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Abstract

Let P A ( « ) denote the number of partitions of n into summands chosen from the set
A ={aua2, • • • } . De Bruijn has shown that in Mahler's partition problem (a,, = r") there is a
periodic component in the asymptotic behaviour of PA(n). We show by example that this may
happen for sequences that satisfy «„ ~ v and consider an analogous phenomena for partitions into
primes. We then consider corresponding results for partitions into distinct summands. Finally we
obtain some weaker results using elementary methods.

1. Introduction

Let A = {a0, ax, • • •} be an infinite set of monotone increasing integers. Let
pA(n) denote the number of ways of representing n as the sum of summands
chosen from A. Mahler (1940) showed that when av = r" as n —»°c

De Bruijn (1943) has shown that this 0-term is actually of the form

^ / logn - log logn +loglogr\ + Q f (log log n f j
\ logr / 1 logn J

where U is a periodic function with period one and de Bruijn determined the
Fourier expansion of U. This result has been generalized by various authors, for
example, Pennington (1953) and Schwarz (1967) and it seems to be common with
sets A which have liminf (loga,,)/*' > 0 for there to be a periodic or almost
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periodic function analogous to de Bruijn's U. In this paper we consider the
question of whether partition functions pA (n) with lim inf,,^ (log a,)lv = 0 may
also exhibit the de Bruijn-Mahler phenomenon. We first show that pA(n) with A
defined to be the set of integers which are not positive powers of a fixed integer
has a periodic term very similar to that of de Bruijn (see theorem 1). We then
investigate how large this term corresponding to de Bruijn's U function may be.
It is seen that when A is the set of primes it may be large indeed and we obtain a
direct connection with the Riemann hypothesis. In this case there is a close
analogy with the number of primes less than a given limit.

Finally we consider these questions for qA(n) the number of partitions into
distinct summands chosen from the set A and obtain some results using
elementary methods.

Let A be the set of integers which are not powers of the fixed integer r.
Then the number pA(n) of partitions of n into summands from A satisfied (from
the theorem of Roth and Szekeres (1954))

.2 «

(2.1) pA(n) = (2-7r/42)"
2exp| an - 2 > l o g ( 1 -

where

(2.2) A2= X a1

and a is defined by

(2.3) B = ( 2_£_ .

From Mellin's transformation formula

^^ fl 1 I a —

where V(t) denotes the usual gamma-function, {(t) denotes the Riemann
zeta-function and

Now

1=1
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thus £ A ( 0 is defined in the entire plane except for simple poles at f = 1 and
t = 2irik/log r (k =0,1,2, •••). The arguments of Pennington (1953) show that
we may shift the contour of integration to a line cr < 0 and obtain (using
f (0) = - I) that

log r

(2.4) 1 ^ (
a log r V \ log r ) b \ log r / F \ log

where y denotes Euler's constant and 2!, denotes summation over nonzero v.
We may solve this for a to obtain

£ [ i B f , o g
V6 L 2TT log A I 77

+ 0{n-2/3log2n}.

From Mellin's transformation formula

Again shifting the contour of integration to a < 0, using f '(0) = Woglir and that
( w i t h z £ ( z + l ) = l + y z + y 2 z 2 + - - • )

yields

(2.6) y2 2 + 1 2
y Yi i r

log r log r V \ log r / \ log r
i

/27riVloga\ , n , ,
x exp —; °— I + 0 {a}.

F \ logr /
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From (2.4) and (2.6) we obtain

a n - E l o g { l e } = « ^ ^ ^ ^
, T A 3 logr logr 2

(2.7) _ ]°JLr 2 12 l_y-/ . / 1 +
12 log r log r „ \ log r /

x (l+^Wf^expf2^,'08^
\ log r / \ log r / r V log r

+ 0 { a } .

Note that

Thus from (2.7), (2.8) and (2.5) applied to (2.1) we obtain

THEOREM 1. Let A be the set of integers which are not positive powers of the
fixed integer r. Then

. . , i /2 log(V6^/7r) , 3, (V6r\
logpA(n)= « n > ] ^ l + tog(

_ l .
12 2 g V 3 / logr logr

-V>v/i , 2nv\r /2iriv\ I2-rriv. /V6
x
 2J ^ ! + 1 r i exP 1 lo8

V \ log r / \ log r / K \ log r b \ n
+ 0{n-"2log2n}.

This theorem shows that even sequences for which a^lv = 1 + 0{î ~' log v} may
exhibit the de Bruijn-Mahler phenomenon. The asymptotic formula is in terms
of elementary functions. In our attempt to determine how large this oscillatory
component may be we shall consider an example in which the asymptotic
formula cannot be so expressed.

THEOREM 2. Let A be the set of primes. Let a = a(n) be defined by

2' a

a.'Ae-'-V

then
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a ~-^=n-m log"1'2 n.
V3 g

Let

F(a)=a' \ e"">eiUa)(2+ u)T(l + u)£(2+ u)du.
Jo

Thus by standard results on the Laplace Transform

F(a) = « " ' £ nJL-r +

where

n=0

a) There exists a constant C > 0 such

b) Let 6 = /.M.fe. o/ the real parts of the imaginary roots of the Riemann
zeta-function. Then for every e > 0

c) Conversely if

then 0 S i]/ where 6 is defined in part b).

PROOF. The proof of parts a) and b) is very similar to classical proofs in the
:heory of primes. It is also very similar to the proof of Theorem 7.1 of Richmond.
tn particular it is shown in Richmond that

a ~ -—=

From the Roth-Szekeres (1954) theorem and the Mellin transformation formula
it follows that

j ^ 0{logn}, (cr

where
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It is well-known that (see p. 12 of Tichmarsh (1951))

(2.9) u (o = log ao+h (o, h it) = s ^ ^

where h(t) is holomorphic for i ? f > j . One obtains with standard residue
arguments that

There is a constant 0 0 such that ((0 n a s n o zeros in (p. 87 of Montgomery
(1971))

log2/31 r | log log1

Thus by a classical argument (pp. 77-88 of Prachar (1957) by the F-function or
see Richmond)

[ ^ ] dt

This proves part a) of the theorem and part b) follows in the same way.
To prove part c) note that

log pA (n)-F(a )= 2^j | J2« - ' ( l + 0r(0i:(l + 0 (^ (0 - log

We can think of pA(n) as a function of a and it is known that (see Roth and
Szekeres (1954) or Richmond)

logpA (n + l)-logpA(n) = 0J a log- I .

From this one may readily deduce (Richmond) that F(a(n + 1))- F(a(n))
0{a log I/a} hence we suppose the hypothesis of c) to hold for all a.

By the Mellin inversion formula
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The integral on the right converges for all I with Rt > <j/, hence represents a
holomorphic function for Rt > </>. By eq. (2.9) we obtain our result.

The proof of part c) of Theorem 2 shows that one cannot have

for any positive constant 6 since £*(0'~ log(l/(f - 1) is not bounded at t = 1/2.
Also parts b) and c) show that the size of log PA(n)- F(a) is directly related to
the question of where the roots of £(t) lie.

To see that \ogPA(n)- F(a) corresponds to the de Bruijn-Mahler
phenomenon we consider the following representation:

Let p = /3 + iy run through the complex zeros of £(t). Bracket all zeros such
that any two zeros for which

| y - y'| < exp ( - Ay/log y) + exp ( - Ay'/log y')

are included in the same bracket. With the bracketing above by the arguments of
Tichmarsh (1951) (on pp. 185-187)

logpA(«)-F(a)=

In this section we consider the corresponding problems for qA(n), the
number of partitions of n into distinct summands chosen from A. The
RothtSzekeres results and the Mellin transformation techniques in §2 apply with
minor modifications and we have

THEOREM 3. Let A be the set of integers which are not positive powers of a
fixed integer r. Then

'VWn

(1-2

2mv\ (liriv. l\Z\2n\\r(2iriv\ , _, _,„, 2 ,^ Jexpl: log I I r : ) + 0{n I/2log2n}.logr/ F\logr 5 \ 77 / / \logrj B

Note that when r = 2 the oscillatory component drops out and the next
theorem shows that this must be expected.
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THEOREM 4. Let A be the set of integers which are not positive powers of 2.
Let q(n) denote the number of partitions of n into distinct integers. Then

qA(n)=q(n)-q(n-2).

PROOF. This theorem follows from generating series techniques however we
give the following proof due to H. Shank. We wish to prove that q(n - 2) is the
number of partitions of n into distinct summands at least one of which is a power
of 2. Let 2' be the smallest power of 2 in such a partition of n. Then
2 ' ' -2 = 2 + 22+ • • • +2'"1 and we obtain a partition of n - 2 into distinct
summands. Clearly different partitions of n give different partitions of n - 2. On
the other hand suppose we have a partition of n - 2 into distinct parts. If it
contains a 2 let 2,22, • • -,2' be the longest string of consecutive powers of 2 it
contains. We may replace this string of 2"s by 2i+1 to obtain a partition of n. In
this way different partitions of n - 2 give rise to different partitions of n
containing a positive power of 2. We now prove

THEOREM 5. Let A be the set of integers which are not positive powers of a
fixed integer r. Let k be any constant integer. Then for all sufficiently large n the
k-th differences of pA(n) and qA(n) are positive.

PROOF. The result for pA (n) follows at once from the work of Bateman and
Erdos (1956) since if one removes an arbitrary subset of A having elements, the
remaining elements of A have greatest common divisor unity.

To prove the result for qA (n) we first of all note that it is sufficient to show
that 2 qA(n)x" can be written as

where the fc-th difference of the bn is positive for n sufficiently large and where
d § 0. Suppose r has an odd factor d. We write

n
; - l (mod 2)

x n ( l + x d ' + ••• +xd'(r/dy
i - 1
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However the k -difference of the coefficients of the first product are positive
from some point on by the results of Bateman and Erdos (1956) and we obtain
our result from the remark above. Suppose r = 2s. Then

Clearly Ir'/r'*1 and we again have that the fc-difference of the coefficients of the
first product are positive from some point on by the results of Bateman and
Erdos (1956).

Finally we show by elementary arguments

THEOREM 6. Let A be the set of integers which are not positive powers of a
fixed integer r.

\ogpA(n)= A^77""2 + °{ l o g 2 " }

\ogqA(n) = T ^ n ' + 0{logn}.

PROOF. We first prove

(3.1) q(n)>qA(n)>n-lq(n).

The first inequality is obvious. Also

Since the coefficients of the Taylor series expansion of the infinite product are
zero or one and since the qA(n) are monotone increasing we readily obtain the
second inequality.

Note that

The infinite product is 2pr(«)x" where pr(n) is the number of partitions of n
into powers of r. Erdos (1942) has shown that log pr(n)~ log2 n/2 log r. From this
and the fact that pA(n) and p,{n) are monotone increasing we obtain that
p (n)>p(n)exp- (e + (21ogr) ')log2 n. Erdos (1942) has shown using elemen-
tary arguments that p(n)~ Cn1 exp(n5w V2/3) (Newman (1951) showed also
by elementary arguments that C = 1/(4V3)). The first part of theorem 6 follows
immediately. Since the number of partitions of n into distinct summands equals
the number of partitions of n into odd summands one can apply the method of
Erdos to obtain q(n)~ Cn~*exp(n^7r/V3) and this with (3.1) gives the second
part of Theorem 6.
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