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SOME NILPOTENT LIE ALGEBRAS OF EVEN DIMENSION

CRAIG SEELEY

For each even dimension greater than or equal to 8, an infinite family of 3-step
nilpotent Lie algebras over C is constructed. In dimension m, the family con-
tains isomorphism classes parameterised locally by approximately m3/48 essential
parameters.

One particular case is studied further to get some global information about
the variety of all nilpotent Lie algebras of dimension 8. Using the results obtained
here, and some known facts, it is shown that there is a component consisting of
algebras not having minimal possible central dimensions.

I. INTRODUCTION

It is known that over the complex numbers there are only finitely many isomorphism
classes of nilpotent Lie algebras of dimension less than or equal to 6 [7, 4, 17] whereas
in higher dimensions there are infinite families of pairwise nonisomorphic nilpotent Lie
algebras [3, 11]. In dimension 7, each infinite family can be parameterised by a single
complex modulus, upon which the structure constants depend analytically [1, 6, 9, 10,
13]. An open problem is to determine exactly how many analytic parameters Fn are
needed to classify n-dimensional nilpotent Lie algebras. Thus Fi = • • • = F^ — 0;
F1 = 1; Fn ^ 1 for n ^ 8 .

The primary purpose of this paper is to demonstrate by examples that i^n+2 is
at least (n(n - l)(n + 4))/6 - 3 for n > 3. The examples are motivated by [15]. By
examining the case n — 3 and using a few other known facts, we can derive some global
information about the variety of nilpotent Lie algebras of dimension 8.

II. THE LIE ALGEBRAS La%a

Let {ei, • • • , en, / i , • • • , fn,r, 3} be a basis of a complex vector space of dimension
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72 C. Seeley [2]

2n + 2. Define an algebra structure by the following bracket relations:

k-l

[e2,/2] = s

[es,/s] = r

Use antisymmetry to define [ej, e<], [/i, ei], ei cetera. Let all remaining brackets among
basis vectors be zero, and extend linearly. This will define a Lie algebra La<a if the
Jacobi identities among all basis vectors are satisfied.

Those Jacobi identities involving central vectors r o r s are trivially satisfied. La><T

has a grading, respected by brackets: deg(e,) = 1, deg( / ; ) = 2, deg(r) = deg(a) =
3. By degree considerations, Jacobi identities involving one or more fj 's are also
automatically satisfied. Thus LO)<7 is a Lie algebra if and only if all Jacobi identities
among e{ 's are satisfied. Each of these,

[[e;,ey],et] + [[e;-,efc],ej] + [[e^e*],^] = 0,

yields two equations among the a^ 's and <T{ 'S: one for the coefficient of r and another
for the coefficient of s. Jac(e,-, ej,ek) says that pijk(<*)r + qijk(a,a)s — 0 where p
and q are polynomials. Jac(ei,e2,^3) says (—aj2 — <x\3)r + (—a\2 + a f s ) s = 0. For
i ^ 4 , <J{ appears in qtjk but not in any of the p's. Furthermore, a£- appears only

in Jac(ei,ej,ejfe). An easy consequence of these facts is that the 2 polynomial
L ^ j

conditions on (a, <r) are algebraically independent.
We now consider only those La,a 's which are Lie algebras. For future reference, we

define gi :— [e<,/i] i = 1 , . . . ,n and assume these are pairwise linearly independent.
This is the same as assuming the complex numbers 0 ,1 ,04, . . . ,(rn are distinct, and
thus restricts a to an open set. Another such assumption will be made later. Each
La,<r is 3-step nilpotent.

III. DEFORMATION THEORETIC VIEW (SEE, FOR EXAMPLE, [2] OR [4])

A Lie algebra structure is a multiplication table relative to a particular basis. If
{vlt... ,vdim(x,)} is a basis for L,

dim(Z,)

[Vit Vj) =

Jt=l
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The matrix (c*;-) of structure constants is an element of C1'1" ^ . The Jacobi identities
and antisymmetry impose algebraic conditions on the structure constants. These are
the defining equations of the variety of Lie algebra structures. The condition that L is
fc-step nilpotent (that is, k or less) is also algebraic, given by polynomials of degree k.
In particular, for L of dimension n , L is nilpotent if and only if

The nilpotent algebras form a subvariety Afn in the variety of all Lie algebras of dimen-
sion n .

GL(n) acts on the variety of Lie algebra structures of dimension n , by changing
bases. An orbit consists of algebra structures isomorphic to one another. A Lie algebra
L is said to degenerate to U (equally V deforms to L) if V lies in the closure of the
orbit of L. For instance, given a structure c*;- for L relative to the basis {vi ,••-, vn},
the corresponding structure relative to {Xvi,... ,\vn} is (Ac*;). Letting A —•• 0, one
can see that L degenerates to the abelian Lie algebra. An algebra is said to be rigid
if its orbit is open in the variety (of n-dimensional Lie algebras) and nilpotent-rigid if
its orbit is open in Nn. It is known [4] that there is one nilpotent-rigid orbit which is
dense in the variety of 5-dimensional nilpotent Lie algebras. In particular, this variety
has only one algebraic component. The same is true of 6-dimensional nilpotent Lie
algebras [17, 18, 14].

IV. ISOMORPHISMS AMONG THE Lai(r's

We have not yet seen which La>a
 >s h'e in distinct isomorphism classes. Bearing

this in mind, let us call a basis { e j , . . . , e n , / i , . . . ,fn,r,s} for La>a allowable if the
resulting multiplication table is that of (possibly) another Lai>ai. First, we consider a
basis {e'i = e;e<,.ft = (ifi,r' = pr,s' = TS}.

*) =

Allowability implies that eiCi = £2^2 — • • • = en(,n — p = r. This in turn implies that

<r' = a.

Secondly, let us determine which of the above bases actually yield the original La>a.

This is the same as determining which maps e,- 1—> Cjej, /< H-> Cifit r l~* PTi s l~> TS a r e
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automorphisms of the Lie algebra La%tr. Assume we have such an automorphism (that

is, («') = («)).

If (a) = (a') and a*;- ^ 0 then e<ej = Ct- Let us assume that enough a^-'s are nonzero
(for example, all of them) to ensure EiCj = Ck for all i,j,k. This places (a) (and hence
La,a ) in an open set. Then we must have £i = ••• = en = e, & = • • • — Cn = e2

Thirdly let us consider all Laiai 's resulting from La>lr by allowable changes of
basis. Let Z be the centre of La<<T and let Z2 be the second centre. In each
Lai<ai the vectors fj are special (mod Z) in that dim(Image(ad/y)) = 1 whereas
dim(Image(a<f/)) = 2 for a linear combination / of 2 or more fj's. This speciality
must be preserved by an automorphism. The fj's must be permuted, up to scalar
multiplication, (mod Z). Similarly, because dim ([ej,Z2]) = 1, the ej's must also
be permuted, up to scalar multiplication, (mod Z2). An allowable basis must have
r', s' 6 Z, and /j- £ Z2. Modulo terms of higher degree (which don't change a or
<r) an allowable basis can only be obtained by permuting and scaling the original basis
vectors (or choosing r and s from among multiples of other gi *s). This shows that
those (a',er')'s for which Lai<tT> == Lai<r he in finitely many components, one of which
consists of those (a' , <r' )'s resulting from bases {e,-e,-, &fi, pr, ra} first considered in this
section. (There is one component for each permutation of the indices. The union of
these components has the same dimension as the dimension of any one of them, so for
our modest intentions we need not worry about the other components.)

V. DIMENSION COUNTING

There are w structure constants a^, where i < j • There are (n — 3) <Ji 's for

i = 4 , . . . ,n . Thus (a,<r) lies in a space of dimension n\ + (n — 3). The Jacobi
1.2 J

identities among the e<'s yield 2 algebraic conditions on (a,a), each further re-
-ducing by 1 the dimension of the variety of (a,<r)'s which correspond to Lie algebras.

We have a family of Lie algebras indexed by n +n — 3 — 2 essential parameters.
1.2 J L 3 J

Fix {a,a). Those (a,tr)'s for which Laii<ri = La,a he in a subspace of dimension n,
since (# scaling factors) - (# allowability conditions) - dim{allowable scaling auto-
morphisms of Lata} =(2n + 2) — (n + 1) — 1 = n . The isomorphism classes of XQ>a
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algebras are parameterised b y n + n — 3 — 2 — n = n(n — l ) ( n + 4 ) / 6 - 3
1.2 J [3 J

essential parameters.

VI. STATEMENT OF THEOREM AND FURTHER DISCUSSION

THEOREM . F2n+2 ̂  fi(n — l ) (n + 4)/6 — 3 wAere Fn is the number of essential
parameters needed to classify n-dimensional nilpotent Lie algebras over C.

In general, an n-dimensional algebra has n3 structure constants c^-. A nilpotent
Lie algebra has a nicely ordered basis, so that c*;- = 0 if k ^ i or k ^ j . Antisymmetry

says cj- = - c £ . We see that a first estimate for Fn is that Fn ^ ™ < n s /6 . The
L 3 J

result of this paper is roughly that Fn grows at least as fast as ns/48. Work of Higman
and Sims, reinterpreted in this context, indicates that Fn grows roughly as fast as
2n3/27 [5, 16]. It is as yet unknown exactly what terms of order lower than n3 appear
in the function Fn [8].

VII. DEFORMATION THEORETIC RESULTS

The general linear group acts on the variety of Lie algebra structures as described
above. The stabiliser of a point is the automorphism group of the corresponding Lie
algebra. The dimension of th^automorphism group is the same as the dimension of
the algebra of derivations of the Lie algebra. Thus the dimension of an orbit can be
determined by computing dim(Der(Z)). In our setting, La,a has dimension 2n + 2.
Suppose 8 E Der(ia>a). Then S(Z) C Z and S{Z2} C Z2. An easy computation,
starting from

For i ^ j , [a,/,-] = 0 . Hence 0 = «([*,/ ,-]) = [*(e;),/,-] + [e<,*(/,•)] = Cijgj + Vji9i and

therefore Eij = rjji — 0 for i ^ j . Thus we can simplify:

S(s) = [*(e2),/2] + [e 2 l « ( / 2 ) ] = (£2+7/2)3.

Easy computations, starting from ^([e,-,e;]) = [5(ei),e;] + [cj,tf(e,-)], show that

1. Vi,j,k r)k = £i + Ej => ei = •• • = £n {— e) and each i\j — 2e.
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2. The fa 's are determined by the Xj>s anc^ V"j >s-

3- Xi.---Xn,V'i,--Vln,xi)--Xn>V'i,---V'Jl
 an<* e c a n be chosen indepen-

dently.

Thus 8 is determined by these 4 n + l coefficients and dim(Der(ZaiO.)) = 4 n + l . Finally,

we see that each La<a sits in an orbit of dimension (2n + 2) — (4n + 1) = 4n2 + 4n + 3.

The degenerate case n = 3 makes sense, and although <r is indexed by the empty

set, all of the above results hold for n = 3. (Note, however, that 4 is somewhat less

than 83/48.) There is a 4-parameter family of nonisomorphic 8-dimensional algebras,

each having an orbit of dimension 51.

The most general 8-dimensional nilpotent Lie algebras (in some sense) are Umlauf's

iV-y algebras, 7 ^ 1 . The nonzero brackets are given by

[vi,vi] = vi+1 i = 2 , . . . , 7

- u s *.

These algebras have centres Z, Z2, e< cetera of minimal possible dimension (an
open condition), and among all such algebras, each of the others has some other closed,
or degenerate, property (such as the existence of a 6-dimensional abelian ideal). It is
impossible for any of the Ny algebras to be a degeneration of any other 8-dimensional
nilpotent Lie algebra. The union U of the orbits of the Ny 's constitutes a Zariski-open
set in the variety of all nilpotent Lie algebra structures of dimension 8. A few pages
of straightforward computation show that each Nyt 7 5̂  1, has a derivation algebra of
dimension 10 and therefore an orbit of dimension 54. The closure of U is an algebraic
component of dimension 55. There is in fact another algebraic component of dimension
55 containing a dense open subset of filiform Lie algebras [1, 12]. (A nilpotent Lie
algebra is filiform when there is an element whose centraliser is 2-dimensional.) All
filiform algebras lie in these two components.

The union C of the La<a orbits also has a closure of dimension 55. Because of
dimension considerations, C cannot lie in either of the two filiform components. The
number of algebraic components is at least 3, and in particular there is a component
consisting of algebras which are not filiform.
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