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ON QUANTUM THEORY IN TERMS OF WHITE NOISE*

T. HIDA AND L. STREIT

§ 1 . The canonical representation

It has often been pointed out that a much more manageable struc-
ture is obtained from quantum theory if the time parameter t is chosen
imaginary instead of real. Under a replacement of t by i t the
Schrδdinger equation turns into a generalized heat equation, time order-
ed correlation functions transform into the moments of a probability
measure, etc. More recently this observation has become extremely im-
portant for the construction of quantum dynamical models, where crite-
ria were developed by E. Nelson, by K. Osterwalder and R. Schrader
and others [8] which would permit the reverse transition to real time
after one has constructed an imaginary time ("Euclidean") model.

The discussion of solutions for the heat equation

(9* - 3J + λV(x))ψ(x, t) = 0 (1)

may be reduced to that of certain integrals with respect to the Wiener
measure μB for Brownian motion B(t) of the general form

EλF = JΓλ ^F[x]e-λS°V(xω)dtdμB(x) . ( 2

Alternatively one may consider white noise χ(t) as the basic stochastic
process, realizing Brownian motion as

B(t)= [tχ(s)ds . (3)
Jo

In a recent paper [3] H. Ezawa, J. R. Klauder and C. A. Shepp [EKS]
have proposed a new strategy for the calculation of expressions such as
equation (2). The right side of (2) amounts to an average of the func-
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tional F over Brownian motion sample paths with a weight factor to
take into account the interaction XV. EKS instead express EXF as an
unweighted average of F over paths Rλx distorted in such a way that
the mapping Rx incorporates the effect of the interaction

ExF=\F[Rλx]dμB(x) . (4)

Among the results of EKS it is particularly worth emphasizing that the
relation

y = Rλx (5)

remains well-defined—and that ^-averaging still produces the correct re-
sult—when one passes to limits (such as T —» oo in equation (2)) where
the original expression (2) fails to hold because the limit of

ceases to be /^-measurable so that it can no more serve as a Radon-
Nikodym derivative to relate the dμB(x) to an "interacting" measure
dv(x). In the physicist's terminology the EKS formulation of dynamics

V = Rλx (7)

survives the removal of cutoffs while the Feynman-Kac formula (2) does
not!

As EKS point out, this approach raises very interesting quations
(and indeed even indicates the answer [1]) regarding the existence prob-
lem for certain types of stochastic differential equations. In this note
we shall focus on Gaussian processes where that particular problem is
well under control.

We wish to take into account the case of non-equivalent measures:
the measure v with respect to which we want to average the functional
F may well not be related to the white noise measure by a weight factor.
Therefore we shall address ourselves to the discussion of maps R such
that

ί F[x]dv(x) = f F[Rx]dμχ(x) (8)

where χ is one- or more-dimensional parameter white noise and v is some
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Gaussian measure.
For a given v, R is far from being unique. As an example consider

the Ornstein-Uhlenbeck process given by the characteristic functional

CJS) = f e^^dvix) = e-K' ' o (9)

with (Kξ)(t) = or1 e~ω]t-s]ξ(s)ds. One possible realization of this process

such that

Cm(ξ) = $ e«**>*>dμz(x)

is obtained by setting

jBχ(t) = Rφ) = C Γ Z0(ω |t - β|)χ(8)ώ , C = ^ , (10)
J-oo tf

where Ko( ) i s the Hankel function of imaginary argument.
To check this it suffices to verify that the covariance of Rχ equals

that of the Ornstein-Uhlenback process since both are Gaussian:

<Rχ{tλ), Rχ(t2)> = C2 j j ^ K0(ω \t, - Sl\)K0(ω \t2 - S2\)

X <z(*i), x(s2)}ds1ds2

= C2 J 0 0 K0(ω \tx - s\)K0(ω \t2 - s\)ds

= ω-ιe-m^-™ = K{tlf t2) .

On the basis of a stochastic differential equation for Rχ, EKS arrive at
quite a different representatation, namely

Rχ(t) = 21/2 Γ e-ω(ί-s)χ(s)ds . (11)
J -oo

This representation is distinguished from general R (and, as we shall
see from all others, too) by the fact that it is causal and causally invert-
ible. In terms of probability theory, such a property is said to be canon-
ical.

The canonical property means the following: Let Bt(χ) be the smallest
sigma-field with respect to which all the <#,f>'s with supp(f) c [— oo,t)
are measurable. Suppose a Gaussian process y is given by
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- f Fit ~ s)χ(s)ds .
J - o o

y(t) - F{t- S)χ(s)ds . (12)

Then we can define Bt(y) in a similar manner to Bt(χ). The represen-

tation (12) of y in terms of χ is said to be canonical if

Bt(χ) = Bt(y) for every t. (13)

Needless to say that there are many expressions of the form (12) such

that the Gaussian process y has the same covariance function K(t1912) as

the Rχ. Among them there is only one representation satisfying (13),

that is, the canonical representation is unique (see, e.g., T. Hida [5]).

The uniqueness as well as the existence of the canonical represen-

tation holds for more general stationary Gaussian processes that are

purely non-deterministic (a process y is called purely non-deterministic if

and only if the sigma-field f^\Bt(y) is trivial).
t

A counterpart of the canonical representation is the backward canon-

ical representation of a Gaussian process. Let y(t) be given by

y{t) - J" Git - s)χis)ds (14)

and let Bϋiχ) be the smallest sigma-field with respect to which all the

<χ, ?XS with supp (f) C [t, oo) are measurable. Similarly one defines the

sigma-field B\y). The representation (14) of y is called backward canon-

ical if

B'(y) = iϊ'Cχ) for every t. (15)

Uniqueness and existence can be discussed in exactly the same manner

as the canonical representation by interchanging future and past [5].

In particular the Fourier transforms of F and G are related via

Άλ) = Giλ) . (16)

§ 2 . Markov properties and Γ-positivity

The Markov property of stochastic processes is of particular interest

as an input to Nelson's reconstruction of relativistic fields from Euclidean

ones, i.e. from certain stationary stochastic processes.

As is well known a process is said to be (simple) Markov if

PiA Π BjBixit))) - PiA/Bixit)))PiB/Bixit))) (17)
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for any AeBt and BeBK Here B(x(t)) denotes the σ-field generated by
x(t) and we shall use B — \JtBt.

It is known that a conditional expectation like E(z/Bt) of z in
L\Ω,B,P) is the orthogonal projection of z down to the subspace
L2(Ω,Bt,P). However, one is concerned with only Gaussian random vari-
ables in this note, so that, if z is a linear functional of the x(tYs, the
conditional expectation E(z/Bt) turns out to be the orthogonal projection
to the closed linear subspace spanned by the x(s), s < t. The projection to
this subspace is denoted by Et. Similarly one denotes by Έ% the projec-
tion to the subspace spanned by the x(s), s>t. The symbol E(t) is used
to denote the projection to the closed linear subspace spanned by ran-
dom variables measurable with respect to the sigma-field B(x(t)).

For a stationary Gaussian process E0,E° and Z?(0) are usually de-
noted by E_,E+ and Eo, respectively. We are now ready to describe the
Markov property in terms of E_,E+ and Eo. The following assertion
immediately comes from (17). A stationary Gaussian process is (simple)
Markov if and only if

E_x(t) = Eox(t) , for any t > 0 . (18)

Or equivalently

E_E+ = E0E+ (19)

in the space L2(Ω,B,P).
The stationary Gaussian Markov processes are exactly the Ornstein

Uhlenbeck processes which solve

LtX(t) - χ{t) (20)

where

Lt — a0— + dx and a^^ > 0 . (21)
dt

A generalization is afforded by Gaussian processes obeying an N-th
order differential operator of the form

^ (22)

For an extension of this definition to the non-stationary case cf. [5]. In
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either case equation (17) generalizes to

P(A Π B/Bit)) - P(A/B(t))P(B/B(t)) (23)

where

B(t) ~ Π B(x(s) : t - ε < s <t + ε) (24)

is the σ-field generated by the x(s) in arbitrarily small neighbourhood of

t. Furthermore one finds for the canonical kernel

Fit, u) = θ{t -u)Σ MQgM . (25)

Two distinct further generalizations are afforded by considering all those

Gaussian processes which obey equation (25)—they are called N-ple Markov

in the wide sense or those which obey equation (23)—they are called σ-

Markov and are also characterized by equations such as (18) or (19) if

we replace B(x(t)) by Bit) in the definition of Eo.

Intuitively speaking the σ-Markov property of x says that the future

and the past become independent as soon as the present value as well as

the values in an infinitesimal neighbourhood of the present are given.

Let Cxiξ), ξ e Sf, be the characteristic functional of a mean contin-

uous (in t) stationary Gaussian process x = {x(t) teR} with Eixit)) = 0.

Then Cx(ξ) can be expressed in the form

(26)

where γit) is the covariance function of x:

γit) = Eixit + S)xis)) . (27)

As an example of the expression (26), one sees the formula (9).

Assume that x is purely non-deterministic, that is, Π Bt is trivial.

Then the covariance function admits a spectral representation of the

form

γit) = J eUίf(λ)dλ (28)

with the property that

Ίτγdi < oo . (29)
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One is given the following relationship

f(X) = \F(X)\2 = \G(λ)\2 (30)

where F and G is the Fourier transform of F in (12) and G in (14),

respectively. This proves that

1) x is iV-ple Markov in the restricted sense if and only if

where P is a polynomial of degree N without zeroes in the lower

half Λ-plane.

2) x is 2V-ple Markov in the wide sense if and only if

QiϋD 2

 ( 3 2 )

where P and Q are polynomials of degree N and at most N — 1,

respectively, again without zeroes in the lower half Λ-plane. (T. Hida

[5]).

3) x is σ-Markov if and only if 1//00 is an entire function of infra-

exponential type. (Y. Okabe [7]).

Yet another generalization of the simple Markov property was pro-

posed by Hegerfeldt [4] since in the Euclidean field theory context it

suffices to establish the existence of a corresponding Wightman theory.

A time reflection operator T may be defined in the Hubert space L2(Ω,

B9P) of a Gaussian process y by setting

Γl = 1 e L\Ω, B, P) and Ty^T"1 = y(-t) (33)

Hegerfeldt's Γ-positivity condition is

E+TE+ > 0 . (34)

By standard arguments it is sufficient (and of course necessary) to es-

tablish that this holds on the closed subspace L{y) spanned by the y(t),

teR.

A dense linear subspace of E+L(y) is provided by vectors

Σ w i t h tv > 0 , aveC (35)

so that Γ-positivity for a Gaussian process becomes equivalent to
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Σ avaμEiyitv)yi—tμ)) > 0 (36)

or in terms of the covariance matrix γ

Σ <W(t y + tμ) > 0 . (37)

It is worth pointing out that such stationary Gaussian processes can be

completely classified: their covariance matrices form a convex cone spanned

by those of the Ornstein-Uhlenbeck processes.

LEMMA. Let γit), t > 0 be a bounded complex function such that
n

yn > 0 and av e R Σ aμaj(tμ + O >0 i"T-positivity"). Then γit) is com-

pletely monotonic, i.e. γit) — e~udaiλ) where a is a finite Borel meas-
JO

we.
Proof. By Bernstein's theorem [9] the existence of the above inte-

gral representation is equivalent to the inequality

Σ ( - l W ^ \it + mh) > 0 yί, h > 0 . (38)
m=o \m/

It is useful to introduce the difference operator Δn such that

iΔJ)it) = fit + h) - fit) (39)

in terms of which we can rewrite the above inequality in the form

i-)NΔξγit) > 0 . (40)

The Γ-positivity, with the particular choice av = (—)v(n j and tv — \t

+ vh yields

0 < Σ (-y+μ(n)(n)r(t + (» + μ)h) = Δfγit) . (41)
μ* \v/\μ/

It remains to show that "in, Δf+1γ is negative. To this end we consider

the function

g(t) - Δlnγ(t) > 0 . (42)

We know that git) is bounded (as a finite sum of bounded functions) as

well as convex:

- Δr+I)γ(t) > 0 . (42)
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Hence g(t) must be monotone decreasing, i.e.

Δhg{t) < 0 . (44)

Note in particular that all T-positive bounded functions are infinitely

differentiable, and more importantly, they all are covariance matrices.

From this we conclude immediately the

THEOREM. The covariance functions of stationary T-positive second

order processes y are of the form

E(y(t + s)y(s)) - Γ e~^da(λ) (45)
Jo

for some finite positive Borel measure a, and any such measure gives

rise to a T-positive Gaussian process.

Wide sense iV-ple Markov processes arise from the measures a with

N point support

a(λv) — av

since they give rise to spectral densities

= - Σ ^°~~ (46)- Σ

Conversely iV-ple Markov processes are Γ-positive if only

which (for N > 1) is never the case for restricted sense iV-ple Markov

processes.

It is interesting to exhibit the way in which the reflection operator

T acts on the innovation χ_ in the canonical representation

y(jty= J ^ Fit - u)χΛu)du (48)

as well as on its counterpart χ+ in

y(f) = J" G(t - u)χ+(u)du . (49)

Here we assume that y is mean continuous and purely non-deterministic.

y has the spectral representation
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y(t) = f eίtλZ(X)dλ (50)

so that

TZ(λ) = Z(λ) . (51)

By taking Fourier transforms of the canonical representations one finds

χ_U) = Z(λ)/F(λ) χ+U) = Z(X)/G(λ) . (52)

Using #00 = GU) it follows that

Tχ+(λ) = χ_GO , (53)

so that finally the two innovations χ± are related through

Tχ+(u) = χ_(-u) . (54)

§ 3 . Euclidean fields in terms of white noise

Relativistic free scalar fields associated with the Hamiltonian

ff0 = 1 J *a?: π\x) + (Fφ)\x) + mψ(x):

give rise to Euclidean fields Φ with the characteristic functional

CQ(ξ) = <β, eίΦ^Ω> = e-*(M-*..+» >-1e> f e ^(βt+i) . (55)

Associated with this characteristic functional is a probability measure v0

on the space &» = ^ ( β ^ 1 ) such that

C0(ξ) = f e ^ ' ^ d ^ e ) . (56)

Thus one is given a probability measure space («$", β, v0), where β is the

sigma-field generated by the cylinder sets. Each member y0 in SP is

now viewed as a sample path of a random field having the characteristic

functional C0(ξ).

On the other hand, there is a measure space ψ"\R,μχ), call it white

noise, given by the characteristic functional

Cχ(ξ) = e-^2 . (57)

As before a sample path of white noise is denoted by χ. Now arises an
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interesting problem asking how to describe y0 in terms χ like the ex-
pression (5). The answer to this question is stated by the following
theorem.

THEOREM. A sample path y of the random field given by the char-
acteristic functional Co is expressed in the form

3 V0(fi, x) = -ωoy{t, X) + χ(t, x) (58)
dt

on the measure space (&",ξl9μz)9 where

ω0 = V-4, + m2 . (59)

Remark. One should note that the equation (58) is a stochastic
differential equation in terms of generalized functions. Such an equa-
tion has been discussed by A. V. Balakrishnan [2] with a different flavour.

Proof of the theorem. For simplicity s is assumed to be 1 through-
out the proof.
a) Since — Δx + m2 > 0, it is possible to have its square root denoted
by ω0. The domain of ω0 is rich enough, that is, wider than the Schwartz
space Sf(R). Hence a semi-group {Tt; t > 0} is given by

Tt = e~^ , t > 0 , (60)

and Tt is continuous in t. Thus the integral

y(ί,a)=Γ Tt_uχ(u,x)du (61)
J — oo

is well-defined. More precisely, taking ξ in ^(R),

Γ du[ dx(Tt_uξ)(x)χ(u,x) (610

is defined and the integral is to be denoted by y(t,ξ).
b) It is straightforward to verify that y(t, x) given by (61) satisfies the
stochastic differential equation. Namely y is a version of y0.
c) It remains to show that the characteristic functional of the random
field y is exactly equal to Co. Since y is Gaussian and has zero expec-
tation, it suffices to compute the covariance function of y(t, ξ). For h > 0,
one obtains
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= E\Vhdu\ dx{Tt+h_υ,ξ){x)χ{u,x) \t du'\ dx'(Tt_u,ξ)(x')χ(u>, x')λ

= J* ̂  dujdx(Tt+h_uξ)(x)(Tt_uξ)(x) .

Now change the order of integration and use the Fourier tranform
in x to rewrite the above integral in the form

Γ du ί e~ ^+ (̂Λ+«
Jo J

o/ ! , a-β

2vm2 + p2

Similar computations lead us to prove

hf ξ)y(t, ξ)} = ^ 4 = - ί ί 6-** 2 ' ^ l ' 2 # φ 0 (62)
2V27Γ JJ Pi + V2 + m2

2 ^ 2
Pi + V2 + m2

for general h (> 0 or < 0).

Further, setting y(ξ, η) = j η(t)y(t, ξ)dt one obtains

which extends to

= -3L ΓΓ
4ττ JJ + P +

(63)

This shows that the characteristic functional of y is Co. q.e.d.
Observe now the integrand of the expression (63). The square root of

the density function (p2

0 + p2 + m2)"1 may be taken to be (—ip2

0 + Vp2 + m2)"1,

which corresponds to the differential operator — + ω0 in the (t, #)-space.
dt

(—iPo + vV + m2)"1 gives the canonical representation in the sense that

Btiv) = Bt(χ) for every t, (64)

where Bt(y) (or Bt(χ)) is the sigma-field generated by y(s, ξ) (or χ(s, f)),
s< t,ξe5f(R). Namely, the expression (61) is the canonical representa-
tion of y with respect to X.

This formulation of dynamics in terms of a stochastic differential
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equation or a canonical representation like (58) or (61) is particularly

remarkable for its stability under singular perturbations such as they

arise naturally in relativistic quantum field theory. The introduction of

such perturbations into a Hamiltonian (or a Feynman-Kac formula) re-

quires more or less drastic regularizations or "cutoffs". Technically this

restriction can be viewed as the requirement that the perturbed proba-

bility measure be absolutely continuous with respect to the original one.

This condition is absent from the formulation in terms of transformed

white noise.

To illustrate this point we shall discuss the formal interaction term.

φ2:(x) (65)

which gives rise to a characteristic functional for the Euclidean field of

the form

Cg(S) = e-^^-^+m"+0^-lζ) , ξ e cSORs+1) (66)

It is reasonable to assume that g(x) is smooth, bounded and nonnegative.

With this assumption one can proceed with the same argument as in the

case of Co. A sample path of the random field with the characteristic

functional Cg will be denoted by yg. Set

ωg = V —Δx + m2 + g(x) .

Then, it holds that

ot

The canonical representation with respect to χ is of the form

yv(t, x) = J f TLuxiu, x)du (68)

where {Γf t > 0} is a semi-group given by

Tf = e~ω^ , t > 0 .

Concerning the relationship between y0 and yg, the following expression

can be given by using (67):
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yg(ί, x) = yo(t, x) - I Tf_h(ωg - ωo)yo(!U, x)du (69)
J -oo

This implies

g

= — fa, — ωo)yo(t, x) + Tg

t_uωg(ωg — ωo)yo(u9 x)du .
J -oo

Finally it might be interesting to point out that, after replacing g(x)

with λg(x), the asymptotic behaviour of yig as λ[0 can easily be discussed

through the expression (68) or (69).
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