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On Positive Definiteness Over Locally
Compact Quantum Groups

Volker Runde and Ami Viselter

Abstract. _e notion of positive-deûnite functions over locally compact quantum groups was re-
cently introduced and studied by Daws and Salmi. Based on this work, we generalize various well-
known results about positive-deûnite functions over groups to the quantum framework. Among
these are theorems on “square roots” of positive-deûnite functions, comparison of various topolo-
gies, positive-deûnite measures and characterizations of amenability, and the separation property
with respect to compact quantum subgroups.

Introduction

Positive-deûnite functions over locally compact groups, introduced by Godement in
[17], play a central role in abstract harmonic analysis. If G is a locally compact group,
a continuous function f ∶G → C is called positive deûnite if for every n ∈ N and
s1 , . . . , sn ∈ G, the matrix ( f (s−1

i s j))1≤i , j≤n is positive (we always take continuity as
part of the deûnition). Positive-deûnite functions are tightly connected with various
aspects of the group, such as representations, group properties (amenability and other
approximation properties, property (T), etc.), the Banach algebras associated to the
group andmany more, as exempliûed by the numerous papers dedicated to them. It
is thus natural to extend this theory to a framework more general than locally com-
pact groups. _is was done in the context of Kac algebras by Enock and Schwartz
[13, Section 1.3]. Recently, Daws [6] and Daws and Salmi [8] generalized this work to
the much wider context of locally compact quantum groups in the sense of Kuster-
mans and Vaes [30,31]. _ey introduced several notions of positive deûniteness, cor-
responding to the classical ones, and established the precise relations between them.

_ese foundations having been laid, the next step should be generalizing well-
known useful results from abstract harmonic analysis about positive-deûnite func-
tions to locally compact quantum groups. _is is the purpose of the present paper,
which is organized as follows.

In Section 2 we generalize a result of Godement, essentially saying that a positive-
deûnite function has a “square root” if and only if it is square integrable.
A theorem of Răıkov [40] and Yoshizawa [57] says that on the set of positive-

deûnite functions of norm 1, thew∗-topology induced by L1 coincideswith the topol-
ogy of uniform convergence on compact subsets. _is resultwas improved by several
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authors, and eventually Granirer and Leinert [18] generalized it to treat the diòerent
topologies on the unit sphere of the Fourier–Stieltjes algebra. Hu,Neufang, and Ruan
asked in [22]whether this result extends to locally compact quantumgroups. We give
an aõrmative answer to their question in Section 4. Generalizing other results from
[18] as well, we require the theory of non-commutative Lp-spaces of locally compact
quantum groups. _e background on this subject appears in Section 3.
Another notion due to Godement is that of positive-deûnite measures. He estab-

lished an important connection between these and amenability of the group in ques-
tion. In Section 5 we extend this result to locally compact quantum groups.

_e separation property of locally compact groups with respect to closed sub-
groups was introduced by Lau and Losert [34] and Kaniuth and Lau [26], and was
subsequently studied by several authors. A fundamental result is that the separation
property is always satisûed with respect to compact subgroups. Section 6 is devoted
to generalizing this to locally compact quantum groups. We introduce the separation
property with respect to closed quantum subgroups, ûnd a condition underwhich the
separation property is satisûed with respect to a given compact quantum subgroup,
and show that it is indeed satisûed inmany examples, includingT as a closed quantum
subgroup of quantum E(2).

We remark that most sections are independent of each other, but results from Sec-
tion 4 are needed in other sections.

1 Preliminaries

We beginwithûxing some conventions. Given aHilbert spaceH and vectors ζ , η ∈H,
we denote by ωζ ,η the functional that takes x ∈ B(H) to ⟨xζ , η⟩, and let ωζ ∶= ωζ ,ζ .
_e identitymap on a C∗-algebra A is denoted by id, and its unit, if it exists, by 1. For
a functional ω ∈ A∗, we deûne ω ∈ A∗ by ω(x) ∶= ω(x∗), x ∈ A. When no confusion
is caused,we alsowrite ω for its unique extension to themultiplier algebraM(A) that
is strictly continuous on the closed unit ball of M(A) [33, Corollary 5.7].

Let A, B be C∗-algebras. A ∗-homomorphism from A to B or, more generally,
to M(B), that is nondegenerate (namely, spanΦ(A)B is dense in B) has a unique
extension to a (unital) ∗-homomorphism from M(A) to M(B) [33, Proposition 2.1].
We use the same notation for this extension.
For an n.s.f. (normal, semi-ûnite, faithful) weight φ on a von Neumann algebraM

[46, Chapter VII], we denoteNφ ∶= {x ∈ M ∶ φ(x∗x) <∞}.
_e symbol σ stands for the �ip operator x ⊗ y ↦ y⊗ x, for x , y in some C∗-alge-

bras. Weuse the symbols⊗,⊗,⊗min for theHilbert space, normal spatial andminimal
tensor products, respectively.

_e basics of positive-deûnite functions on locally compact groups are presented
in the book by Dixmier [10]. From time to time we will refer to the Banach algebras
associated with a locally compact group G, such as the Fourier algebra A(G) and the
Fourier–Stieltjes algebra B(G); see Eymard [14]. For the Tomita–Takesaki theory, see
the books by Strătilă [43] and Takesaki [46], or Takesaki’s original monograph [44].
We recommend Bédos,Murphy, and Tuset [1, Section 2] for statements and proofs of
folklore facts about the slicemaps at the C∗-algebraic level.
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1.1 Locally Compact Quantum Groups

_e following axiomatization of locally compact quantum groups is due to Kuster-
mans and Vaes [30,31] (see also Van Daele [55]). It describes the same objects as that
ofMasuda,Nakagami andWoronowicz [35]. Unless stated otherwise, thematerial in
this subsection is taken from [30,31].

Deûnition 1.1 A locally compact quantum group (henceforth abbreviated to LCQG)
is a pair G = (L∞(G), ∆) with the following properties:
(i) L∞(G) is a von Neumann algebra;
(ii) ∆∶ L∞(G) → L∞(G)⊗L∞(G) is a co-multiplication, that is, a faithful, normal,

unital ∗-homomorphism which is co-associative: (∆⊗ id)∆ = (id⊗ ∆)∆;
(iii) there exist n.s.f. weights φ,ψ on L∞(G), called theHaar weights, satisfying

φ((ω ⊗ id)∆(x)) = ω(1)φ(x)

for all ω ∈ L∞(G)+∗ , x ∈ L∞(G)+ such that φ(x) <∞ (le� invariance), and

ψ((id⊗ ω)∆(x)) = ω(1)ψ(x)

for all ω ∈ L∞(G)+∗ , x ∈ L∞(G)+ such that ψ(x) <∞ (right invariance).

Let G be a LCQG. _e le� and right Haar weights, only whose existence is as-
sumed, are unique up to scaling. _e predual of L∞(G) is denoted by L1(G). We
deûne a convolution ∗ on L1(G) by (ω1 ∗ω2)(x) ∶= (ω1⊗ω2)∆(x) (ω1 ,ω2 ∈ L1(G),
x ∈ L∞(G)),making the pair (L1(G), ∗) into a Banach algebra. We write L2(G) for
the Hilbert space of the GNS construction for (L∞(G), φ), and let Λ ∶ Nφ → L2(G)
stand for the canonical injection. A fundamental feature of the theory is that of du-
ality: G has a dual LCQG Ĝ = (L∞(Ĝ), ∆̂). Objects pertaining to Ĝ will be denoted
by adding a hat, e.g., φ̂, ψ̂. _e GNS construction for (L∞(Ĝ), φ̂) yields the same
Hilbert space L2(G), and henceforth we will consider both L∞(G) and L∞(Ĝ) as
acting (standardly) on L2(G). We write J , Ĵ for themodular conjugations relative to
L∞(G), L∞(Ĝ), respectively, both acting on L2(G).

Example 1.2 Every locally compact group G induces two LCQGs as follows. First,
the LCQG that is identiûed with G is (L∞(G), ∆), where (∆( f ))(t, s) ∶= f (ts) for
f ∈ L∞(G) and t, s ∈ G using the identiûcation L∞(G)⊗L∞(G) ≅ L∞(G × G), and
φ and ψ are integration against the le� and rightHaarmeasures ofG, respectively. All
LCQGs whose L∞(G) is commutative have this form. Second, the dual of the above,
which is the LCQG (VN(G), ∆),whereVN(G) is the le� vonNeumann algebra ofG,
∆ is the unique normal ∗-homomorphism VN(G)→ VN(G)⊗VN(G) mapping the
translation λt , t ∈ G, to λt⊗λt , and φ andψ are the Plancherelweight onVN(G). _e
LCQGs that are co-commutative, namely whose L1(G) is commutative, are precisely
the ones of this form. _e L2-Hilbert space of both LCQGs is L2(G).

_e le� regular co-representation ofG is a unitaryW ∈ L∞(G)⊗L∞(Ĝ) satisfying
∆(x) = W∗(1 ⊗ x)W for every x ∈ L∞(G) and (∆ ⊗ id)(W) = W13W23 (using leg
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numbering). _e le� regular co-representation of Ĝ is Ŵ = σ(W∗). _e set

C0(G) ∶= {(id⊗ ω̂)(W) ∶ ω̂ ∈ L1(Ĝ)}
∥ ⋅ ∥

is a weakly dense C∗-subalgebra of L∞(G), satisfying ∆(C0(G)) ⊆ M(C0(G) ⊗min
C0(G)). _is allows us to deûne a convolution ∗ on C0(G)∗, which becomes a Ba-
nach algebra. Viewing L1(G) as a subspace of C0(G)∗ by restriction, the former
is a (closed, two-sided) ideal in the latter. We deûne a map λ∶ L1(G) → C0(Ĝ) by
λ(ω) ∶= (ω ⊗ id)(W). It is easily checked that λ is a contractive homomorphism.

We review the construction of the le�-invariant weight φ̂ of Ĝ. Let I stand for all
“square-integrable elements of L1(G)”, namely allω ∈ L1(G) such that there is M <∞
with ∣ω(x∗)∣ ≤ M∥Λ(x)∥ for every x ∈ Nφ ; equivalently, there is ξ = ξ(ω) ∈ L2(G)
such that ω(x∗) = ⟨ξ,Λ(x)⟩ for every x ∈ Nφ . _en φ̂ is the unique n.s.f. weight on
L∞(Ĝ) whose GNS construction (L2(G), Λ̂) satisûes Λ̂(λ(ω)) = ξ(ω) for all ω ∈ I
and that λ(I) is a ∗-ultrastrong–norm core for Λ̂.
A fundamental object for G is its antipode S, which is a ∗-ultrastrongly closed,

densely deûned, generally unbounded linear operator on L∞(G). It has the “polar
decomposition” S = R ○ τ−i/2, where R stands for the unitary antipode and (τt)t∈R for
the scaling group. Wewill not discuss here the deûnitions of thesemaps. _e subspace

L1
∗(G) ∶= {ω ∈ L1

∗(G) ∶ (∃ρ ∈ L1(G)∀x ∈ D(S)) ρ(x) = ω(S(x))}

is a dense subalgebra of L1(G). For ω ∈ L1
∗(G), let ω∗ be the unique element ρ ∈

L1(G) such that ρ(x) = ω(S(x)) for each x ∈ D(S). _en ω ↦ ω∗ is an involution on
L1
∗(G), and λ∣L1

∗
(G) is a ∗-homomorphism. Moreover, L1

∗(G) is an involutive Banach
algebra when equipped with the new norm ∥ω∥∗ ∶= max(∥ω∥, ∥ω∗∥).
A useful construction is the opposite LCQG Gop [31, Section 4], which has

L∞(Gop) ∶= L∞(G) and co-multiplication given by ∆op ∶= σ ○ ∆.
_e universal setting of G was deûned by Kustermans [29] as follows. Let Cu

0(G)
be the enveloping C∗-algebra of L1

∗(Ĝ). _e canonical embedding of L1
∗(Ĝ) in

Cu
0(G) is denoted by λ̂u. By universality, there exists a surjective ∗-homomorphism

πu∶Cu
0(G)→ C0(G) satisfying πu(λ̂u(ω)) = λ̂(ω) for every ω ∈ L1

∗(Ĝ). _ere exists
a co-multiplication ∆u∶Cu

0(G)→ M(Cu
0(G)⊗min Cu

0(G)) satisfying (πu ⊗ πu)∆u =
∆πu, inducing a convolution in Cu

0(G)∗,making it an involutive Banach algebra. Us-
ing the isometry π∗u ∶C0(G)∗ → Cu

0(G)∗, one can see C0(G)∗ as a subset of Cu
0(G)∗,

which is a (closed, two-sided) ideal. Furthermore, L1(G) is also a (closed, two-sided)
ideal in Cu

0(G)∗ [5, Proposition 8.3].
_e le� regular co-representation of G has a universal version. It is a unitary

V V∈ M(Cu
0(G) ⊗min Cu

0(Ĝ)) satisfying (∆u ⊗ id)(V V) = V V13V V23 and (πu ⊗
π̂u)(V V) = W . Its dual object is V̂ V= σ(V V∗). LettingW ∶= (id ⊗ π̂u)(V V) and
W∶= (πu ⊗ id)(V V), we haveW ∈ M(Cu

0(G) ⊗min C0(Ĝ)), W∈ M(C0(G) ⊗min

Cu
0(Ĝ)) and (id ⊗ πu)∆u(x) = W∗(1 ⊗ πu(x))W for every x ∈ Cu

0(G). More-
over, representing Cu

0(G) faithfully on a Hilbert space Hu and viewing the oper-
ator W ∈ M(Cu

0(G) ⊗min C0(Ĝ)) as an element of B(Hu ⊗ L2(G)), we have
W ∈ M(Cu

0(G)⊗min K(L2(G))). Also λu(ω) = (ω⊗ id)( W) for every ω ∈ L1
∗(G),
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and the map λu∶Cu
0(G)∗ → M(C0(Ĝ)), ω ↦ (ω ⊗ id)(W) for ω ∈ Cu

0(G)∗, is a
∗-homomorphism.

_e universality property of Cu
0(G) implies the existence of the co-unit, which is

the unique ∗-homomorphism є ∈ Cu
0(G)∗+ such that (є⊗ id)○∆u = id = (id⊗є)○∆u.

It satisûes (є ⊗ id)(V V) = 1M(Cu
0(Ĝ))

.
For a Banach algebra A, the canonical module action of A on its dual A∗ is denoted

by juxtaposition, that is,

(µa)(b) = µ(ab) and (aµ)(b) = µ(ba) (∀µ ∈ A∗ , a, b ∈ A).
_is notationwill be used for the actions of L∞(G),C0(G) andCu

0(G) on their duals.
_e canonical module actions of L1(G) on L∞(G) will be denoted by ‘⋅’, so we

have

ω ⋅ a = (id⊗ ω)∆(a) and a ⋅ ω = (ω ⊗ id)∆(a) (∀ω ∈ L1(G), a ∈ L∞(G)).
Each of {ω ⋅ a ∶ ω ∈ L1(G), a ∈ C0(G)} and { a ⋅ ω ∶ ω ∈ L1(G), a ∈ C0(G)} spans a
norm dense subset of C0(G).

More generally, every µ ∈ Cu
0(G)∗ acts on L∞(G) as follows: for a ∈ L∞(G), µ ⋅ a

and a ⋅ µ are deûned to be the unique elements of L∞(G) satisfying

ω(µ ⋅ a) = (ω ∗ µ)(a), ω(a ⋅ µ) = (µ ∗ ω)(a) (∀ω ∈ L1(G)).
Note that if µ1 , µ2 ∈ Cu

0(G)∗ and a ∈ L∞(G), then
ω[µ1 ⋅ (µ2 ⋅ a)] = (ω ∗ µ1)(µ2 ⋅ a) = (ω ∗ µ1 ∗ µ2)(a) = ω[(µ1 ∗ µ2) ⋅ a],

thus µ1 ⋅ (µ2 ⋅ a) = (µ1 ∗ µ2) ⋅ a. Similarly, (a ⋅ µ1) ⋅ µ2 = a ⋅ (µ1 ∗ µ2).

Lemma 1.3 If a ∈ C0(G) and µ ∈ Cu
0(G)∗, then µ ⋅ a, a ⋅ µ ∈ C0(G).

Proof Fix µ ∈ Cu
0(G)∗. If ω ∈ L1(G) and b ∈ C0(G), then µ ⋅ (ω ⋅ b) = (µ ∗ ω) ⋅ b ∈

C0(G) as µ ∗ ω ∈ L1(G). By density, µ ⋅ a ∈ C0(G) for all a ∈ C0(G). _e proof for
a ⋅ µ is similar.

1.2 Types of LCQGs

Compact quantum groups were introduced by Woronowicz [56], and discrete quan-
tum groups by Eòros and Ruan [12] and by Van Daele [54]. We will not present their
original deûnitions, but deûne them through the Kustermans–Vaes axiomatization.
Complete proofs of the equivalence of various characterizations of compact and dis-
crete quantum groups can be found in [41].
A LCQGG is compact if its le�Haarweight φ is ûnite. _is is equivalent to C0(G)

being unital. In this case,we denoteC0(G) byC(G). Moreover, the rightHaarweight
ψ is also ûnite, and assuming, as customary, that both φ and ψ are states, they are
equal.
A LCQG G is discrete if it is the dual of a compact quantum group. _is is equiv-

alent to (L1(G), ∗) admitting a unit є. In this case, we denote C0(G), L∞(G) by
c0(G), ℓ∞(G), respectively, and have

c0(G) ≅ c0 − ⊕
α∈Irred(Ĝ)

Mn(α) and ℓ∞(G) ≅ ℓ∞ − ⊕
α∈Irred(Ĝ)

Mn(α) ,
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where Irred(G) is the set of equivalence classes of (necessarily ûnite-dimensional) ir-
reducible unitary co-representations of Ĝ, and for every α ∈ Irred(Ĝ), n(α) ∈ N de-
notes the dimension of the representation. Particularly, the summand corresponding
to the trivial co-representation of Ĝ gives a central minimal projection p in ℓ∞(G),
satisfying ap = є(a)p = pa for every a ∈ ℓ∞(G).
A LCQG G is called co-amenable (see Bédos and Tuset [2] or Desmedt, Quaege-

beur and Vaes [9], who use a diòerent terminology) if L1(G) admits a bounded ap-
proximate identity. _is is equivalent to the Banach algebra (C0(G)∗ , ∗) having a
unit [2, _eorem 3.1], which is called the co-unit of G and denoted by є. It is also
equivalent to the surjection πu∶Cu

0(G) → C0(G) being an isomorphism, in which
case we simply identify Cu

0(G) with C0(G).
Every locally compact groupG is co-amenable as a (commutative) quantumgroup,

while its co-commutative dual Ĝ is co-amenable if and only if G is amenable as a
group. Discrete quantum groups are trivially co-amenable.

1.3 Positive-definite Functions Over LCQGs

Let G be a LCQG. In [6, 8], Daws and Salmi introduced four notions of positive deû-
niteness for elements of L∞(G). Here we will need only two of them, namely (1) and
(2) of [8]. Note that we use diòerent notation: ω,ω∗ are denoted by ω∗ ,ω♯ in [6, 8].

Deûnition 1.4 Let G be a LCQG.
(i) A positive-deûnite function is x ∈ L∞(G) satisfying (ω∗ ∗ ω)(x∗) ≥ 0 for every

ω ∈ L1
∗(G).

(ii) A Fourier–Stieltjes transform of a positive measure is an element x of the form
(id⊗ µ̂)( W∗) = λ̂u(µ̂) for some µ̂ ∈ Cu

0(Ĝ)∗+. Note that x ∈ M(C0(G)) in this
case.

_eorem 1.5 ([8, Lemma 1 and _eorem 15]) For x ∈ L∞(G), we have (ii)⇒ (i),
and the converse holds when G is co-amenable.

For co-amenable G, we will therefore just use the adjective “positive deûnite” for
these elements.

Remark 1.6 Let G be a co-amenable LCQG with co-unit є ∈ C0(G)∗. Write є also
for its strictly continuous extension to M(C0(G)). If x ∈ L∞(G) is positive deûnite,
then ∥x∥ = є(x), for writing x = (id⊗ µ̂)( W∗) with µ̂ ∈ Cu

0(Ĝ)∗+, we have

∥x∥ ≥ є(x) = є((id⊗ µ̂)( W∗)) = µ̂((є ⊗ id)( W∗)) = µ̂(1) = ∥µ̂∥ ≥ ∥x∥

(see [1, Corollary 2.2] and [2,_eorem 3.1]).

2 Square-integrable Positive-definite Functions Over Locally Com-
pact Quantum Groups

_is section is dedicated to proving a generalization of Godement’s theorem on
square-integrable positive-deûnite functions. It can be established directly along the
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lines of [10, Section 13.8], but we feel that it is more correct to do it through the gen-
eralization of this result to le� Hilbert algebras given by Phillips [39]. We start with
some background. LetA be a full (that is, achieved) le�Hilbert algebra [44,46] andH
be the completion ofA. We denote by π(ξ) (resp. π′(ξ)) the operator corresponding
to a le�-bounded (resp. right-bounded) vector ξ ∈H.

Deûnition 2.1 (Perdrizet [38],Haagerup [19]) Let

P♭ ∶= {η ∈H ∶ ⟨η, ξ♯ξ⟩ ≥ 0 for every ξ ∈ A} .

_is set is evidently a cone in H.

Remark 2.2 Let η ∈ H. Takesaki [46, _eorem VI.1.26 (ii)] implies that η ∈ P♭ if
and only if ⟨η, π(ξ)∗ξ⟩ ≥ 0 for every le�-bounded vector ξ ∈H.

Deûnition 2.3 ([39]) Let η ∈ P♭.
(i) Say that η is integrable if sup{⟨η, ξ⟩ ∶ ξ is a selfadjoint idempotent in A} <∞.
(ii) Say that ζ ∈ P♭ is a square root of η if ⟨ξ, η⟩ = ⟨π(ξ)ζ , ζ⟩ for every ξ ∈ A.

We denote the set of all integrable elements of P♭ by P♭int.

_eorem 2.4 ([39, _eorem 1.10]) Let η ∈ P♭. _en η is integrable if and only if it
has a square root ζ ∈ P♭. If η ∈ A′, then also ζ ∈ A′, and ζζ = η.

Moreover, the span of P♭int can be endowed with a natural norm making it iso-
metrically isomorphic to a dense subspace of the predual of the (le�) von Neumann
algebra Rℓ(A) ofA [39,_eorem 2.9]. In particular, η ∈ P♭int with square root ζ ∈ P♭
induces the element ωζ ∣Rℓ(A) of Rℓ(A)∗.

Let G be a LCQG, and set J ∶= I ∩ L1
∗(G).

Lemma 2.5 Let x , y ∈ L∞(G). If (ω∗1 ∗ω2)∗(y) = (ω∗1 ∗ω2)(x) for everyω1 ,ω2 ∈ J.
_en y ∈ D(S) and S(y) = x.

Proof _e assertion follows by repeating the argument of [8, proof ofLemma 5]with
L1
∗(G) being replaced by J. _is is possible as I, and hence J, are invariant under the

scaling group adjoint (τ∗t )t∈R, and J, J
∗ are norm dense in L1(G) [31, Lemma 2.5 and

its proof].

We need a slight strengthening of [8,_eorem 6] and part of [31, Proposition 2.6].

Lemma 2.6 _e set {ω∗1 ∗ ω2 ∶ ω1 ,ω2 ∈ J} is total in (L1
∗(G), ∥ ⋅ ∥∗). _us the sub-

space J ∩ J∗ is dense in (L1
∗(G), ∥ ⋅ ∥∗).

Proof Since I is a le� ideal [55, Lemma 4.8], {ω∗1 ∗ ω2 ∶ ω1 ,ω2 ∈ J} is contained in
J ∩ J∗. Adapting the argument of [8, proof of_eorem 6], if {ω∗1 ∗ ω2 ∶ ω1 ,ω2 ∈ J}
were not total in (L1

∗(G), ∥ ⋅ ∥∗), then there would be x , y ∈ L∞(G) such that

0 = (ω∗1 ∗ ω2)(x) + (ω∗1 ∗ ω2)∗(y),
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that is, (ω∗1 ∗ ω2)∗(y) = (ω∗1 ∗ ω2)(−x∗), for every ω1 ,ω2 ∈ J. Lemma 2.5 gives that
y ∈ D(S) and S(y) = −x∗, and hence the element of (L1

∗(G), ∥ ⋅ ∥∗)∗ corresponding
to (x , y) is zero.

Considering the full le� Hilbert algebra Aφ̂ associated with the le�-invariant
weight φ̂ of Ĝ, we let P♭φ̂ stand for the corresponding cone.

Lemma 2.7 Let x ∈ L∞(G). If x ∈ Nφ , then x is a positive-deûnite function if and
only if Λ(x) ∈ P♭φ̂ .

Proof By deûnition, x is positive deûnite if and only if (ω∗ ∗ ω)(x∗) ≥ 0 for every
ω ∈ L1

∗(G). From Lemma 2.6, it suõces to check this for ω ∈ J. But if ω ∈ J, then also
ω∗ ∗ ω ∈ J and for ŷ ∶= λ(ω) we have ŷ∗ ŷ = λ(ω∗ ∗ ω) and

(ω∗ ∗ ω)(x∗) = ⟨Λ̂(λ(ω∗ ∗ ω)),Λ(x)⟩ = ⟨ ŷ∗Λ̂( ŷ),Λ(x)⟩.
By Remark 2.2, Λ(x) ∈ P♭φ̂ if and only if ⟨Λ(x), ŷ∗Λ̂( ŷ)⟩ ≥ 0 for every ŷ ∈ Nφ̂ . Using
[31, Lemma 2.5], that is equivalent to ⟨Λ(x), ŷ∗Λ̂( ŷ)⟩ ≥ 0 for every ŷ ∈ λ(J). _is
completes the proof.

Proposition 2.8 Let G be a co-amenable LCQG. _ere exists a contractive approxi-
mate identity for (L1

∗(G), ∥ ⋅ ∥∗) in J ∩ J∗.

Proof By [8, _eorem 13], (L1
∗(G), ∥ ⋅ ∥∗) has a contractive approximate identity.

Combining this with Lemma 2.6, the assertion is proved.

_e following result generalizes [39,_eorem 1.6], saying that ifG is a locally com-
pact group and f ∈ L2(G) is positive deûnite and essentially bounded on a neighbor-
hood of the identity, then it belongs to A(G).

Corollary 2.9 Let G be a co-amenable LCQG. If x ∈ Nφ and x is positive deûnite,
then Λ(x) is integrable with respect to Aφ̂ (see Deûnition 2.3).

Proof Let (є i) be a contractive approximate identity for (L1
∗(G), ∥ ⋅ ∥∗) in J ∩ J∗.

_en letting ξ i ∶= Λ̂(λ(є i)), we get a net (ξ i) in the le� Hilbert algebra Aφ̂ . Since
x ∈ Nφ , we have for every i,

⟨Λ(x), ξ♯i ξ i⟩ = ⟨Λ(x), Λ̂(λ(є∗i ∗ є i))⟩ = ⟨Λ̂(λ(є∗i ∗ є i)),Λ(x)⟩ = (є∗i ∗ є i)(x∗),
and so ⟨Λ(x), ξ♯i ξ i⟩ ≤ ∥є∗i ∥∥є i∥∥x∥ ≤ ∥x∥. SinceΛ(x) ∈ P♭φ̂ byLemma 2.7 and (λ(є i))
converges strongly to 1 (for L1

∗(G) is dense in L1(G)), [39, Proposition 1.5] applies,
and yields that Λ(x) is integrable with respect to Aφ̂ .

We now prove themain result of this section, generalizing a theoremofGodement
[17,_éorème 17].

_eorem 2.10 Let G be a co-amenable LCQG. If x ∈ Nφ and x is positive deûnite,
then Λ(x) has a square root in P♭φ̂ (Deûnition 2.3); equivalently, there exists ζ ∈ P♭φ̂

such that x = λ̂(ω̂ζ). If, additionally, Λ(x) ∈ A′
φ̂ , then also ζ ∈ A′

φ̂ , in which case
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Λ(x) = π̂′(ζ)ζ. _at is, if ŵ ∈ Nφ̂ is positive and ĴΛ̂(ŵ) ∈ Λ(Nφ), then the (positive)
square root of ŵ also belongs to Nφ̂ .

Proof _e ûrst part of the ûrst assertion, as well as the second assertion, follow
from _eorem 2.4 by using Corollary 2.9. For the part a�er “equivalently”, Λ(x)
having a square root in P♭φ̂ means, by deûnition, that there exists ζ ∈ P♭φ̂ such that
⟨Λ̂( ŷ),Λ(x)⟩ = ω̂ζ( ŷ) for every ŷ ∈ Nφ̂ ∩N∗

φ̂ . _us for every ŷ ∈ Nφ̂ [46, _eorem
VI.1.26 (ii)]. In particular, for every ω ∈ I,

ω(x∗) = ⟨Λ̂(λ(ω)),Λ(x)⟩ = ω̂ζ(λ(ω)) = ω[(id⊗ ω̂ζ)(W)].

_e density of I in L1(G) entails that x = (id⊗ ω̂ζ)(W)∗ = (id⊗ ω̂ζ)(W∗) = λ̂(ω̂ζ).
_e converse is proved similarly.
For the last sentence, note that P♭φ̂ ∩A′

φ̂ = {ĴΛ̂(ŵ) ∶ ŵ ∈ Nφ̂ and ŵ ≥ 0} (see the
right version of [38, Proposition 2.5]). If an element there is in Λ(Nφ), then its square
root inP♭φ̂ has the form ĴΛ̂(ẑ) for ẑ ∈ Nφ̂ with ẑ ≥ 0, and the equality ĴΛ̂(ŵ) = ĴΛ̂(ẑ2)
implies that ŵ = ẑ2.

Remark 2.11 In the situation of _eorem 2.10 we have ∥x∥ = ∥ω̂ζ∥ = ∥ζ∥2 by Re-
mark 1.6.

3 Convolution in Lp(G)
_is section contains the preliminaries on non-commutative Lp-spaces of LCQGs
needed in the next section. _e theory of non-commutative Lp-spaces of von Neu-
mann algebraswas developed in three approaches,which turned out to be equivalent:
the “abstract” one byHaagerup [20], the “spatial” one byConnes andHilsum [21], and
the one using interpolation theory, whose ûnal form is by Izumi [23] (see also Terp
[48,49]). Here we rely on the work of Caspers [4], who introduced and studied non-
commutative Lp-spaces of LCQGs based on Izumi’s approach with interpolation pa-
rameter α = − 1

2 . _ishas two clear virtues. _e ûrst,which is intrinsic in interpolation
theory, is the fact that as vector spaces, all non-commutative Lp-spaces are realized
as subspaces of a larger space, allowing consideration of their intersections. Caspers
proved thatwhen α = − 1

2 , some of these intersections take a particularly natural form.
_e second is simplicity: the statement (but not the proof) of the construction’s basic
ingredients does not requiremodular theory.

We oòer now a succinct account of the theory. A pair of Banach spaces (A0 ,A1)
is called compatible in the sense of interpolation theory (see Bergh and Löfström [3,
Section 2.3]) if they are continuously embedded in a Hausdorò topological vector
space. For 0 < θ < 1, the Calderón complex interpolation method [3, Chapter 4] gives
the interpolation Banach space Cθ(A0 ,A1). As a vector space it satisûes A0 ∩ A1 ⊆
Cθ(A0 ,A1) ⊆ A0+A1, and these inclusions are contractivewhen A0∩A1 and A0+A1
are given the norms ∥a∥A0∩A1 ∶= max(∥a∥A0 , ∥a∥A1), a ∈ A0 ∩ A1, and ∥a∥A0+A1 ∶=
inf{∥a0∥A0 + ∥a1∥A1 ∶ a0 ∈ A0 , a1 ∈ A1 , a = a0 + a1} , a ∈ A0 + A1. Moreover, A0 ∩ A1
is dense in Cθ(A0 ,A1) [3, _eorem 4.2.2]. _e functor Cθ is an exact interpolation
functor of exponent θ in the following sense. Given another compatible pair (B0 , B1),
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two boundedmaps Ti ∶A i → B i , i = 0, 1, are called compatible if they agree on A0∩A1.
_en the induced linearmapT ∶A0+A1 → B0+B1 satisûesTCθ(A0 ,A1) ⊆ Cθ(B0 , B1),
and the restriction T ∶Cθ(A0 ,A1)→ Cθ(B0 , B1) has norm at most ∥T0∥1−θ∥T1∥θ .

Let M be a von Neumann algebra, and let φ be an n.s.f. weight on M. Deûne

L ∶= {x ∈ Nφ ∶ (∃ xφ ∈ M∗∀y ∈ Nφ) xφ(y
∗) = φ(y∗x)} ,

R ∶= {x ∈ N∗
φ ∶ (∃φx ∈ M∗∀y ∈ Nφ)φx(y) = φ(xy)} .

_e spaces L, R are precisely L(−1/2) , L(1/2) in Izumi’s notation [4, Proposition 2.14].
Endow L, R with norms by putting ∥x∥L ∶= max(∥x∥M , ∥ xφ∥M∗

) for x ∈ L and
∥x∥R ∶= max(∥x∥M , ∥φx∥M∗

) for x ∈ R. Deûne linear mappings l 1∶ L → M∗,
l∞∶ L → M, r1∶R → M∗, and r∞ ∶ ∶R → M by l 1(x) ∶= xφ and l∞(x) ∶= x for
x ∈ L, and similarly r1(x) ∶= φx and r∞(x) ∶= x for x ∈ R. _ese maps are con-
tractive and injective. Furthermore, the adjoints (l 1)∗∶M → L∗, (l∞)∗∶M∗ → L∗,
(r1)∗∶M → R∗, and (r∞)∗∶M∗ → R∗ are also injective (in the second and the fourth
we restricted the usual adjoint from M∗ to M∗). By [23, _eorem 2.5], the diagram
on the le�-hand side is commutative:

M � p
(r1)∗

!!
L
. �

l∞
==

� p

l 1   

R∗

M∗

. � (r∞)∗

==

M � r
(r1)∗

$$
L
, �

l∞
::

� r

l 1 ##

� � l p // Lp(M)left
� � // R∗

M∗

, � (r∞)∗

::

(3.1)

In addition, by [23, Corollary 2.13],

(3.2) ((r1)∗ ○ l∞)(L) = (r1)∗(M) ∩ (r∞)∗(M∗) = ((r∞)∗ ○ l 1)(L),
allowing us to regard L as the “intersection of M and M∗ in R∗”.

Viewing M ,M∗ as embedded as vector spaces in R∗ via (r1)∗ , (r∞)∗, the pair
(M ,M∗) is thus compatible. For 1 < p <∞,we deûne (Lp(M)left , ∥ ⋅ ∥p) to be the in-
terpolationBanach spaceC1/p(M ,M∗). As above,we have (r1)∗(M)∩(r∞)∗(M∗) ⊆
Lp(M)left ⊆ (r1)∗(M) + (r∞)∗(M∗) (all inside R∗) with contractive inclusions and
(r1)∗(M) ∩ (r∞)∗(M∗) is dense in (Lp(M)left , ∥ ⋅ ∥p). From (3.2) we get a contrac-
tive injection l p ∶ L → Lp(M)left with dense range, and the diagramon the right-hand
side of (3.1) is commutative.
Denote by (H,Λ) the GNS construction for (M , φ). _emap l 2(x)↦ Λ(x), x ∈

L, extends to a unitary U l from L2(M)left to H, allowing us to identify these spaces.
We have the useful identity ⟨U∗

l ξ, y⟩R∗ ,R = ⟨ξ,Λ(y∗)⟩H for all ξ ∈ H and y ∈ R [4,
Propositions 2.21, 2.22]. In the sequel we put L∞(M)left ∶= M and L1(M)left ∶= M∗,
and view M, M∗ andH as linear subspaces of R∗ by eliminating the usage of (r1)∗,
(r∞)∗ and U∗

l .
Deûne I ∶= {ω ∈ M∗ ∶ (∃ξ(ω) ∈ H ∀x ∈ Nφ)ω(x∗) = ⟨ξ(ω),Λ(x)⟩} , and note

that this is precisely I deûned for L∞(G) in Section 1. By [4, _eorem 3.3], we have
I = H ∩ M∗ in R∗, with ω ∈ I being equal to ξ(ω). Moreover, the pair (H,M∗)
is evidently also compatible. It was proved in [4, _eorem 3.7] using the reiteration
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theorem that for 1 < p < 2, we have C 2
p−1(H,M∗) = Lp(M)left in the simplest sense

that they are equal as vector subspaces of R∗ and have the same norm.

Deûnition 3.1 Let G be a LCQG. For 1 ≤ p ≤ ∞, we deûne Lp(G)left to
be Lp(L∞(G))left, calculated with respect to the le� Haar weight φ. We identify
Lp(G)left with Lp(G) for p = 1, 2,∞.

_e following generalization of [4, _eorem 6.4 (i)–(iii)] is proved in the same
way, with obvious modiûcations. For completeness, we give full details. Handling
the last part of the theorem, relating convolutions and the Fourier transform on non-
commutative Lp-spaces, requires too much background and is not needed in this pa-
per. It is thus le� to the reader. A special case of this construction was developed by
Forrest, Lee, and Samei [16, Subsection 6.2].

_eorem 3.2 Let G be a LCQG, µ ∈ Cu
0(G)∗ and 1 < p < 2. Consider the maps

µ∗1 ∈ B(L1(G)), L1(G) ∋ ω ↦ µ ∗ ω, and µ∗2 ∶= λu(µ) ∈ B(L2(G)). _en these
maps are compatible, and the resulting induced operator µ∗p ∈ B(Lp(G)left) satisûes
∥µ ∗p ∥ ≤ ∥µ∥.

Proof Fix ω ∈ I. For ω̂ ∈ Î, write y ∶= λ̂(ω̂) ∈ C0(G) ∩Nφ , and calculate

(µ ∗ ω)(y∗) = (µ ⊗ ω)(W∗(1⊗ y∗)W) = (µ ⊗ ω)(W∗(1⊗ (id⊗ ω̂)(W))W)
= (µ ⊗ ω ⊗ ω̂)(W∗

12W23W12) = (µ ⊗ ω ⊗ ω̂)(W13W23)
= ω̂ [(µ ⊗ id)(W) ⋅ (ω ⊗ id)(W)] = ω̂ [(λu(µ)λ(ω))∗]
= ⟨Λ̂(λu(µ)λ(ω)),Λ(y)⟩ = ⟨λu(µ)Λ̂(λ(ω)),Λ(y)⟩.

As λ̂(Î) is a core for Λ, we deduce that µ ∗ ω ∈ I and ξ(µ ∗ ω) = λu(µ)ξ(ω) (a
slight generalization of [55, Lemma 4.8]). _is means precisely that µ∗1 and µ∗2 are
compatible.

Since C 2
p−1(L2(G), L1(G)) = Lp(G)left and since Cθ is an exact interpolation

functor of exponent θ, we have the existence of µ∗p , and

∥µ ∗p ∥ ≤ ∥µ ∗1 ∥1−((2/p)−1)∥µ ∗2 ∥(2/p)−1 ≤ ∥µ∥1−((2/p)−1)∥µ∥(2/p)−1 = ∥µ∥.

Remark 3.3 For p > 2 it may be generally impossible to give a proper meaning to
µ ∗p ω when µ ∈ Cu

0(G)∗ and ω ∈ Lp(G)left.

3.1 Duality

For 1 < p, q < ∞ with 1
p + 1

q = 1, Izumi, generalizing the classical duality of
Lp-spaces, proved that Lp(G)∗left ≅ Lq(G)left via a natural sesquilinear form ( ⋅ ∣ ⋅ )p

over Lp(G)left × Lq(G)left ([24,_eorem 6.1]; as usual, we assume α = − 1
2 through-

out). For x , y ∈ L, we have (l p(x)∣l q(y))p = xφ(y∗) = φ(y∗x) [24,_eorem 2.5].
If 1 < p ≤ 2, ω ∈ I = L1(G) ∩ L2(G) and y ∈ L, then (ω∣l q(y))p = ω(y∗). Indeed,

endow I with the natural norm ∥ω∥I ∶= max(∥ω∥L1(G) , ∥ξ(ω)∥L2(G)), ω ∈ I. _e
embedding L ↪ I, L ∋ x ↦ xφ, is contractive with dense range [4, Proposition 3.4].
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If (xn) is a sequence in L such that xnφ → ω in I, then l p(xn) → ω in Lp(G)left, and
so (ω∣l q(y))p ← (l p(xn)∣l q(y))p = xnφ(y∗)→ ω(y∗).

4 Comparison of Topologies on the Unit Sphere of Cu
0(G)∗

In this section we generalize the main results of Granirer and Leinert [18], and in
particular obtain a result (_eorem4.8) about positive-deûnite functions overLCQGs
extending [40, 57].

Deûnition 4.1 Let G be a LCQG. We deûne several topologies on Cu
0(G)∗ as fol-

lows.
(i) _e strict topology is the one induced by the semi-norms µ ↦ ∥ω ∗ µ∥L1(G) and

µ ↦ ∥µ ∗ ω∥L1(G), ω ∈ L1(G).
(ii) For p ∈ [1, 2], the p-strict topology is the one induced by the semi-norms µ ↦

∥µ ∗p ω∥p , ω ∈ Lp(G)left.
(iii) For p ∈ [1, 2], a net (µβ) in Cu

0(G)∗ converges to µ ∈ Cu
0(G)∗ in the weak p-

strict topology if µβ ∗p ω → µ ∗p ω in the w-topology σ(Lp(G)left , Lp(G)∗left)
for every ω ∈ Lp(G)left.

(iv) A net (µβ) in Cu
0(G)∗ converges to µ ∈ Cu

0(G)∗ in τnw∗ if µβ
w∗Ð→ µ and ∥µβ∥→

∥µ∥.
(v) A net (µβ) in Cu

0(G)∗ converges to µ ∈ Cu
0(G)∗ in τbw∗ if µβ

w∗Ð→ µ and (µβ)
is bounded.

We now generalize [18, _eorem A], answering aõrmatively a question raised by
Hu, Neufang, and Ruan [22, p. 140].

_eorem 4.2 LetG be a LCQG. On Cu
0(G)∗, the strict topology isweaker than τnw∗ .

Lemma 4.3 Let A be a C∗-algebra and (eα) be an approximate identity for A. Let
(µβ) be a net in A∗ and µ ∈ A∗ be such that µβ

w∗Ð→ µ and ∥µβ∥→ ∥µ∥. _en for every
ε > 0 there are α0 , β0 such that ∥eα0 µβ − µβ∥ < ε (resp., ∥µβeα0 − µβ∥ < ε) for every
β ≥ β0 and ∥eα0 µ − µ∥ < ε (resp., ∥µ − µeα0∥ < ε).

Proof If M is a von Neumann algebra (e.g., A∗∗), recall that the “absolute value” of
ν ∈ M∗ can be deûned in two ways, as the unique ∣ν∣ ∈ M+

∗ with ∥∣ν∣∥ = ∥ν∥ satisfying
either ∣ν(x)∣2 ≤ ∥ν∥ ⋅ ∣ν∣(x∗x) or ∣ν(x)∣2 ≤ ∥ν∥ ⋅ ∣ν∣(xx∗) for all x ∈ M. We will use
the ûrstway to establish half of the lemma’s assertion, the other half being established
similarly using the second way.
For every ν ∈ A∗ and a ∈ Awe have, writing 1 for 1M(A),

∣(ν − eαν)(a)∣2 = ∣ν(a(1 − eα))∣2 ≤ ∥ν∥∣ν∣[(1 − eα)a∗a(1 − eα)]
≤ ∥ν∥∥a∥2∣ν∣((1 − eα)2) ≤ ∥ν∥∥a∥2∣ν∣(1 − eα).

Hence ∥ν − eαν∥2 ≤ ∥ν∥∣ν∣(1 − eα). Since (eα) is an approximate identity for A, we
have ∣ν∣(1 − eα) → 0 by strict continuity. Let α0 be such that ∥µ∥∣µ∣(1 − eα0) < ε2.
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Since µβ
w∗Ð→ µ and ∥µβ∥ → ∥µ∥, we have ∣µβ ∣

w∗Ð→ ∣µ∣ (see Eòros [11, Lemma 3.5] or
[45, Proposition III.4.11]). _erefore,

∥µβ − eα0 µβ∥2 ≤ ∥µβ∥∣µβ ∣(1 − eα0)Ð→β ∥µ∥∣µ∣(1 − eα0) < ε2 ,

so we can choose β0 as asserted.

Lemma 4.4 Let a, b ∈ Cu
0(G). _emap

(Cu
0(G)∗ , τbw∗)→ (Cu

0(G)∗ , strict topology)
given by µ ↦ aµb is continuous.

Proof Let (µβ) be a bounded net inCu
0(G)∗ and µ ∈ Cu

0(G)∗ be such that µβ
w∗Ð→ µ.

Representing Cu
0(G) faithfully on a Hilbert space Hu, we view the operator W ∈

M(Cu
0(G) ⊗min C0(Ĝ)) as an element of B(Hu ⊗ L2(G)). Recall [29, Proposition

8.3 and its proof] that for every ν ∈ Cu
0(G)∗ and ω ∈ C0(G)∗, the functional ν ∗ ω ∈

Cu
0(G)∗ corresponds to the element of C0(G)∗ given by

C0(G) ∋ x ↦ (ν ⊗ ω)(W∗(1⊗ x)W),
which makes sense becauseW∗(1⊗ x)W ∈ M(Cu

0(G)⊗min C0(G)).
Fix ω ∈ L1(G), write ω = ωζ ,η for ζ , η ∈ L2(G) (this is possible as L∞(G) is in

standard formon L2(G)), and let eζ , eη ∈K(L2(G)) be the projections of L2(G) onto
Cζ ,Cη, respectively. _en for ν ∈ Cu

0(G)∗, the functional (aνb) ∗ ω corresponds to

C0(G) ∋ x ↦ (ν ⊗ ωζ ,η)((b ⊗ 1)W∗(1⊗ x)W(a ⊗ 1))
= (ν ⊗ ωζ ,η)((b ⊗ eη)W∗(1⊗ x)W(a ⊗ eζ)) .

SinceW ∈ M(Cu
0(G)⊗min K(L2(G))) , bothW(a⊗ eζ) and (b⊗ eη)W∗ belong to

Cu
0(G)⊗min K(L2(G)). As a result, approximating them in norm by elements of the

corresponding algebraic tensor product,we see that (µβ) being bounded and the fact

that µβ
w∗Ð→ µ imply that (aµβb) ∗ ω

∥ ⋅ ∥ÐÐ→ (aµb) ∗ ω. By using the universal version
of the unitary antipode Ru∶Cu

0(G) → Cu
0(G) and its properties [29, Proposition 7.2],

we conclude that also ω ∗ (aµβb)
∥ ⋅ ∥ÐÐ→ ω ∗ (aµb).

Proof of_eorem 4.2 Let (µβ) be a net in Cu
0(G)∗ and µ ∈ Cu

0(G)∗ be such that

µβ
nw∗ÐÐ→ µ, and let ω ∈ L1(G) and ε > 0. Fix an approximate identity (eα) for Cu

0(G).
By invoking Lemma 4.3 twice, we ûnd α1 , α2 , β1 such that ∥eα1 µβeα2 − µβ∥ < ε for
every β ≥ β1 and ∥eα1 µeα2 − µ∥ < ε. From Lemma 4.4, there is β2 such that

∥(eα1 µβeα2) ∗ ω − (eα1 µeα2) ∗ ω∥, ∥ω ∗ (eα1 µβeα2) − ω ∗ (eα1 µeα2)∥ < ε
for every β ≥ β2. We conclude that the strict topology is weaker than τnw∗ .

We now generalizemost of [18,_eorem D] for 1 ≤ p ≤ 2.

Corollary 4.5 Let 1 ≤ p ≤ 2. On Cu
0(G)∗ the p-strict topology is weaker than τnw∗ ,

and on bounded sets,the w∗-topology is weaker than the weak p-strict topology.
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Proof Let (µβ) be a net in Cu
0(G)∗ and µ ∈ Cu

0(G)∗. We use _eorem 3.2 and its
notation. Let µβ

nw∗ÐÐ→ µ. Let ω ∈ I and ξ ∶= ξ(ω) (so ω = ξ in R∗). By _eorem 4.2,
(µβ − µ) ∗1 ω → 0 in L1(G). Moreover, (µβ − µ) ∗2 ξ = λu(µβ − µ)ξ → 0 in L2(G)
(see _eorem 4.6, (vii) ⇒ (ii) below). Since the canonical embedding (I, ∥ ⋅ ∥I) ↪
(Lp(G)left , ∥ ⋅ ∥p) is contractive, we infer that (µβ − µ) ∗p ω → 0 in Lp(G)left. _at
embedding has dense range and ((µβ − µ)∗p)β is bounded in B(Lp(G)left); hence
(µβ − µ) ∗p ω → 0 for all ω ∈ Lp(G)left.
For the second statement, suppose that (µβ) is bounded and that µβ → µ in the

weak p-strict topology. We claim that (µβ − µ) ∗ω → 0 in the w∗-topology for every
ω ∈ L1(G). Assume for themoment that p > 1 and let q ∈ [2,∞) be the conjugate of
p. Let ω ∈ I and y ∈ L. If (µβ − µ) ∗p ω → 0 weakly, then by Subsection 3.1, we have

(4.1) ((µβ − µ) ∗ ω)(y∗) = ((µβ − µ) ∗p ω∣l q(y)) p → 0.

Denoting by Tφ the Tomita algebra of φ, the set { ab ∶ a, b ∈ Tφ} is contained in L
by [23, Proposition 2.3]. As φ∣C0(G)+ is a C∗-algebraic KMS weight on C0(G) whose
modular automorphismgroup is the restriction of that of φ to C0(G) [31, Proposition
1.6 and its proof], Tφ ∩ C0(G) is norm dense in C0(G). Hence L ∩ C0(G) is norm
dense in C0(G), and π−1

u (L ∩ C0(G)) is norm dense in Cu
0(G). Consequently, (4.1)

implies that as elements of Cu
0(G)∗, (µβ − µ) ∗ ω → 0 pointwise on a norm dense

subset of Cu
0(G), which by the boundedness of (µβ) implies that (µβ − µ) ∗ ω → 0

in the w∗-topology. By density of I in L1(G) and boundedness again, this holds for
every ω ∈ L1(G) as claimed. In the case that p = 1 we have the same result, since the
assumption that (µβ − µ) ∗ ω → 0 in the w-topology σ(L1(G), L∞(G)) is formally
stronger.

Since {(id⊗ ω)(W∗(1⊗ b)W) ∶ ω ∈ L1(G), b ∈ C0(G)} is dense in Cu
0(G) and

(µβ) is bounded, we infer from the claim that µβ → µ in the w∗-topology.

Let G be a locally compact group. If (gβ) is a bounded net in B(G) and g ∈ B(G),
then gβ → g uniformly on the compact subsets of G if and only if f gβ → f g in the
C0(G) norm for every f ∈ C0(G). Indeed, one direction is trivial, and for the other,
notice that (gβ) is bounded in Cb(G) since ∥ ⋅ ∥Cb(G) ≤ ∥ ⋅ ∥B(G). Hence, the following
result generalizes [18,_eorem B2].

_eorem 4.6 Let G be a LCQG and let S denote the unit sphere of Cu
0(G)∗. If (µβ)

is a net in S and µ ∈ S, then the following are equivalent:
(i) µβ → µ in the w∗-topology,
(ii) λu(µβ)→ λu(µ) in the strict topology on M(C0(Ĝ)),
(iii) µβ ⋅ a → µ ⋅ a and a ⋅ µβ → a ⋅ µ in C0(G) for every a ∈ C0(G) (see Lemma 1.3),
(iv) µβ ⋅ a → µ ⋅ a and a ⋅ µβ → a ⋅ µ in the w∗-topology σ(L∞(G), L1(G)) for every

a ∈ L∞(G), that is: µβ ∗ ω → µ ∗ ω and ω ∗ µβ → ω ∗ µ in the w-topology
σ(L1(G), L∞(G)) for every ω ∈ L1(G),

(v) (µβ ∗ω)a → (µ∗ω)a and a(µβ ∗ω)→ a(µ∗ω) in L1(G) for every a ∈ C0(G),
ω ∈ L1(G),

(vi) for every a ∈ C0(G) and ω ∈ L1(G), (µβ ∗ ω)a → (µ ∗ ω)a and a(µβ ∗ ω) →
a(µ ∗ ω) in the w-topology σ(L1(G), L∞(G)),
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(vii) µβ → µ in the strict topology,
(viii) for some 1 ≤ p ≤ 2, µβ → µ in the p-strict topology,
(ix) for some 1 ≤ p ≤ 2, µβ → µ in the weak p-strict topology.

Proof From _eorem 4.2 and Corollary 4.5, conditions (i), (iv), (vii), (viii), and (ix)
are equivalent. It is clear that ((vii)⇒ (v)⇒ (vi). (vii)⇒ (ii). Since λu is a homo-
morphism, we have λu(µβ)λ(ω) → λu(µ)λ(ω) and λ(ω)λu(µβ) → λ(ω)λu(µ) for
every ω ∈ L1(G). As {λ(ω) ∶ ω ∈ L1(G)} is norm dense in C0(Ĝ) and (λu(µβ)) is
bounded, we conclude that λu(µβ)→ λu(µ) in the strict topology on M(C0(Ĝ)).

(ii) ⇒ (i). Since λu(µβ) → λu(µ) in the strict topology on M(C0(Ĝ)) and
(λu(µβ)) is bounded, this convergence holds in the ultraweak topology as well. So
for all ω̂ ∈ L1(Ĝ), we have (µβ − µ)((id ⊗ ω̂)(W)) = ω̂(λu(µβ − µ)) → 0. As
{(id ⊗ ω̂)(W) ∶ ω̂ ∈ L1(Ĝ)} is dense in Cu

0(G) and (µβ) is bounded, we infer that
µβ → µ in the w∗-topology.

(vii)⇒ (iii). We may assume that a = ω ⋅ b for some ω ∈ L1(G) and b ∈ C0(G),
because the set of these elements spans a dense subset of C0(G). Hence

(µβ − µ) ⋅ a = (µβ − µ) ⋅ (ω ⋅ b) = ((µβ − µ) ∗ ω) ⋅ b → 0,
and similarly a ⋅ (µβ − µ)→ 0.

_e proofs of (iii)⇒ (i) and (vi)⇒ (i) are le� to the reader (see the proof of Corol-
lary 4.5, and use that C0(G)2 = C0(G)).

Remark 4.7 In view of_eorem 4.6, the following is noteworthy. Let G be a com-
pact quantum group. Generalizing a classical result about discrete groups, Kyed [32,
_eorem 3.1] proved that the discrete dual Ĝ has property (T) if and only if every net
of states of Cu(G), converging in thew∗-topology to the co-unit, converges in norm.

A classical result [40, 57] says that if G is a locally compact group, then on the set
of positive-deûnite functions of L∞(G)-norm 1, the w∗-topology σ(L∞(G), L1(G))
and the topology of uniform convergence on compact subsets coincide. _e following
generalizes this to LCQGs.

_eorem 4.8 Assume thatG is a co-amenable LCQG. On the subset S ofM(C0(G))
consisting of all positive-deûnite elements of norm 1, the strict topology induced by
C0(G) coincides with the weak and the strong operator topologies on L2(G).

Proof By co-amenability, themap µ̂ ↦ λ̂u(µ̂) is an isometric isomorphism between
the unit sphere of Cu

0(Ĝ)∗+ and S (_eorem 1.5 and Remark 1.6). Now apply_eorem
4.6, (i) if and only if (ii), to Ĝ in place of G, and notice that for a bounded net in
Cu
0(Ĝ)∗,w∗-convergence is equivalent to convergence in theweak operator topology

of its image under λ̂u. Moreover, on bounded sets the strict topology on M(C0(G))
is ûner than the strong operator topology.

Remark 4.9 Attempting to prove _eorem 4.8 by generalizing the proof of [10,
_eorem 13.5.2] was only partially successful: we were able to establish that on S, the
weak operator topology coincides with the topology on M(C0(G)) in which a net
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(xβ) converges to x if and only if yxβz → yxz for every y, z ∈ C0(G). _is topology
evidently coincides with the strict one when G is commutative, but not generally.

However, it is worth noting that taking this approach, one encounters a straight-
forward generalization of a very useful inequality, namely that if φ is a (continu-
ous) positive deûnite-function on a locally compact group G, then ∣φ(s) − φ(t)∣2 ≤
2φ(e)(φ(e)−Reφ(s−1 t)) for every s, t ∈ G [10, Proposition 13.4.7]. As φ(s−1) = φ(s),
this is equivalent to ∣φ(st) − φ(t)∣2 ≤ 2φ(e)(φ(e) − Reφ(s)) for every s, t ∈ G. If G
is a co-amenable LCQG and y is positive deûnite overG, write y = (id⊗ µ̂)( W∗) for
a suitable µ̂ ∈ Cu

0(Ĝ)∗+. Now ∆(y) − 1 ⊗ y = (id⊗ id⊗ µ̂)( W∗23( W∗13 − 1)), and as
id⊗ id⊗ µ̂ is a completely positivemap of cb-norm ∥µ̂∥ = ∥y∥, the Kadison–Schwarz
inequality implies that

[∆(y) − 1⊗ y]∗[∆(y) − 1⊗ y]
≤ ∥y∥(id⊗ id⊗ µ̂)(( W13 − 1) W23 W∗23( W∗13 − 1))
= ∥y∥(id⊗ id⊗ µ̂)(21 − W13 − W∗13)
= ∥y∥[2∥y∥1 − (y∗ + y)]⊗ 1.

(4.2)

5 A Characterization of Co-amenability of the Dual

Related to the notion of a positive-deûnite function is the notion of a (generally un-
bounded) positive-deûnitemeasure ([17], [10, Section 13.7]). _e purpose of this sec-
tion is to generalize a classical result ofGodement connecting amenability to positive
deûniteness ([10, Proposition 18.3.6], originally [17, pp. 76–77], see also Valette [53]).

Deûnition 5.1 An element µ ∈ C0(G)∗ is called a bounded positive-deûnitemeasure
on G if λ(µ) is positive in M(C0(Ĝ)).

_eorem 5.2 LetG be a co-amenable LCQG._e following conditions are equivalent.
(i) Ĝ is co-amenable.
(ii) Every positive-deûnite function onG is the strict limit in M(C0(G)) of a bounded

net of positive-deûnite functions in λ̂(L1(Ĝ)+) ∩Nφ .
(iii) Every positive-deûnite function onG is the strict limit in M(C0(G)) of a bounded

net of positive-deûnite functions in λ̂(L1(Ĝ)+).
(iv) µ(x∗) ≥ 0 for every bounded positive-deûnitemeasure µ onG and every positive-

deûnite function x on G.
(v) µ(1M(C0(G))) ≥ 0 for every bounded positive-deûnitemeasure µ on G.

Lemma 5.3 Let G be a co-amenable LCQG. _en the cone Q ∶= λ̂(C0(Ĝ)∗+) is
ultraweakly closed in L∞(G).

Proof By the Krein–Šmulian theorem, it suõces to prove that Q1, the intersection
of Q with the closed unit ball of L∞(G), is ultraweakly closed. Let (xα) be a net in
Q1 converging ultraweakly to some x ∈ L∞(G). Write xα = λ̂(µ̂α), µ̂α ∈ C0(Ĝ)∗+, for
every α. By Remark 1.6, (µ̂α) is bounded by one, and so it has a subnet converging in
the w∗-topology to some µ̂ ∈ C0(Ĝ)∗+. Hence x = λ̂u(µ̂) ∈ Q1.
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Proof of_eorem 5.2 (i)⇒ (ii): every positive-deûnite function has the form λ̂(ν̂)
for some ν̂ ∈ Cu

0(Ĝ)∗+ = C0(Ĝ)∗+ by co-amenability of Ĝ (_eorem 1.5). Now ν̂ is
the w∗-limit of a bounded net (ω̂β) in L1(Ĝ)+. Since each element of L1(Ĝ)+ can be
approximated in norm by elements of Î+ of the same norm [55, Lemma 4.7], wemay
assume that ω̂β ∈ Î, and hence λ̂(ω̂β) ∈ Nφ , for every β. From _eorem 4.6 applied
to Ĝ, we infer that λ̂(ω̂β)→ λ̂(ν̂) strictly in M(C0(G)).

(ii)⇒ (iii): clear.
(iii) ⇒ (iv): let µ be a bounded positive-deûnite measure on G. For every ω̂ ∈

L1(Ĝ)+,
µ(λ̂(ω̂)) = (µ ⊗ ω̂)(W∗) = ω̂(λ(µ)∗) ≥ 0.

If x is a positive-deûnite function on G and (ω̂β) is a net in L1(Ĝ)+ such that
λ̂(ω̂β) → x strictly in M(C0(G)), then µ(λ̂(ω̂β)) → µ(x) = µ(x∗). Hence µ(x∗),
or equivalently µ(x∗), is non-negative.

(iv)⇒ (v): trivial, as 1 ∶= 1M(C0(G)) = λ̂u(є̂) is positive deûnite.
(v)⇒ (i): as λ̂u is injective,we should establish that1 belongs to Q. By Lemma 5.3,

Q is an ultraweakly closed cone, so it is enough to show that 1 belongs to the bipolar
of Q. Here we are using the version of the bipolar theorem in which the pre-polar of
Q is given by Q○ ∶= {ω ∈ L1(G) ∶ (∀x ∈ Q) 0 ≤ Reω(x)} , and its polar is deûned
similarly. Note that Q is invariant under the scaling group, as τt(λ̂(µ̂)) = λ̂(µ̂ ○ τ̂−t)
for every µ̂ ∈ C0(Ĝ)∗, t ∈ R [30, Propositions 8.23 and 8.25]. Consequently,

V ∶= Q○ ∩ D((τ∗)−i/2)

is norm dense in Q○ by a standard smearing argument (see [30, proof of Proposi-
tion 5.26]). So picking ω0 ∈ V , we should show that 0 ≤ Reω0(1). For every
ν̂ ∈ C0(Ĝ)∗+ we have

0 ≤ Reω0(λ̂(ν̂)) = Reω0(λ̂(ν̂)) = Re(ω0 ⊗ ν̂)(W) = Re ν̂(λ(ω0)).

_us 0 ≤ λ(ω0)+ λ(ω0)∗ = λ(ω0 +ω0
∗), that is, ω0 +ω0

∗ as an element of L1(G)↪
C0(G)∗, is a bounded positive-deûnitemeasure. By assumption, 0 ≤ (ω0+ω0

∗)(1) =
(ω0 + ω0)(1) = 2Reω0(1) as 1 ∈ D(S) and S(1) = 1. In conclusion, 1 belongs to
the bipolar of Q.

6 The Separation Property

6.1 Preliminaries

Deûnition 6.1 (Lau and Losert [34], Kaniuth and Lau [26]) Let G be a locally com-
pact group and H be a closed subgroup of G. We say that G has the H-separation
property if for every g ∈ G/H there exists a positive-deûnite function φ on G with
φ∣H ≡ 1 but φ(g) /= 1.

It was ûrst observed in [34] that G has the H-separation property if H is either
normal, compact or open. Generalizing a result of Forrest [15], it was proved that
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G has the H-separation property provided that G has small H-invariant neighbor-
hoods [26, Proposition 2.2]. _e property was subsequently explored further in sev-
eral papers, including [27,28]. It is somewhat related to another property connecting
positive-deûnite functions and closed subgroups, namely the extension property.

In this section we introduce the separation property for LCQGs and obtain a ûrst
result about it. To this end, we continue with some background on closed quantum
subgroups of LCQGs. To simplify the notation a little, throughout this sectionwewill
use π for the surjection πu∶Cu

0(G)→ C0(G),G being a LCQG.

Deûnition 6.2 (Meyer, Roy, and Woronowicz [36]) Let G,H be LCQGs. A
strong quantum homomorphism from H to G is a nondegenerate ∗-homomorphism
Φ∶Cu

0(G)→ M(Cu
0(H)) such that (Φ⊗Φ) ○ ∆u

G = ∆u
H ○Φ.

Every such Φ has a dual object [36, Proposition 3.9 and_eorem4.8],which is the
(unique) strong quantum homomorphism Φ̂ from Ĝ to Ĥ that satisûes

(6.1) (Φ⊗ id)(V VG) = (id⊗ Φ̂)(V VH).

(Here and in the sequel we use the le� version of this theory, in contrast to [7, 36],
which use the right one.) As is customary,wewill alsowriteΦ for its unique extension
to a ∗-homomorphism M(Cu

0(G))→ M(Cu
0(H)).

Deûnition 6.3 (Daws, Kasprzak, Skalski, and Sołtan [7, Deûnitions 3.1, 3.2 and_e-
orems 3.3, 3.6]) Let G,H be LCQGs.
(i) We say that H is a closed quantum subgroup of G in the sense of Vaes if there

exists a faithful normal ∗-homomorphism γ ∶ L∞(Ĥ)→ L∞(Ĝ) such that (γ⊗
γ) ○ ∆Ĥ = ∆Ĝ ○ γ.

(ii) We say that H is a closed quantum subgroup of G in the sense of Woronow-
icz if there exists a strong quantum homomorphism Φ from H to G such that
Φ(Cu

0(G)) = Cu
0(H).

A fundamental result [7,_eorem 3.5] is that ifH is a closed quantum subgroup of
G in the sense of Vaes, then it is also a closed quantum subgroup ofG in the sense of
Woronowicz. In this case, themaps γ andΦ are related by the identity γ∣C0(Ĥ) ○ πĤ =
πĜ ○ Φ̂. _e converse is true ifG is either commutative, co-commutative or discrete,
or ifH is compact [7, Sections 4–6].

6.2 The Separation Property for LCQGs

Deûnition 6.4 LetG be a LCQG andH be a closed quantum subgroup ofG in the
sense ofWoronowicz via a strong quantumhomomorphismΦ∶Cu

0(G)→ Cu
0(H). We

say that G has the H-separation property if whenever µ ∈ Cu
0(G)∗+ is a state such that

(µ⊗ id)(V VG) ∉ Φ̂(M(Cu
0(Ĥ))) , there is ω̂ ∈ Cu

0(Ĝ)∗+ so that Φ((id⊗ ω̂)(V VG)) =
1M(Cu

0(H)) but µ((id⊗ ω̂)(V VG)) /= 1.

IfG (thusH) is commutative, this deûnition reduces to the classical one. Generally,
for ω̂ ∈ Cu

0(Ĝ)∗+, note that Φ((id ⊗ ω̂)(V VG)) = (id ⊗ (ω̂ ○ Φ̂))(V VH) by (6.1) and
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(id⊗ є̂H)(V VH) = 1M(Cu
0(H)), hence the equality Φ((id⊗ ω̂)(V VG)) = 1M(Cu

0(H)) is
equivalent to ω̂ ○ Φ̂ = є̂H.

_eorem 6.5 Let G be a LCQG and H a compact quantum subgroup of G. Let p̂ be
the central minimal projection in ℓ∞(Ĥ) with â p̂ = є̂H(â)p̂ = p̂â for every â ∈ ℓ∞(Ĥ),
and assume that the following condition holds:

(6.2) for every ẑ ∈ M(C0(Ĝ)), if ∆̂G(ẑ)(γ(p̂)⊗ 1) = γ(p̂)⊗ ẑ then ẑ ∈ Im γ.

_en G has theH-separation property.

It will be clear from the proof of_eorem 6.5 that a condition weaker than (6.2) is
enough. However, (6.2) is o�en easier to check.
Before proving the theorem, observe that each ẑ ∈ Im γ indeed satisûes

∆̂G(ẑ)(γ(p̂)⊗ 1) = γ(p̂)⊗ ẑ

(see [54, Proposition 3.1]). Also, if ẑ ∈ L∞(Ĝ) satisûes this identity, then taking ω̂ ∈
L1(Ĝ) with ω̂(γ(p̂)) = 1, we get (γ(p̂)ω̂ ⊗ id)∆̂G(ẑ) = ẑ, so in the terminology of
[42], we have ẑ ∈ LUC(Ĝ), thus ẑ ∈ M(C0(Ĝ)) [42, _eorem 2.4]. Furthermore, if
G is commutative or co-commutative, then (6.2) holds automatically by [7, Sections
4, 5]; we prove the former case below, and the second one, in which G = Ĝ for some
locally compact group G and H = Ĝ/A for an open normal subgroup A of G, is a
simple observation. At the moment it is unclear whether (6.2) always holds, but we
will show in Subsection 6.3 that it holds in an abundance of examples inwhich closed
quantum subgroups appear naturally, namely via the bicrossed product construction,
and in Subsection 6.4 that it holds for T as a closed quantum subgroup of quantum
E(2).

Proposition 6.6 Condition (6.2) holds when G is commutative.

Proof Let G be a locally compact group and H a compact subgroup of G. _e
embedding γ∶VN(H) → M(C∗r (G)) ⊆ VN(G) is the natural one, mapping λh ∈
VN(H), h ∈ H, to λh in VN(G). Also γ(p̂) = ∫H λh dh. Replacing ẑ by its adjoint in
(6.2), suppose that ẑ ∈ VN(G) and (γ(p̂)⊗ 1)∆̂(ẑ) = γ(p̂)⊗ ẑ. Denote by ℓt , t ∈ G,
the le� shi� operators over A(G). For all ω1 ,ω2 ∈ A(G) and t ∈ G, one calculates that
(ω1 ⊗ ω2)[(λt ⊗ 1)∆̂(ẑ)] = (ℓt−1(ω1) ⋅ ω2)(ẑ), and thus

(ω1⊗ω2)[(γ(p̂)⊗1)∆̂(ẑ)] = ∫
H
(ℓh−1(ω1)⋅ω2)(ẑ) dh = ((∫

H
ℓh−1(ω1) dh)⋅ω2)(ẑ)

(the second integral is in the norm of A(G)), and by assumption it is equal to

(ω1 ⊗ ω2)(γ(p̂)⊗ ẑ) = ∫
H
ω1(h) dh ⋅ ω2(ẑ).

Fix a closed set C with C ∩ H = ∅ and ω2 ∈ A(G) that is supported by C. Noticing
that HC ∩H = ∅, let ω1 ∈ A(G) be such that ω1∣H ≡ 1 and ω1∣HC ≡ 0 [14, Lemme 3.2].
We have

0 = ((∫
H
ℓh−1(ω1) dh) ⋅ ω2)(ẑ) = ∫

H
ω1(h) dh ⋅ ω2(ẑ) = ω2(ẑ).
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Consequently, the support of ẑ (see [14, Déûnition 4.5 and Proposition 4.8]) is con-
tained in H. Consequently, by Takesaki and Tatsuuma [47], ẑ belongs to γ(VN(H)),
as desired.

Proof of_eorem 6.5 Let µ ∈ Cu
0(G)∗+ be a state such that

(µ ⊗ id)(V VG) ∉ Φ̂(M(c0(Ĥ))).
We should prove that there exists ω̂ ∈ Cu

0(Ĝ)∗+ so that ω̂ ○ Φ̂ = є̂H but µ((id ⊗
ω̂)(V VG)) /= 1. Assume by contradiction that µ((id ⊗ ω̂)(V VG)) = 1 for every
ω̂ ∈ Cu

0(Ĝ)∗+ such that ω̂ ○ Φ̂ = є̂H. Representing M(Cu
0(Ĝ)) faithfully on some

Hilbert space, every unit vector ζ ∈ Im Φ̂(p̂) satisûes ω̂ζ ○ Φ̂ = є̂H. Hence
ω̂ζ[(µ ⊗ id)(V VG)] = 1

for every such vector, and as ∥(µ ⊗ id)(V VG)∥ = 1, we obtain

(µ ⊗ id)(V VG)Φ̂(p̂) = Φ̂(p̂) = Φ̂(p̂)(µ ⊗ id)(V VG).
Denote ŷ ∶= (µ⊗ id)(V VG) ∈ M(Cu

0(Ĝ)). Since µ is a state, a variant of (4.2) implies
that

[∆̂u
G( ŷ) − 1⊗ ŷ]∗[∆̂u

G( ŷ) − 1⊗ ŷ] ≤ [21 − ( ŷ∗ + ŷ)]⊗ 1.
Multiplying by Φ̂(p̂)⊗ 1 on both sides we get [∆̂u

G( ŷ) − 1⊗ ŷ](Φ̂(p̂)⊗ 1) = 0, that
is, ∆̂u

G( ŷ)(Φ̂(p̂) ⊗ 1) = Φ̂(p̂) ⊗ ŷ. Applying πĜ ⊗ πĜ to both sides and using that
πĜ ○ Φ̂ = γ, we get ∆̂G(πĜ( ŷ))(γ(p̂)⊗ 1) = γ(p̂)⊗ πĜ( ŷ). By (6.2),

(µ ⊗ id)(WG) = πĜ( ŷ) ∈ (πĜ ○ Φ̂)(M(c0(Ĥ))).
From Lemma 6.7 we obtain (µ ⊗ id)(V VG) ∈ Φ̂(M(c0(Ĥ))), a contradiction.

Lemma 6.7 Let G be a LCQG and H be a compact quantum subgroup of G. If
µ ∈ Cu

0(G)∗ is such that x̂ ∶= (µ⊗ id)(V VG) satisûes πĜ(x̂) ∈ (πĜ ○ Φ̂)(M(c0(Ĥ))),
then x̂ ∈ Φ̂(M(c0(Ĥ))).

Proof Recall that up to isomorphism, c0(Ĥ) decomposes as c0−⊕α∈Irred(H)Mn(α).
For each α ∈ Irred(H), write p̂α ∈ c0(Ĥ) for the identity of Mn(α), and let ωα ∈
Cu(H)∗ be such that p̂α = (ωα ⊗ id)(WH) (which exists by the Peter–Weyl theory
for compact quantum groups [56]). _en (πĜ ○ Φ̂)(p̂α) = ((ωα ○Φ)⊗ id)(WG) by
(6.1), and

(µ ⊗ id)(WG) ⋅ (πĜ ○ Φ̂)(p̂α) ∈ (πĜ ○ Φ̂)(M(c0(Ĥ))) .

If ŷα ∈ Mn(α) is such that (µ⊗ id)(WG) ⋅ (πĜ ○ Φ̂)(p̂α) = (πĜ ○ Φ̂)( ŷα), there exists
ρα ∈ Cu(H)∗ with ŷα = (ρα ⊗ id)(WH). _us

((µ ∗ (ωα ○Φ))⊗ id)(WG) = ((ρα ○Φ)⊗ id)(WG).
Hence µ ∗ (ωα ○ Φ) = ρα ○ Φ as λu

G is injective, and we can replaceWG by V VG to
obtain (µ ⊗ id)(V VG) ⋅ Φ̂(p̂α) ∈ Φ̂(M(c0(Ĥ))). But∑α∈Irred(H) Φ̂(p̂α) = 1 strictly
in M(Cu

0(Ĝ)) since∑α∈Irred(H) p̂α = 1 strictly in M(c0(Ĥ)) and Φ̂ is nondegenerate,
so we conclude that

(µ ⊗ id)(V VG) ∈ Φ̂(M(c0(Ĥ))).
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Remark 6.8 For µ ∈ Cu
0(G)∗+, the condition (µ ⊗ id)(V VG) ∉ Φ̂(M(Cu

0(Ĥ)))
from Deûnition 6.4 implies that µ ∉ Φ∗(Cu

0(H)∗), because if µ = ν ○ Φ for some
ν ∈ Cu

0(H)∗+, then (µ ⊗ id)(V VG) = Φ̂((ν ⊗ id)(V VH)) ∈ Φ̂(M(Cu
0(Ĥ))) by (6.1).

Moreover, if G is commutative, the two conditions are equivalent. We do not know
whether _eorem 6.5 holds with this weaker condition as well.

6.3 Examples Arising From the Bicrossed Product Construction

A natural way to construct a closed quantum subgroup of a LCQG is the bicrossed
product [50]. Let G1 ,G2 be LCQGs. We say that (G1 ,G2) is a matched pair [50,
Deûnition 2.1] if it admits a cocyclematching (τ,U ,V ), which means that

τ∶ L∞(G1)⊗L∞(G2)Ð→ L∞(G1)⊗L∞(G2)
is a faithful, normal, unital∗-homomorphism andU ∈ L∞(G1)⊗L∞(G1)⊗L∞(G2),
V ∈ L∞(G1)⊗L∞(G2)⊗L∞(G2) are unitaries such that the ∗-homomorphisms

α∶ L∞(G2)→ L∞(G1)⊗L∞(G2), β∶ L∞(G1)→ L∞(G1)⊗L∞(G2)
given by α(y) ∶= τ(1⊗ y), y ∈ L∞(G2), and β(x) ∶= τ(x ⊗ 1), x ∈ L∞(G1), satisfy
the following conditions:
(i) (α,U ) is a le� cocycle action ofG1 on L∞(G2), i.e.,

(id⊗ α)(α(y)) = U (∆1 ⊗ id)(α(y))U ∗ (∀y ∈ L∞(G2)),
(id⊗ id⊗ α)(U )(∆1 ⊗ id⊗ id)(U ) = (1⊗U )(id⊗ ∆1 ⊗ id)(U );

(ii) (σβ,V321) is a le� cocycle action ofG2 on L∞(G1), i.e.,
(β ⊗ id)(β(x)) = V (id⊗ ∆op

2 )(β(x))V ∗ (∀x ∈ L∞(G1)),
(β ⊗ id⊗ id)(V )(id⊗ id⊗ ∆op

2 )(V ) = (V ⊗ 1)(id⊗ ∆op
2 ⊗ id)(V );

(iii) (α,U ) and (β,V ) arematched, i.e.,
τ13(α ⊗ id)(∆2(y)) = V132(id⊗ ∆2)(α(y))V ∗

132 (∀y ∈ L∞(G2)),
τ23σ23(β ⊗ id)(∆1(x)) = U (∆1 ⊗ id)(β(x))U ∗ (∀x ∈ L∞(G1)),
(∆1 ⊗ id⊗ id)(V )(id⊗ id⊗ ∆op

2 )(U ∗)(6.3)
= (U ∗ ⊗ 1)(id⊗ τσ ⊗ id) [(β ⊗ id⊗ id)(U ∗)(id⊗ id⊗ α)(V )] (1⊗ V ).

Suppose that such a matched pair is given. For convenience, write Hi ∶= L2(Gi),
i = 1, 2, and let W̃ ∶= (W1 ⊗ 1)U ∗ ∈ L∞(G1)⊗B(H1)⊗L∞(G2). Recall that
the cocycle crossed product G1 α ,U ⋉L∞(G2) is the von Neumann subalgebra of
B(H1)⊗L∞(G2) generated by α(L∞(G2)) and {(ω ⊗ id ⊗ id)(W̃) ∶ ω ∈ L1(G1)}.
Letting H ∶=H1 ⊗H2, deûne unitaries W , Ŵ ∈ B(H ⊗H) by
Ŵ ∶= (β ⊗ id⊗ id)[(W1 ⊗ 1)U ∗](id⊗ id⊗ α)[V (1⊗ Ŵ2)] , W ∶= σ(Ŵ∗).

By [50,_eorem 2.13], there is a LCQGG with L∞(G) = G1 α ,U ⋉L∞(G2), L2(G) =
H, andW being its le� regular co-representation. Deûning τ̃ ∶= στσ , Ũ ∶= V321 and
Ṽ ∶= U321, one checks that (τ̃, Ũ , Ṽ ) is a cocycle matching making (G2 ,G1) into a
matched pair. Its ambient LCQG is, up to �ipping fromH2⊗H1 toH1⊗H2, precisely
the dual Ĝ. In what follows we use a subscript to indicate that a symbol relates toGi ,
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i = 1, 2, and a lack of subscript if it relates to G. For instance, J1, J2, and J are the
modular conjugations of L∞(G1), L∞(G2), and L∞(G), respectively.

Since ∆○α = (α⊗α)○∆2 [50, Proposition 2.4],we see that Ĝ2 is a closed quantum
subgroup of Ĝ in the sense of Vaes, thus also in the sense ofWoronowicz.

It is proved in [50, Section 3] that there is a bijection between (cocycle) bicrossed
products and cle� extensions of LCQGs. To elaborate, consider the unitary

Z2 ∶= (J1 ⊗ Ĵ)(id⊗ β)(Ŵ∗
1 )(J1 ⊗ Ĵ).

_en the formula θ(z) ∶= Z2(1⊗z)Z∗2 deûnes amap θ∶ L∞(G)→ L∞(Ĝ1)⊗L∞(G),
which is an action of Ĝop

1 on G. _e exactness of the sequence at G is manifested by
the following characterization of the ûxed-point algebra of θ:

(6.4) L∞(G)θ = α(L∞(G2)).

_e proof of this is by no means technical: it strongly relies on the structure ofG and
its dual.

Example 6.9 Assume henceforth thatG2 is discrete and, denoting by p the central
minimal projection in L∞(G2) with yp = є2(y)p = py for every y ∈ L∞(G2), that

α(p) = 1L∞(G1) ⊗ p,(6.5)
(id⊗ є2)β = id,(6.6)

(id⊗ id⊗ є2)(V ) = 1L∞(G1) ⊗ 1L∞(G2) = (id⊗ є2 ⊗ id)(V ).(6.7)

Condition (6.5) means essentially that G1 is “connected”, while (6.6) and (6.7) are
natural asG2 is discrete (seeVaes andVergnioux [52, Deûnition 1.24] and Packer and
Raeburn [37, Deûnition 2.1]).
For starters, notice that

(6.8) (id⊗ id⊗ є2)(U ) = 1L∞(G1) ⊗ 1L∞(G1) .

Indeed, denote the le�-hand side byU . Applying the∗-homomorphismid⊗id⊗id⊗є2
to (6.3) and using (6.7), we obtain

U ∗ = U ∗(id⊗ τσ)[(β ⊗ id)(U∗)(id⊗ id⊗ (id⊗ є2)α)(V )],

and since id ⊗ τσ is faithful, (β ⊗ id)(U) = (id ⊗ id ⊗ (id ⊗ є2)α)(V ). Applying
id⊗є2⊗ id and using (6.6) and (6.7),we get U = (id⊗(id⊗є2)α)(1) = 1, as desired.

We claim that for every z ∈ L∞(G),

∆(z)(α(p)⊗ 1L∞(G)) = α(p)⊗ z Ô⇒ z ∈ α(L∞(G2)).
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Indeed, suppose that the assumption is met. _en ∆op(z)(1L∞(G) ⊗ 1B(H1) ⊗ p) =
z ⊗ 1B(H1) ⊗ p by (6.5). From [50, Lemma 2.3] we get

∆op(z)(1L∞(G) ⊗ 1B(H1) ⊗ p)
= (β ⊗ id⊗ id)(W̃)[(id⊗ id⊗ α)(V (id⊗ ∆op

2 )(z)V ∗)]
× (β ⊗ id⊗ id)(W̃∗)(1L∞(G) ⊗ 1B(H1) ⊗ p)

= (β ⊗ id⊗ id)(W̃)[(id⊗ id⊗ α)(V (id⊗ ∆op
2 )(z)(1L∞(G) ⊗ p)V ∗)]

× (β ⊗ id⊗ id)(W̃∗)
= (β ⊗ id⊗ id)(W̃)[(id⊗ id⊗ α)(V (z ⊗ p)V ∗)](β ⊗ id⊗ id)(W̃∗).

By (6.7) and (6.5) we thus have

∆op(z)(1L∞(G) ⊗ 1B(H1) ⊗ p)
= (β ⊗ id⊗ id)(W̃)[(id⊗ id⊗ α)(z ⊗ p)](β ⊗ id⊗ id)(W̃∗)
= (β ⊗ id⊗ id)(W̃)(z ⊗ 1B(H1) ⊗ p)(β ⊗ id⊗ id)(W̃∗).

_e assumption hence implies that

(β ⊗ id⊗ id)(W̃)(z ⊗ 1B(H1) ⊗ p)(β ⊗ id⊗ id)(W̃∗) = z ⊗ 1B(H1) ⊗ p.

Applying id⊗ id⊗ id⊗ є2 to both sides, we deduce from (6.8) that

(β ⊗ id)(W1)(z ⊗ 1B(H1))(β ⊗ id)(W∗
1 ) = z ⊗ 1B(H1) .

Writing w ∶= Ĵz Ĵ and recalling that w = R(z∗) ∈ L∞(G) where R is the unitary
antipode of G, the last equation is equivalent to θ(w) = 1⊗w, that is, w ∈ L∞(G)θ .
By (6.4), R(z∗) belongs to the image of α. By the von Neumann algebraic version of
[30, Corollary 5.46], we have R ○ α = α ○ R2. _erefore z belongs to the image of α,
and the proof is complete.

Remark 6.10 _e LCQG G constructed in Example 6.9 and its dual are neither
necessarily amenable nor necessarily co-amenable [9,_eorems 13 and 15].

Remark 6.11 _e last part of the reasoning in Example 6.9 uses in an essential
way the exactness of the short exact sequence of LCQGs. As mentioned above, bi-
crossed products are characterized as cle� extensions. By [50, Propositions 1.22 and
1.24], this amounts to the structure of L∞(G) as a cocycle crossed product. Examin-
ing the argument in Example 6.9, this structure is used mainly in the simpliûcation
of ∆op(z)(1 ⊗ 1 ⊗ p). It is not clear at themoment whether this argument general-
izes further, thus leaving open the general case of compact (or, even more generally,
closed) normal quantum subgroups (see Vaes and Vainerman [51]).

6.4 Example: Quantum E(2) Group

We prove that the complex unit circle T, as a closed quantum subgroup of E(2), has
the separation property. Considering the quantum groups E(2) and Ê(2), we es-
sentially follow the notation of Jacobs [25] although it does not always agree with
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ours; further details can be found there. Fix 0 < µ < 1. Set Rµ ∶= {µk ∶ k ∈ Z},
R

µ ∶= Rµ ∪ {0}, R(µ1/2) ∶= {µk/2 ∶ k ∈ Z} and R(µ1/2) ∶= R(µ1/2) ∪ {0}.
_e following is taken from [25, Section 2.3]. Let (ek)k∈Z be an orthonormal basis

of ℓ2(Z). Denote by s the unitary operator over ℓ2(Z) which is the shi� given by
sek ∶= ek+1, k ∈ Z. Denote by m the strictly positive (unbounded) operator over
ℓ2(Z) that acts on its core span{ek ∶ k ∈ Z} by mek ∶= µk ek , k ∈ Z.

Set H ∶= ℓ2(Z)⊗ ℓ2(Z) and ek , l ∶= ek ⊗ e l for k, l ∈ Z. Consider the unbounded
operators over H deûned by a ∶= m−1/2 ⊗ m and b ∶= m1/2 ⊗ s. _en a is strictly
positive, b has polar decomposition b = u∣b∣ with u ∶= 1 ⊗ s and ∣b∣ = m1/2 ⊗ 1,
and σ(a) = R(µ1/2) = σ(b). Since a, ∣b∣ commute, they have a joint Borel functional
calculus. As observed in [25,Remark 2.5.20], the joint continuous functional calculus
of a, ∣b∣ is determined by the values of the functions on

E ∶= {(p, q) ∈ R(µ1/2) ×R(µ1/2) ∶ pq ∈ Rµ}.

Similarly, as ∣b∣, just like a, is injective, the joint Borel functional calculus of a, ∣b∣ is
determined by F ∶= {(p, q) ∈ R(µ1/2) × R(µ1/2) ∶ pq ∈ Rµ}. Writing B(F) for the
algebra of all bounded complex-valued functions over F, we get an injection B(F) ∋
g ↦ g(a, ∣b∣) ∈ B(H).

_e operator W ∈ B(H ⊗H) is the unitary that satisûes

(6.9) ((ωek , l ,ep,q ⊗ id)(W))em ,n = B(q − l , k − l − n + 1)δk ,pem−k+2q ,n−k+l+q

(∀k, l , p, q,m, n ∈ Z),

where (B(k, n))k ,n∈Z are special scalars in the complex unit disc.
_e right, resp. le�, leg of W norm-spans a C∗-algebra A, resp. Â, which is the

reduced C∗-algebra underlying the LCQG E(2), resp. Ê(2), andW ∈ M(Â⊗min A)
[25, Sections 2.4, 2.5]. _e co-multiplications ∆∶A → M(A ⊗min A), resp. ∆̂∶ Â →
M(Â ⊗min Â) of E(2), resp. Ê(2), is given by ∆(x) = W(x ⊗ 1)W∗ for x ∈ A,
resp. ∆̂(y) ∶=W∗(1⊗ y)W for y ∈ Â. _e duality relation between E(2) and Ê(2) is
opposite: Ê(2) = Ê(2)

op
[25, Proposition 2.8.21], but since T is commutative, that is

meaningless for our purposes.
_e unbounded operators a, a−1 , b are aõliatedwith Â in the sense ofC∗-algebras,

and a is “group like”, that is, ∆̂(a) = a ⊗ a, where the le�-hand side is interpreted as
a nondegenerate ∗-homomorphism acting on an aõliated element. _is makes T a
closed quantum subgroup of E(2): identifying ℓ∞(Z) ≅ { f (a) ∶ f ∈ Cb(R(µ1/2))}
(recall that a is injective), the embedding γ∶ ℓ∞(Z) ↪ M(Â) is given by mapping
g ∈ ℓ∞(Z) to f (a), where f (µk/2) ∶= g(k), k ∈ Z [25, Subsection 2.8.5]. Denote by p
the projection k ↦ δk ,0 in ℓ∞(Z). _en γ(p) is the projection onto {e2 l , l ∶ l ∈ Z}.

To establish the separation property, consider all y ∈ M(Â) satisfying ∆̂(y)(γ(p)⊗
1) = (γ(p)⊗ y). _ismeans that1⊗ y commuteswithW(γ(p)⊗1), or equivalently,
that y commutes with (ωζ ,η ⊗ id)(W) for every ζ ∈ Im γ(p) and η ∈H. Substituting
q − l for t in (6.9), this amounts to y commuting with each of the operators x l ,t ∈
B(H), l , t ∈ Z, given by x l ,tem ,n ∶= B(t, l − n + 1)em+2t ,n+t for m, n ∈ Z.
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Let l , t ∈ Z. Clearly, x l ,t commutes with a. For m, n ∈ Z and s ∈ R,

∣b∣i sx l ,tem ,n = B(t, l − n + 1)∣b∣i sem+2t ,n+t = µ i s(m+2t)/2B(t, l − n + 1)em+2t ,n+t ,

x l ,t ∣b∣i sem ,n = µ i sm/2x l ,tem ,n = µ i sm/2B(t, l − n + 1)em+2t ,n+t ,

so that ∣b∣i sx l ,t = µ i stx l ,t ∣b∣i s for every s ∈ R, or formally ∣b∣x l ,t = µtx l ,t ∣b∣. _is
implies that for every g ∈ B(F) we have
(6.10) g(a, ∣b∣)x l ,t = x l ,t gt(a, ∣b∣),
where gt ∈ B(F) is deûned by gt(α, β) ∶= g(α, µtβ). Moreover, for k,m, n ∈ Z,

ukx l ,tem ,n = B(t, l − n + 1)uk em+2t ,n+t = B(t, l − n + 1)em+2t ,n+t+k ,

x l ,tuk em ,n = x l ,tem ,n+k = B(t, l − n − k + 1)em+2t ,n+t+k .

(6.11)

Lemma 6.12 Let g ∈ B(F) and k ∈ Z. Assume that uk g(a, ∣b∣) commutes with the
operators (x l ,t)l ,t∈Z. If k /= 0, then g(a, ∣b∣) = 0; if k = 0, then g is the restriction of
h ⊗ 1 for some h ∈ B(R(µ1/2)).

Proof Both caseswill use the following computation. Let t,m, n ∈ Z. SinceCem ,n is
invariant under both a and ∣b∣, it is invariant under g(a, ∣b∣) and gt(a, ∣b∣). Let γ, γt ∈
C be such that g(a, ∣b∣)em ,n = γem ,n and gt(a, ∣b∣)em ,n = γtem ,n . By assumption, for
all l ∈ Z we have x l ,tuk g(a, ∣b∣) = uk g(a, ∣b∣)x l ,t = ukx l ,t gt(a, ∣b∣) from (6.10), so
using (6.11), x l ,tuk g(a, ∣b∣)em ,n = γx l ,tuk em ,n = γB(t, l − n − k + 1)em+2t ,n+t+k is
equal to ukx l ,t gt(a, ∣b∣)em ,n = γtukx l ,tem ,n = γtB(t, l − n + 1)em+2t ,n+t+k , that is,

(6.12) γB(t, l − n − k + 1) = γtB(t, l − n + 1).
Suppose that k = 0. Let t,m, n ∈ Z and let γ, γt ∈ C be as above. _en for every

l ∈ Z, we have γB(t, l − n + 1) = γtB(t, l − n + 1) from (6.12). Choosing l such that
B(t, l − n + 1) /= 0, which is possible by [25, Corollary A.11], we get γ = γt . As m, n
were arbitrary, we deduce that g(a, ∣b∣) = gt(a, ∣b∣), hence g = gt . By the deûnition
of F, as t was arbitrary, g is of the form h ⊗ 1.

Suppose that k /= 0. Since (B(t, 0))t∈Z are the Fourier coeõcients of a non-
constant function [25, Deûnition A.4], we can ûx 0 /= t ∈ Z with B(t, 0) /= 0. As-
suming that g(a, ∣b∣) /= 0, ûx m, n ∈ Z such that g(a, ∣b∣)em ,n /= 0. Let γ, γt ∈ C
be as above; then γ /= 0. Replacing l − n + 1 by l in (6.12) for convenience, we get
γB(t, l − k) = γtB(t, l) for all l ∈ Z, and in particular, γt /= 0 (take l = k). Hence
B(t, sk) = (γt/γ)−sB(t, 0) for all s ∈ Z. From [25, Proposition A.9], since t /= 0, we
have B(t, l)ÐÐÐ→

∣l ∣→∞
0, a contradiction.

Let M̂ be the strong closure of Â in B(H). We need a certain expansion of elements
of M̂.

Lemma 6.13 Every y ∈ M̂ possesses a (unique) sequence of functions (gk)k∈Z inB(F)
such that

y = strong-lim
N→∞

N

∑
k=−N

( 1 − ∣k∣
N + 1

)uk gk(a, ∣b∣)
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Proof For each λ ∈ T, deûne a unitary wλ ∈ B(ℓ2(Z)) by wλ(e l) ∶= λ l e l (l ∈ Z),
and a unitary Wλ ∈ B(H) by Wλ ∶= 1 ⊗ wλ . _en Wλ commutes with a, ∣b∣ and
WλuW∗

λ = λu. For every k ∈ N and gk ∈ B(F) we thus get

(6.13) Ad(Wλ)(uk gk(a, ∣b∣)) = λkuk gk(a, ∣b∣).
Given n ∈ Z, deûne the “Fourier coeõcient” contraction Υn ∈ B(B(H)) by

Υn(y) ∶=
1
2π ∫T λ−nAd(Wλ)(y)∣dλ∣ (y ∈ B(H)),

where the integral converges strongly. _e operator Υn is continuous in the bounded
strong operator topology. Letting {KN}∞N=1 denote Fejér’s kernel, we have for y ∈
B(H) and N ∈ N,

N

∑
n=−N

( 1 − ∣n∣
N + 1

)Υn(y) = ∫
T

1
2π

KN(λ)Ad(Wλ)(y)∣dλ∣.

_us, the sequence {∑N
n=−N(1− ∣n∣

N+1 )Υn(y)}
∞

N=1 is bounded by ∥y∥, and it converges
strongly to y.

On account of (6.13), if y has the form∑N
k=−N uk gk(a, ∣b∣), then

Υn(y) = un gn(a, ∣b∣)
for −N ≤ n ≤ N and 0 otherwise. Every element y of M̂ is the strong limit of a
bounded net (y i) of elements of the form y i = ∑k∈Z uk gki(a, ∣b∣), where gki /= 0
for only ûnitely-many values of k for every i [25, _eorem 2.5.21]. Consequently,
Υn(y i) = un gni(a, ∣b∣) → Υn(y) strongly for all n. As u is unitary, we infer that
the net (gni(a, ∣b∣))i converges strongly for all n, necessarily to gn(a, ∣b∣) for some
gn ∈ B(F). By the foregoing, y = limN ∑N

n=−N(1 − ∣n∣
N+1 )u

n gn(a, ∣b∣) strongly. For
uniqueness, have Υn act on both sides of the equation.

Lemma 6.14 Let y ∈ M̂, and let (gk) be the functions corresponding to y as in
Lemma 6.13. If y commutes with all the operators x l ,t ∈ B(H), l , t ∈ Z, then so does
uk gk(a, ∣b∣) for every k ∈ Z.

Proof For m, n ∈ Z, denote by pm ,n the projection of H onto Cem ,n . Fix l , t ∈ Z.
Clearly, g(a, ∣b∣) commutes with pm ,n for every g ∈ B(F), upm ,n = pm ,n+1u, and
x l ,t pm ,n = pm+2t ,n+tx l ,t . By assumption, we have

lim
N→∞

N

∑
k=−N

( 1 − ∣k∣
N + 1

)x l ,tuk gk(a, ∣b∣) = lim
N→∞

N

∑
k=−N

( 1 − ∣k∣
N + 1

)uk gk(a, ∣b∣)x l ,t ,

both limits being in the strong operator topology. Fix k0 ∈ Z. For every m, n ∈ Z, we
get

lim
N→∞

N

∑
k=−N

(1 − ∣k∣
N + 1

)pm+2t ,n+t+k0x l ,tuk gk(a, ∣b∣)pm ,n

= lim
N→∞

N

∑
k=−N

(1 − ∣k∣
N + 1

)pm+2t ,n+t+k0u
k gk(a, ∣b∣)x l ,t pm ,n .
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As a result, with z ∶= x l ,tuk0 gk0(a, ∣b∣) − uk0 gk0(a, ∣b∣)x l ,t , we have

zpm ,n = pm+2t ,n+t+k0zpm ,n = 0.

Summing over all m, n ∈ Z, we get the desired commutation relation.

We are now ready to prove that T has the separation property in E(2). If y ∈ M̂
with corresponding functions (gk) as in Lemma 6.13 commuteswith all the operators
(x l ,t)l ,t∈Z, then by Lemma 6.14, uk gk(a, ∣b∣) commutes with (x l ,t)l ,t∈Z for every k ∈
Z. Lemma 6.12 implies that gk(a, ∣b∣) = 0 for k /= 0 and that g0 = h ⊗ 1 for a suitable
h. _is precisely means that y is a function of a, namely y ∈ Im γ. So we established
(6.2) in our setting, and the proof is complete.
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