m � 0.

Remark 3.1. If Sn is closed in the weak operator (respectively, the weak-∗) topology
and S = (Sn)n�0, then A(S) is closed in the weak operator (respectively, the weak-∗)
topology.

This follows from the fact that the slice maps Rωn
are continuous in both the weak–

weak and the weak-∗–weak-∗ sense.

Remark 3.2. If S ⊆ B(K) is a weak-∗ closed space and Sn = S for each n � 0, then
A(S) = T ⊗ S.

Indeed, if A ∈ S and k � 0, then obviously Sk ⊗ A ∈ A(S) and hence T ⊗ S ⊆ A(S),
since the latter is weak-∗ closed.

Conversely, suppose that T ∈ T ⊗ B(K) is such that T̂n ∈ S for each n � 0. Then
Sn ⊗ T̂n ∈ T ⊗ S and hence the Cesàro sums of the Fourier series of T are in T ⊗ S. But
T ⊗ S is weak-∗ closed, and so T ∈ T ⊗ S.

If S = (Sn)n�0, we let Ref S := (Ref Sn)n�0.
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Theorem 3.3. If S = (Sn)n�0 is a sequence of subspaces of B(K), then Refe A(S) =
A(Ref S). In particular, if Sn is reflexive for each n � 0, then A(S) is reflexive.

Proof. First observe that Refe(T ⊗B(K)) = (Ref T )⊗B(K) by Corollary 2.5. But T
is reflexive [22] and hence Refe(T ⊗ B(K)) = T ⊗ B(K).

Let T ∈ Refe A(S). As just observed, T ∈ T ⊗ B(K). By Lemma 2.6, for each n � 0,
writing ωn = ωζ0,ζn

, we have

Rωn(T ) ∈ Ref Rωn(A(S)) ⊆ Ref Sn,

since Rωn(A(S)) ⊆ Sn by the definition of A(S). In other words, T̂n ∈ Ref Sn for all
n � 0, and so T ∈ A(Ref S).

Conversely, suppose that T ∈ A(Ref S), that is, T̂n ∈ Ref Sn for each n � 0. By
Corollary 2.5, Sn ⊗ T̂n ∈ Refe(Sn ⊗ Sn), n � 0. Since Sn ⊗ Sn ⊆ A(S), we conclude
that Sn ⊗ T̂n ∈ Refe A(S), n � 0. By Lemma 2.2 (i) and the fact that T is in the weak-∗
closed linear hull of {Sn ⊗ T̂n : n � 0} we have that T ∈ Refe A(S).

Suppose that Sn is reflexive for each n � 0. By Lemma 2.2 (ii) and the first part of the
proof,

A(S) ⊆ Ref A(S) ⊆ Refe A(S) = A(S)

and hence A(S) is reflexive. �

As an immediate corollary of Theorem 3.3 we obtain the following result, proved for
reflexive algebras by Kraus [15] and Ptak [21].

Corollary 3.4. Let S ⊆ B(K) be a reflexive subspace. Then T ⊗ S is reflexive.

Remark 3.5. We note that Refe A(S) is in general strictly larger than Ref A(S).
Indeed, let S ⊆ B(K) be a non-reflexive weak-∗ closed subspace and S = (Sn)n�0 be
the family with S1 = S and Sn = {0} if n �= 1. Then A(S) = S ⊗ S is reflexive
(Example 2.8 (i)). However, by Theorem 3.3, Refe A(S) = S ⊗ Ref S, which strictly
contains A(S).

The following corollary will be used in Theorem 5.2.

Corollary 3.6. Let U, V ∈ B(K) satisfy UV = λV U for some λ ∈ C. Suppose that V

is invertible and that the weak-∗ closure W0 of the polynomials in U is reflexive. Then
the weak-∗ closed unital operator algebra W ⊆ B(H2 ⊗K) generated by I ⊗U and S ⊗V

is reflexive.

Proof. The commutation relation UV = λV U implies that W is the weak-∗ closed
linear hull of the set {Sk ⊗ V kUm : k, m � 0}.

Let S = (V nW0)n�0. We claim that W = A(S). Suppose that T ∈ T ⊗ B(K) and that
T̂n ∈ V nW0, n � 0. Then

Sn ⊗ T̂n ∈ Sn ⊗ V nW0 = (Sn ⊗ V n)(I ⊗ W0) ⊆ W.

It follows by approximation (in the w∗-topology) that T ∈ W. Thus, A(S) ⊆ W.
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To show that W ⊆ A(S), it suffices to prove that Sk⊗V kUm ∈ A(S), for each k, m � 0.
So, fix such k and m and note that if x, y ∈ K, then

〈Rωζ0,ζn
(Sk ⊗ V kUm)x, y〉 = 〈(Sk ⊗ V kUm)(ζ0 ⊗ x), ζn ⊗ y〉

= 〈ζk ⊗ V kUmx, ζn ⊗ y〉
= δk,n〈V kUmx, y〉.

Thus, Rωζ0,ζn
(Sk ⊗V kUm) = δk,nV kUm ∈ V nW0 for all n and hence Sk ⊗V kUm ∈ A(S)

as required.
Now observe that, since V is invertible and W0 is reflexive, each Sn = V nW0 is

reflexive. It therefore follows from Theorem 3.3 that W = A(S) is reflexive. �

Remark 3.7. Both a special case of Theorem 3.3 and Corollary 3.4 were obtained
independently by Kakariadis in [12, Theorem 2.8].

4. The structure of TL(H+)

In this section we study the weak-∗ closed operator algebra TL(H+) generated by the
image of the left regular representation of H+ restricted to the invariant subspace H =
�2(H+). We identify H with �2(Z)⊗ �2(Z+)⊗ �2(Z+), where the element of the canonical
orthonormal basis of H corresponding to wnukvm ∈ H+ is identified with the elementary
tensor wn ⊗ uk ⊗ vm. Then TL(H+) is generated by the operators Lu, Lv and Lw on H,
which act as follows:

Lu(wn ⊗ uk ⊗ vm) = wn ⊗ uk+1 ⊗ vm,

Lv(wn ⊗ uk ⊗ vm) = wn−k ⊗ uk ⊗ vm+1,

Lw(wn ⊗ uk ⊗ vm) = wn+1 ⊗ uk ⊗ vm,

⎫⎪⎬
⎪⎭ (n, k, m) ∈ Z × Z+ × Z+.

By the commutation relations, TL(H+) coincides with the weak-∗ closed linear span of
the set

{Ln
wLk

uLm
v : (n, k, m) ∈ Z × Z+ × Z+}.

Throughout this section we will identify �2(Z) with L2(T) via Fourier transform in the
first coordinate w. In this way, the identity function ζ1 on T is identified with w and
TL(H+) is identified with an operator algebra acting on L2(T) ⊗ �2(Z+ × Z+). Let C be
the weak-∗ closed linear span of {Ln

w : n ∈ Z}. This is an abelian von Neumann algebra;
it consists of all operators {Lf : f ∈ L∞(T)}, where

Lf (wn ⊗ uk ⊗ vm) = (fwn) ⊗ uk ⊗ vm.

Thus, C = M ⊗ 1 ⊗ 1, where M ⊆ B(L2(T)) is the multiplication maximal abelian
self-adjoint subalgebra (MASA) of L∞(T).

If (eis, eit) ∈ T × T (s, t ∈ [0, 2π)), let Ws,t ∈ B(H) be the unitary operator given by

Ws,t(wn ⊗ uk ⊗ vm) = wn ⊗ eiskuk ⊗ eitmvm, (n, k, m) ∈ Z × Z+ × Z+.
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10 M. Anoussis, A. Katavolos and I. G. Todorov

We define an action of the 2-torus T × T on B(H) by

ρs,t(A) = Ws,tAW ∗
s,t, A ∈ B(H).

Observe that

ρs,t(Lu) = eisLu, ρs,t(Lv) = eitLv, ρs,t(Lw) = Lw.

Hence, ρs,t leaves TL(H+) invariant. Since ρs,t is unitarily implemented, it also leaves
Ref TL(H+) invariant.

If A ∈ TL(H+) is a ‘trigonometric polynomial’, namely a sum

A =
∑

(k,m)∈Ω

Lfk,m
Lk

uLm
v ,

where Ω ⊆ Z+ × Z+ is finite and fk,m ∈ L∞(T)((k, m) ∈ Ω), then it is easy to observe
that

1
4π2

∫ 2π

0

∫ 2π

0
ρs,t(A)e−iske−itm dt ds = Lfk,m

Lk
uLm

v .

We will need the following proposition, which is a version of well-known facts adapted
to our setting.

Proposition 4.1. For k, m ∈ Z+, let Qk,m ∈ B(H) be the orthogonal projection
onto the subspace L2(T) ⊗ [uk] ⊗ [vm] spanned by the vectors of the form f ⊗ uk ⊗ vm,
f ∈ L2(T). If A ∈ B(H) and p, q ∈ Z, set

Φp,q(A) =
∑
k,m

Qk+p,m+qAQk,m,

where the sum is taken over all k, m ∈ Z+ such that k + p, m + q ∈ Z+. The following
statements hold.

(i) Φp,q(A) =
1

4π2

∫ 2π

0

∫ 2π

0
ρs,t(A)e−ispe−itq dt ds.

(ii) If 0 < r < 1, then the series ∑
p,q∈Z

Φp,q(A)r|p|+|q|

converges absolutely in norm to an operator Ar; moreover, ‖Ar‖ � ‖A‖ and
w∗-limr↗1 Ar = A.

(iii) If Φp,q(A) = 0 for all p, q ∈ Z, then A = 0.

(iv) If A ∈ TL(H+) and B ∈ Ref TL(H+), then Φp,q(A), Ar ∈ TL(H+) and Φp,q(B), Br ∈
Ref TL(H+), for all p, q ∈ Z.

https://doi.org/10.1017/S0013091510000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510000143


Operator algebras from the discrete Heisenberg semigroup 11

Proof. (i) Let x = Qk1,m1x and y = Qk2,m2y. We have

〈Φp,q(A)x, y〉 =
〈 ∑

Qk+p,m+qAQk,mx, y
〉

= δk1+p,k2δm1+q,m2〈Ax, y〉,

where the summation takes place over all k, m ∈ Z+ with k + p, m + q ∈ Z+. On the
other hand, we have

〈ρs,t(A)x, y〉 = 〈Ws,tAW ∗
s,tx, y〉 = e−isk1−itm1eisk2+itm2〈Ax, y〉

and hence

1
4π2

∫ 2π

0

∫ 2π

0
〈ρs,t(A)e−ispe−itqx, y〉 dt ds

=
1

4π2

∫ 2π

0

∫ 2π

0
〈Ax, y〉eis(k2−k1−p)eit(m2−m1−q) dt ds

= δk1+p,k2δm1+q,m2〈Ax, y〉.

(ii) Let F be the operator-valued function defined on T × T by F (s, t) = ρs,t(A),
and let F̂ be its Fourier transform. By (i), F̂ (p, q) = Φp,q(A). If Pr(s, t) denotes the
two-dimensional Poisson kernel, then one readily sees that Ar = (F ∗ Pr)(0, 0).

The claim therefore follows from the well-known properties of the Poisson kernel.

Part (iii) is an immediate consequence of (ii).

(iv) It follows from (i) that Φp,q(A) ∈ TL(H+) and Φp,q(B) ∈ Ref TL(H+), since ρs,t

leaves TL(H+) and Ref TL(H+) invariant. Now (ii) implies that Ar ∈ TL(H+) and Br ∈
Ref TL(H+). �

We isolate some consequences of Proposition 4.1, as follows.

Corollary 4.2. If A ∈ TL(H+), then we have the following.

(i) Φk,m(A) = 0 unless k � 0 and m � 0.

(ii) For each k, m � 0, the operator Lk,m ≡ (Lm
v )∗(Lk

u)∗Φk,m(A) is in C. Hence,
there exists fk,m(A) ∈ L∞(T) such that Lk,m = Lfk,m(A). We have Φk,m(A) =
Lfk,m

(A)Lk
uLm

v .

Proof. Since TL(H+) is the weak-∗ closed hull of its trigonometric polynomials and
the map Φk,m is weak-∗ continuous, it suffices to assume that A is of the form A =∑

(k,m)∈Ω Lfk,m
Lk

uLm
v , where Ω ⊆ Z+ ×Z+ is finite. Now (i) is obvious. For (ii), we have

Φk,m(A) =
1

4π2

∫ 2π

0

∫ 2π

0
ρs,t(A)e−iske−itm dt ds = Lfk,m

Lk
uLm

v = Lk
uLm

v Lfk,m
;

hence (Lm
v )∗(Lk

u)∗Φk,m(A) = Lfk,m
, which is in C. �

We can now identify the diagonal and the centre of TL(H+).
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12 M. Anoussis, A. Katavolos and I. G. Todorov

Corollary 4.3. The diagonal and the centre of TL(H+) both coincide with C.

Proof. The maps ρs,t are automorphisms of TL(H+) and hence leave its centre Z
invariant. By Proposition 4.1 (i), if A ∈ Z, then Φk,m(A) ∈ Z. By Corollary 4.2 (ii),
Lfk,m(A)L

k
uLm

v ∈ Z for each k, m � 0. It is now immediate that if such an operator com-
mutes with all Lu and Lv, then Lfk,m(A) = 0 unless k = m = 0. Thus, A = Lf0,0(A) ∈ C.

It follows from Proposition 4.1 (i) that Φk,m(A)∗ = Φ−k,−m(A∗). Hence, by Corol-
lary 4.2 (i), if A and A∗ are both in TL(H+), then Φk,m(A) = 0 unless k = m = 0. Thus,
each Ar is in C and hence so is A.

We have shown that the centre and the diagonal are contained in C. The opposite
inclusions are obvious. �

In some of the results that follow we adapt techniques used by Davidson and Pitts
in [9]. Along with the left regular representation L of H+ defined above, we consider the
restriction of its right regular representation to H = �2(H+). This is generated by the
operators

Ru(wn ⊗ uk ⊗ vm) = wn−m ⊗ uk+1 ⊗ vm,

Rv(wn ⊗ uk ⊗ vm) = wn ⊗ uk ⊗ vm+1,

Rw(wn ⊗ uk ⊗ vm) = wn+1 ⊗ uk ⊗ vm,

⎫⎪⎬
⎪⎭ (n, k, m) ∈ Z × Z+ × Z+.

We denote by TR(H+) the weak-∗ closed subalgebra of B(�2(H+)) generated by

{Rn
w, Rk

u, Rm
v : (n, k, m) ∈ Z × Z+ × Z+}.

It is trivial to verify that TL(H+) and TR(H+) commute.

Lemma 4.4. Suppose that the operator A ∈ B(H) commutes with TR(H+) and that
A(w0 ⊗ u0 ⊗ v0) = 0. Then A = 0.

Proof. For each (n, k, m) ∈ Z × Z+ × Z+ we have

A(wn ⊗ uk ⊗ vm) = ARvmRukRwn(w0 ⊗ u0 ⊗ v0)

= RvmRukRwnA(w0 ⊗ u0 ⊗ v0)

= 0.

Hence, A = 0. �

The argument below is standard; for the case of the unilateral shift, see [6, Proposi-
tion V.1.1]. We include a proof for the convenience of the reader.

Proposition 4.5. If A ∈ B(H) commutes with Ru or Rv, then ‖A‖ equals the essential
norm ‖A‖e ≡ inf{‖A + K‖ : K compact}. In particular, the algebra TL(H+) does not
contain non-zero compact operators.
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Proof. Assume that A commutes with Rv (the other case is similar). It is easy to see
that (Rn

v )n tends to 0 weakly. Indeed, if x, y are in H and we write x =
∑

m xm ⊗ vm,
y =

∑
m ym ⊗ vm, where xm, ym are in L2(T) ⊗ �2(Z+), then

〈Rn
v x, y〉 =

∑
m

〈xm, ym+n〉 → 0,

since (‖xm‖) and (‖ym‖) are square integrable.
Suppose, by way of contradiction, that there is a compact operator K ∈ B(H) such

that ‖A+K‖ < ‖A‖. Then there is a unit vector x ∈ H which satisfies ‖Ax‖ > ‖A+K‖.
But ‖(A + K)Rn

v x‖ � ‖A + K‖, since Rn
v is an isometry. On the other hand, since Rn

v

tends to 0 weakly, we have limn ‖KRn
v x‖ = 0. Thus,

lim
n

‖(A + K)Rn
v x‖ = lim

n
‖ARn

v x‖ = lim
n

‖Rn
v Ax‖ = ‖Ax‖,

a contradiction. �

Theorem 4.6. The algebra TL(H+) does not contain quasi-nilpotent operators. In
particular, TL(H+) is semi-simple.

Proof. Let A ∈ TL(H+) be non-zero and define fk,m = fk,m(A) ∈ L∞(T) as in
Corollary 4.2. Recall that for r ∈ (0, 1) we have set

Ar =
∑

k,m�0

rk+mLfk,m
Lk

uLm
v .

Let

E = {(k, m) : fk,m �= 0},

ρ = inf{k + m : (k, m) ∈ E},

k0 = inf{k : (k, m) ∈ E, k + m = ρ},

m0 = ρ − k0.

If g, h ∈ L2(T) and n ∈ Z+, we have

〈An
r (g ⊗ u0 ⊗ v0), (h ⊗ unk0 ⊗ vnm0)〉

=
∑

γ

r
∑

kir
∑

mi〈(fk1,m1 · · · fkn,mn
)φγg ⊗ u

∑
ki ⊗ v

∑
mi , (h ⊗ unk0 ⊗ vnm0)〉,

where the summation is over all γ = ((k1, m1), (k2, m2), . . . , (kn, mn)) with (ki, mi) ∈ E

and φγ is a function of modulus 1 such that

Lk1
u Lm1

v · · ·Lkn
u Lmn

v = Lφγ
L

∑
ki

u L
∑

mi
v .

For a term in the above sum to be non-zero, we must have
∑

ki = nk0 and
∑

mi = nm0.
Thus, since ki + mi � ρ = k0 + m0 for each i and

∑
(ki + mi) = n(k0 + m0), we obtain
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14 M. Anoussis, A. Katavolos and I. G. Todorov

ki + mi = k0 + m0 for all i = 1, . . . , n. But ki � k0 for all i; hence, the condition∑
ki = nk0 gives ki = k0 for all i and so mi = m0 for all i.
Hence, there is only one non-zero term in the above sum and we obtain

〈An
r (g ⊗ u0 ⊗ v0), (h ⊗ unk0 ⊗ vnm0)〉 = rn(k0+m0)〈(fn

k0,m0
φγ0g), h〉,

where γ0 = ((k0, m0), (k0, m0), . . . , (k0, m0)) (and the term (k0, m0) appears n times).
Now, since ‖Ar‖ � ‖A‖ for each r and Ar → A in the weak-∗ topology,

|〈An(g ⊗ u0 ⊗ v0), (h ⊗ unk0 ⊗ vnm0)〉| = lim
r↗1

|〈An
r (g ⊗ u0 ⊗ v0), (h ⊗ unk0 ⊗ vnm0)〉|

= lim
r↗1

rn(k0+m0)|〈(fn
k0,m0

φγ0g), h〉|

= |〈(fn
k0,m0

φγ0g), h〉|.

Since φγ0 is unimodular,

‖An‖ � sup{|〈An(g ⊗ u0 ⊗ v0), h ⊗ unk0 ⊗ vnm0〉| : ‖g‖2 � 1, ‖h‖2 � 1}
= sup{|〈fn

k0,m0
φγ0g, h〉| : ‖g‖2 � 1, ‖h‖2 � 1}

= ‖fn
k0,m0

‖∞.

Thus,
‖An‖1/n � ‖fk0,m0‖∞

for all n, and hence the spectral radius of A is non-zero. �

Theorem 4.7. The commutant of TR(H+) is TL(H+).

Proof. Let A be in the commutant of TR(H+). Then

A(w0 ⊗ u0 ⊗ v0) =
∑

k,m�0

φk,m ⊗ uk ⊗ vm

for some φk,m ∈ L2(T).
We show that φk,m ∈ L∞(T). Let g ∈ L∞(T). Since LgA = ALg (note that Lg ∈ Z ⊆

TR(H+)), we have

A(g ⊗ u0 ⊗ v0) = LgA(w0 ⊗ u0 ⊗ v0)

=
∑

k,m�0

Lg(φk,m ⊗ uk ⊗ vm)

=
∑

k,m�0

(gφk,m ⊗ uk ⊗ vm)

and so

〈A(g ⊗ u0 ⊗ v0), (g ⊗ uk ⊗ vm)〉 = 〈gφk,m, g〉 =
1
2π

∫ 2π

0
φk,m(t)|g(t)|2 dt.

https://doi.org/10.1017/S0013091510000143 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091510000143


Operator algebras from the discrete Heisenberg semigroup 15

Therefore, ∣∣∣∣ 1
2π

∫ 2π

0
φk,m(t)|g(t)|2 dt

∣∣∣∣ � ‖A‖‖g‖2
2.

Using this inequality for characteristic functions in the place of g, one sees that φk,m

induces a linear functional on L1(T) of norm not larger than ‖A‖; thus, φk,m ∈ L∞(T).
We show that if r ∈ (0, 1), the operator

Ar =
∑

k,m∈Z

Φk,m(A)r|k|+|m|

defined in Proposition 4.1 is in the commutant of TR(H+). It suffices to show that

Φk,m(A) =
∑
i,j

Qk+i,m+jAQi,j

is in the commutant of TR(H+) for all k, m ∈ Z. We have RuQk,m = Qk+1,mRu and
hence ∑

i,j

Qk+i,m+jAQi,jRu =
∑
i,j

Qk+i,m+jARuQi−1,j

=
∑
i,j

Qk+i,m+jRuAQi−1,j

= Ru

∑
i,j

Qk−1+i,m+jAQi−1,j .

Similarly, RvQk,m = Qk,m+1Rv and hence∑
i,j

Qk+i,m+jAQi,jRv =
∑
i,j

Qk+i,m+jARvQi,j−1

=
∑
i,j

Qk+i,m+jRvAQi,j−1

= Rv

∑
i,j

Qk+i,m−1+jAQi,j−1.

Now set
Br =

∑
k,m�0

rk+mLφk,m
LukLvm .

Since φk,m ∈ L∞(T), the series converges absolutely to an operator in TL(H+).
Clearly, Φk,m(A)(w0 ⊗ u0 ⊗ v0) = φk,m ⊗ uk ⊗ vm and so Ar(w0 ⊗ u0 ⊗ v0) = Br(w0 ⊗

u0 ⊗ v0). Since both Ar and Br are in the commutant of TR(H+), Lemma 4.4 implies
that Ar = Br. Hence, Ar ∈ TL(H+). Since TL(H+) is weak-∗ closed, Proposition 4.1 (ii)
implies that A ∈ TL(H+). �

The following properties of TL(H+) follow from Theorem 4.7.
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Corollary 4.8.

(i) The algebra TL(H+) has the bicommutant property TL(H+)′′ = TL(H+).

(ii) TL(H+) is an inverse closed algebra.

(iii) TL(H+) is closed in the weak operator topology.

5. Reflexivity of TL(H+)

In this section we establish the reflexivity of the algebra TL(H+). Let F : L2(T)⊗L2(T)⊗
L2(T) → �2(Z) ⊗ �2(Z) ⊗ �2(Z) be the tensor product of three copies of the Fourier
transform. Let K = H2(T) ⊗ H2(T) and H̃ = L2(T) ⊗ K = L2(T,K); we have that
H̃ = F−1(�2(H+)). We will use the same symbol for the restriction of F to H̃.

Let W̃ = F−1LwF , Ũ = F−1LuF , Ṽ = F−1LvF (acting on H̃) and L = F−1TL(H+)F .
For a fixed ξ ∈ T, let Vξ = Aξ ⊗ S ∈ B(H2 ⊗ H2), where S = Tζ1 is the shift on H2 and
Aξ is given by (Aξf)(z) = f(z/ξ), f ∈ H2.

Write µ for the normalized Lebesgue measure on T. We consider the Hilbert space H̃
as a direct integral over the measure space (T, µ) of the constant field ξ → K(ξ) = K of
Hilbert spaces. Thus, an operator T is decomposable [3] with respect to this field if and
only if it belongs to M ⊗ B(K), where M denotes the multiplication MASA of L∞(T);
we write

T =
∫

T

T (ξ) dµ(ξ).

We note that W̃ , Ũ and Ṽ are decomposable. In the next proposition we identify their
direct integrals.

Proposition 5.1. When H̃ is identified with the direct integral over (T, µ) of the
constant field ξ → K of Hilbert spaces, we have

W̃ =
∫

T

ξ(I ⊗ I) dµ(ξ), Ũ =
∫

T

(S ⊗ I) dµ(ξ), Ṽ =
∫

T

Vξ dµ(ξ).

Proof. We identify the elements of H̃ = L2(T,K) with functions on three variables,
f = f(ξ, z1, z2), such that for almost every ξ ∈ T, the function on two variables f(ξ, ·, ·)
is analytic. To show that

W̃ =
∫

T

ξ(I ⊗ I) dµ(ξ),

note that if f ∈ H̃, then W̃f(ξ, z1, z2) = ξf(ξ, z1, z2), ξ, z1, z2 ∈ T.
The claim concerning Ũ is immediate from its definition. For Ṽ we argue as follows:

let f(ξ, z1, z2) = ξnzk
1zm

2 (that is, f = F−1(wn ⊗ uk ⊗ vm)); then

Ṽ f = Ṽ F−1(wn ⊗ uk ⊗ vm)

= F−1Lv(wn ⊗ uk ⊗ vm)

= F−1(wn−k ⊗ uk ⊗ vm+1)
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and thus Ṽ f(ξ, z1, z2) = ξn−kzk
1zm+1

2 . On the other hand, the direct integral∫
T

(Aξ ⊗ I) dµ(ξ)

transforms the function f into the function g(ξ, z1, z2) = ξn−kzk
1zm

2 . We thus have that

Ṽ = (I ⊗ S)
∫

T

(Aξ ⊗ I) dµ(ξ) =
∫

T

(Aξ ⊗ S) dµ(ξ).

�

For ξ ∈ T, let Lξ ⊆ B(K) be the weak-∗ closed subalgebra generated by S ⊗ I and Vξ.
The operators Aξ, S ∈ B(H2) are easily seen to satisfy the assumptions of Corollary 3.6
with λ = ξ̄. It follows that Lξ is reflexive; in particular, it is weakly closed. We note that
the algebra Lξ was studied by Hasegawa in [11], where a class of invariant subspaces of
Lξ was exhibited.

In the next theorem, we use the notion of a direct integral of non-self-adjoint operator
algebras developed in [3].

Theorem 5.2. The algebra TL(H+) is reflexive.

Proof. By definition, L = F−1TL(H+)F is generated, as a weak-∗ closed algebra, by
the operators Ũ , Ṽ , W̃ and W̃−1.

Note that L ⊆ M⊗B(K); moreover, L is weakly closed, since TL(H+) is a commutant
(Theorem 4.7). Hence, by [3], L gives rise to a direct integral∫

T

A(ξ) dµ(ξ),

where A(ξ) is the weakly closed algebra generated by Ũ(ξ), Ṽ (ξ), W̃ (ξ) and W̃−1(ξ).
Since the operators W̃ (ξ) and W̃−1(ξ) are scalar multiples of the identity, we have that
A(ξ) = Lξ. On the other hand, since M ⊗ IK ⊆ L, all diagonal operators of the integral
decomposition are contained in L. Proposition 3.3 of [3] shows that an operator

T =
∫

T

T (ξ) dµ(ξ)

belongs to L if and only if almost all T (ξ) belong to Lξ. As observed above, Lξ is reflexive
for each ξ ∈ T. Proposition 3.2 of [3] now implies that L is reflexive. Therefore, so is
TL(H+). �

6. Other representations

Until now we were concerned with the left regular representation of the Heisenberg semi-
group. In this section, we consider another class of representations defined as follows.
Let λ = e2πiθ with θ irrational and let α : T → T be the rotation corresponding to θ,
that is, the map given by α(z) = λz. We let ν be a Borel probability measure on T
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which is quasi-invariant (that is, ν(E) = 0 implies ν(α(E)) = 0, for every measurable set
E ⊆ T) and ergodic (that is, f ◦αk = f for all k ∈ Z implies that f is constant, for every
f ∈ L∞(T, ν)). Let Wπ(H+) be the weak-∗ closed subalgebra of B(L2(T, ν)) generated
by the operators

π(u) = Mζ1 , π(v)f =

√
dνλ

dν
(f ◦ α) and π(w) = λI,

where Mζ1 is the operator of multiplication by the function ζ1 on L2(T, ν) (recall that
ζn(z) = zn) and νλ(A) is the Borel measure on T given by νλ(A) = ν(α(A)).

We will need the following two lemmas; the results are probably known in some form,
but we have been unable to locate a precise reference and so we include their proofs.
Below, the terms singular and absolutely continuous are understood with respect to
Lebesgue measure µ.

Lemma 6.1.

(i) The measure ν is either absolutely continuous or singular.

(ii) If ν is absolutely continuous, it is equivalent to Lebesgue measure.

(iii) If ν is singular and not continuous, it is supported on an orbit of α.

Proof. (i) Denote by νa (respectively, νs) the absolutely continuous (respectively,
singular) part of ν. Suppose that νs �= 0 and νa �= 0 and let A be a Borel set of Lebesgue
measure zero such that νs(T \ A) = 0. Then

⋃
n∈Z

αn(A) is an invariant set of positive
ν-measure. On the other hand, the Lebesgue measure of

⋃
n∈Z

αn(A) is zero and hence⋃
n∈Z

αn(A) is not of full ν-measure. This contradicts the ergodicity of ν.

(ii) Let E ⊆ T be the set on which the Radon–Nikodỳm derivative dν/dµ vanishes;
clearly, ν(E) = 0. Setting F =

⋃
n∈Z

αn(E), we have that F is invariant and ν(F ) = 0.
By the ergodicity of µ, either µ(F ) = 0 or µ(T \ F ) = 0. However, if µ(T \ F ) = 0, then
ν(T \ F ) = 0 and hence ν = 0. Thus, µ(F ) = 0 and hence µ(E) = 0. It follows that ν is
equivalent to µ.

(iii) Let z0 ∈ T be such that ν({z0}) �= 0. Then the orbit X = {αn(z0) : n ∈ Z} of z0 is
an invariant set of positive ν-measure and it follows from ergodicity that its complement
is ν-null. �

Note that the following lemma could also be deduced from the results of Wermer [24].
(We thank the referee for bringing this reference to our attention.) We include a direct
proof using the F. and M. Riesz Theorem.

Lemma 6.2. Let ν be a singular continuous measure. Then the weak-∗ closed hull of
the linear span of the set {Mζn : n = 1, 2 . . . } is equal to {Mf : f ∈ L∞(T, ν)}.

Proof. Let f ∈ L1(T, ν) be such that∫
fζndν = 0 for all n = 1, 2, . . . .
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It follows from the F. and M. Riesz Theorem that the measure f dν is absolutely con-
tinuous. Since ν is singular, we obtain that f = 0 ν-almost everywhere, and hence it is
equal to 0 as an element of L1(T, ν). �

The next theorem describes completely the operator algebras arising from the class of
representations that we consider.

Theorem 6.3. Let N = {ζkH2 : k ∈ Z}.

(i) If ν is equivalent to Lebesgue measure, then the algebra Wπ(H+) is unitarily equiv-
alent to the nest algebra Alg N .

(ii) If ν is singular and not continuous, then Wπ(H+) is again unitarily equivalent to
Alg N .

(iii) If ν is singular and continuous, then Wπ(H+) = B(L2(T, ν)).

Proof. (i) Since ν is equivalent to Lebesgue measure, we may assume that Wπ(H+)
acts on L2(T), π(u) = Mζ1 and π(v)f = f ◦ α.

If a = (an)n∈Z ∈ l∞(Z), let Da be given by D̂af(n) = anf̂(n); thus, Da is the image,
under conjugation by the Fourier transform, of the diagonal operator on l2(Z) given
by (xj) → (ajxj). Let D = {Da : a ∈ �∞(Z)}; clearly, D is a MASA on L2(T). Since
the map σ → D(σn)n

is weak-∗ continuous from T into B(L2(T)) and {λk : k ∈ Z+}
is dense in T, the weak-∗ closed linear span of {D(λkn)n

: k ∈ Z+} = {π(v)k : k ∈ Z+}
contains {D(σn)n

: σ ∈ T}; it is hence a self-adjoint algebra and so must equal D by
the Bicommutant Theorem. On the other hand, if a ∈ �∞(Z) and p � 0, the matrix of
π(u)pDa with respect to the basis {ζk}k∈Z has the sequence a at the pth diagonal and
zeros elsewhere. It follows that all lower triangular matrix units belong to the algebra
Wπ(H+), and hence this equals Alg N .

(ii) By Lemma 6.1 (iii), ν is supported on the orbit of a point z0 ∈ T. For k ∈ Z,
write zk = α−k(z0) and β2

k = ν({zk}). Since νλ({zk}) = ν({α(zk)}) = ν({zk−1}) we have
βk−1 = β(zk)βk, where β is the function determined by the identity β2 = dνλ/dν.
If fk = χ{zk}/βk, then {fk : k ∈ Z} is an orthonormal basis of L2(T, ν) and we have
π(v)χ{zk} = β · (χ{zk} ◦ α) = βχ{zk+1}. Thus,

π(v)fk = β
χ{zk+1}

βk
=

βk

βk+1

χ{zk+1}

βk
= fk+1,

and so π(v) is the bilateral shift with respect to {fk}. Also π(u)fk = zkfk = λ̄kz0fk for
each k and hence, as in the proof of (i), the weak-∗ closed linear span of the positive
powers of π(u) contains all operators diagonalized by {fk}. It follows as in (i) that
Wπ(H+) consists of all operators which are lower triangular with respect to {fk}; hence,
it is unitarily equivalent to Alg N .

(iii) By Lemma 6.2, the algebra Wπ(H+) contains a MASA, namely, the multiplication
MASA of L∞(T, ν). Since α acts ergodically, it is standard that Wπ(H+) has no non-
trivial invariant subspaces. It follows from [2] that it is weak-∗ dense in, and hence equal
to, B(L2(T, ν)). �
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Remark 6.4. Note the different roles of π(u) and π(v) in (i) and (ii) of Theorem 6.3:
in (i), the diagonal MASA is generated by (the non-negative powers of) π(v); in (ii)
the MASA is generated by π(u). These two representations generate inequivalent rep-
resentations of the irrational rotation algebra, as the corresponding measures are not
equivalent [4].

6.1. A non-reflexive representation

We now construct an example of a representation of H+ which generates a non-reflexive
weakly closed operator algebra. This representation, ρ, acts on H2 and is defined as
follows: if S = Tζ1 is the shift and V ∈ B(H2) is the operator given by (V f)(z) =
f(λz) = (f ◦ α)(z), we define

ρ(u) = S, ρ(v) = SV and ρ(w) = λI

with λ = e2πiθ and θ irrational. Let A be the weakly closed unital algebra generated by
ρ(u) and ρ(v). Using Fourier transform, we identify H2 with �2(N) and let E : B(H2) →
D � �∞(N) be the usual normal conditional expectation onto the diagonal given by
E((aij)) = (bij), where bij = aijδij . Define Ek for k � 0 by Ek(A) = E((S∗)kA).

We recall that [S] denotes the linear span of a subset S of a vector space.

Proposition 6.5. If A ∈ A, then Em(A) ∈ [I, V, . . . , V m].

Proof. The operator A is the weak limit of polynomials of the form∑
k,n�0

ck,nSk+nV n.

Thus, Em(A) is a weak limit of polynomials of the form∑
ck,nV n,

where the summation is over all k, n ∈ Z+ with k + n = m and hence Em(A) ∈
[I, V, . . . , V m]. �

Proposition 6.6. If K ∈ Lat{S, SV }, then in fact K ∈ Lat{S, V } and hence K = ζkH2

for some k ∈ Z+.

Proof. Since S(K) ⊆ K and K ⊆ H2, by Beurling’s Theorem there is an inner function
φ such that K = φH2. Since SV (K) ⊆ K, we have SV (φ) ∈ K = φH2, so zφ(λz)/φ(z) ∈
H∞. Thus, there exists h ∈ H∞ such that

zφ(λz) = h(z)φ(z) for all z ∈ D. (6.1)

Let φ1 be an analytic function and l be a non-negative integer such that φ1(0) �= 0 and
φ(z) = zlφ1(z) for all z ∈ D. We obtain

zl+1λlφ1(λz) = h(z)zlφ1(z) for all z ∈ D (6.2)
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and hence

zλlφ1(λz) = h(z)φ1(z) for all z ∈ D. (6.3)

Setting z = 0 in (6.3), we obtain that h(0) = 0. Thus, there exists h1 ∈ H∞ such that
h(z) = zh1(z). The relation zφ(λz) = h(z)φ(z) = zh1(z)φ(z) implies φ ◦ α = h1φ and
hence (φ ◦ α)H2 ⊆ φH2. Therefore,

V (K) = V (φH2) = (φ ◦ α)H2 ⊆ φH2 = K.

Considering K as a subspace of L2(T), Theorem 6.3 (i) gives that K = ζkH2 for some k

(note that here ν equals Lebesgue measure); since K ⊆ H2, k must be non-negative. �

Theorem 6.7. The algebra A is not reflexive; in fact Ref A = Alg N , where N =
{ζkH2 : k ∈ Z+}.

Proof. By Proposition 6.6, Ref A = Alg N . It follows from Proposition 6.5 that A is
strictly contained in Ref A. �
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