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EPIMORPHISMS FROM S(X) ONTO S(Y) 

K. D. MAGILL, JR., P. R. MISRA AND U. B. TEWARI 

1. Introduction. In this paper, the expression topological space will 
always mean generated space, that is any Tx space X for which 

[f~\x):x e X, fa continuous selfmap of X} 

forms a subbasis for the closed subsets of X. This is not at all a severe 
restriction since generated spaces include all completely regular Hausdorff 
spaces which contain an arc as well as all O-dimensional Hausdorff spaces 
[3, pp. 198-201], [4]. 

The symbol S(X) denotes the semigroup, under composition, of all 
continuous selfmaps of the topological space X. This paper really grew out 
of our efforts to determine all those congruences o on S(X) such that 
S(X)/o is isomorphic to S(Y) for some space Y. Such a congruence will be 
referred to as a congeneric congruence. We have been able to determine all 
congeneric congruences on S(X) for a large number of spaces X but in the 
course of doing so, the emphasis naturally took a somewhat different 
direction. The two main results of the paper are Theorems A and B in 
Section 2. Between them they describe completely how to obtain for a 
great many spaces X and any space Y, all epimorphisms from S(X) onto 
S( Y). Section 3 is devoted to various consequences of the main results and 
this includes determining all congeneric congruences on S(X). We will see 
that in a large number of instances there are exactly three. For any space 
X, we always have the two trivial congeneric congruences 8 and v on S(X) 
which are defined by 

« = { ( / , g ) e S(X) X S(X):f= g) 

and 

v = S(X) X S(X). 

Of course, S(X)/8 is isomorphic to S(X) while S(X)/v is isomorphic to 
S( Y) where Y is the one point space. We will see that for many spaces X, 
the one remaining congeneric congruence on S(X) is the congruence y 
consisting of all pairs (/, g) e S(X) X S(X) such that any time one of 
them carries a component A of X into a component B of X, then the other 
function does the same. Section 4 consists of a discussion of a type of 
congruence whose definition is motivated by the congruence y and, finally, 
some concluding remarks. 
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2. Homomorphisms from S(X) onto S(Y). In any topological space X, 
the symbol %x will denote the collection of all components of X and when 
no confusion can occur we will write more simply ^ in place of ^x. The 
component of a point x'mX will be denoted by Cx. 

Definition (2.1). A topological space X is admissible if it satisfies the 
following conditions 

(2.1.1) X is completely regular and Hausdorff. 
(2.1.2) The arc components of X coincide with the components of X. 
(2.1.3) Supposed c % Uj^is open and x e U J ^ Then there exists 

3& c se such that x e U ^ and U ^ is clopen (i.e., both closed 
and open). 

(2.1.4) X contains a subset H such that H n C is a singleton for each 
C G fé7 and for each open subset V of X, U{Ca:a e F O / / } is also 
open. 

It is evident that both (2.1.3) and (2.1.4) are both satisfied by any locally 
connected space (in fact, any space in which components are open). 
Examples which are not locally connected but are nevertheless admissible 
are abundant. The following example not only fails at being locally 
connected, but no component is open. Specifically, let X = Q X / where 
Q denotes the rationals and / = [0, 1]. It is a straight forward matter to 
show that X is admissible. For the set H in (2.1.4) one may choose any 
number b e / and take 

H = {(r,b):r e Q). 

Before we state and prove our two main results, it will be convenient to 
verify a sequence of lemmas. The first of these is somewhat different than 
those that follow in that it does not involve a homomorphism from one 
function semigroup onto another. The symbol XI %> will denote the 
quotient space obtained from X by identifying each component of A" to a 
point. 

LEMMA (2.2). Let X be an admissible space. Then X/tfis a ^-dimensional 
Hausdorff space. Furthermore, let H be the set described in (2.1.4) and for 
each C G % let t(C) be the unique point in H Pi C. Then t is a continuous 
map from XI c€ into X and has the property that t(C) G C for each 
C G c£. 

Proof. X/^h Tx since components are closed and (2.1.3) guarantees that 
it is 0-dimensional (i.e., has a basis of clopen sets). Thus, X must actually 
be Hausdorff. Continuity of / is an immediate consequence of (2.1.4). 

In the remaining lemmas of this section (that is, Lemmas (2.3) to (2.9) 
inclusive) the following assumptions will be made without explicit 
mention: 
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(H-l) X is an admissible space and Y is any space with more than one 
point. 

(H-2) <p is an epimorphism from S(X) onto S(Y) which is not an 
isomorphism. 

(H-3) There exists a function h from X into Y and a function k from Y 
into X such that 

fp(f) = hofok for e a c h / G Six). 

We will see later that (H-3) is, in fact, a consequence of (H-2) but we 
don't need this for Lemmas (2.3) to (2.9) which are concerned, for the 
most part, with properties that any pair of functions must have if they 
induce an epimorphism. 

LEMMA (2.3). h is surjective, k is injective and h o k is the identity 
on Y 

Proof. Let any y G y be given and let (y) denote the constant function 
which maps everything to y. We will use this notation throughout the 
paper. We then have <p(f) = (y) for s o m e / G S{X) which implies 

y = (y)(y) = <p(f)(y) = h(f(k(y))). 

Thus, h is surjective. Since <p must carry the identity of S(X) to the identity 
of ^ ( y ) , it follows that h o k is the identity on Y which, in turn, implies 
that k is injective. 

LEMMA (2.4). x and k(h(x) ) belong to the same component of Xfor each 
x G X. 

Proof. Suppose, to the contrary, that x and k(h(x)) belong to different 
components. Then 

k(h(x)) G U J ^ where s/= {Cy:y ¥= x). 

Us/ = X — Cx is open so that according to condition (2.1.3) there exists 
@ c j^such that k(h(x)) G U ^ C Uj /and U ^ is clopen. Since Y has 
more than one point and h maps X onto Y, we can choose points p and q in 
X such that h(p) ¥= h(q). Define a continuous selfmap/of X by 

f(z) = p for z G \jgg 

f(z) = q for z G X - U l 

Then 

h o / o k o h o (x) o k = (h(p)) 

while 

h o / o (x) o k = (h(q)). 

In other words, <p(/) o <p(x) ¥= <K/o (x)) which contradicts the fact that <p 
is a homomorphism. 
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LEMMA (2.5). There exists a nondegenerate component C of X such that 
k o h is not the identity map on C. 

Proof. Deny the assertion. Then k o h is the identity on all nondegener­
ate components and it follows from Lemma (2.4) that k o h is also the 
identity on all degenerate components. Thus, k o his the identity on all of 
X. We already have from Lemma (2.3) that h o k is the identity on Y. 
Consequently, both h and k are bijections and k = h~ . This implies <p is 
bijective which is a contradiction. 

LEMMA (2.6). The function h is constant on each component of X. 

Proof. Suppose B is a component of X such that h is not constant on B. 
Choose a, b <E B so that h(a) ¥= h(b) and choose a point p in the 
component C of the previous lemma so that k o h(p) ¥= p. By (2.1.2), B is 
arcwise connected so that a and b are endpoints of some arc A c B. Since 
X is completely regular, it is immediate that there exists a continuous 
function/from X into A such that 

/(A: o h(p) ) = a and /( /?) = b. 

It then follows that 

h o / o k o h o (p) o k = (h(a)) 

while 

A o / o (p) o k = (h(b)). 

Thus, we have arrived at the contradiction 

<K/) o <P<» ^ v ( / o </>> )• 

LEMMA (2.7). /z(a) = h(b) if and only if a and b lie in the same component 
ofX 

Proof. Sufficiency is just the previous lemma. Conversely, suppose 
h(a) = h(b). By Lemma (2.4), a and k(h(a)) belong to the same 
component as do b and k(h(b) ). But k(h(a)) = k(h(b)) since 
h (a) = h(b) so that a and b must belong to the same component. 

LEMMA (2.8). The function h is continuous. 

Proof. Let j ' be any point in Y, let g be any function in S( Y) and l e t /be 
any function in S(X) such that <p(/) = g. We assert that 

(2.8.1) h-\g-\y)] =r][Ck(y)]. 

Let x be any point in h~ ][g \y) ]. Then 

(2.8.2) h o / o k o h(x) = g(h(x) ) = y 

which implies 
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(2.8.3) ko h o/o k o h(x) = k(y). 

To conclude that x e /~ ] [C k { v )] , we must show tha t / (x) and k(y) belong 
to the same component in X. To begin with, Lemma (2.4) tells us that 

(2.8.4) k o h(x) and x belong to the same component. 

Continuity of /a lone allows us to conclude 

(2.8.5) / o k o h(x) a n d / ( x ) belong to the same component. 

Again we apply Lemma (2.4) to get the fact that 

(2.8.6) k o h o / o k o h(x) a n d / o k o h(x) belong to the same 
component. 

It now follows from (2.8.3) and (2.8.5) t ha t / ( x ) and k(y) belong to the 
same component. 

Now suppose x e f~][Ck{v)]. Then / (x ) and k(y) must belong to the 
same component and Lemmas (2.3) and (2.6) together allow us to 
conclude that 

(2.8.7) h of(x) = ho k(y) = y. 

The continuity of/ in conjunction with Lemma (2.4), tells us as in (2.8.5) 
t h a t / o k o h(x) andf(x) belong to the same component so that another 
application of Lemma (2.6) yields 

(2.8.8) h o/o k o h(x) - h of(x). 

But g = <p(/) = hofokso that (2.8.7) and (2.8.8) together imply 

x e h~l[g-\y)]. 

This verifies (2.8.1). To complete the proof of the lemma, recall our 
blanket assumption that spaces are all generated. Thus, g \y) is a typical 
subbasic closed set of Y. Since/is continuous and components are closed, 
we see from (2.8.1) that h~][g~\y)] is closed. Thus, h is indeed 
continuous. 

One might think it tempting at this point to try to prove that the 
function k is also continuous but this cannot be done. One can produce 
counter-examples. We say more about this later. The trick is to replace k 
by another function which is not only continuous but, in fact, is a 
homeomorphism. For this, we need the next, and final, lemma of this 
section but before we state it, we need to introduce some notation. We use 
our mapping h to define a mapping h from AV^into Y. Specifically, for 
any C <E r ,̂ we define 

(2.8.9) h(C) = h(a) where a is any element of C. 

In view of Lemma (2.6), the definition of h{C) does not depend on the 
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A A 

point a in C so that h is indeed a function. For the function h, we have 
the following 

LEMMA (2.9). The function h is a homeomorphism from Xl^ onto Y. 

Proof. It follows from Lemmas (2.3) and (2.7) that h is both injective 
A 

and surjective. The continuity of h follows from that of h and it remains 
for us to verify that h~ is continuous. Take a n y / e S(X/^) and 
define 

(2.9.1) g = h o t ofo 77 o k 

where TT is the canonical map from X onto AV^and / is the mapping of 
Lemma (2.2). We then take any x e X and verify that 

(2.9.2) (/r'r'LrVCv)] = g-Hh(x)). 
Let 

y e (h~Y\r\cx)]. 
By Lemma (2.3), we have 

h(Ck{y)) = h(k((y)) =y 

which means 

h~\y) = cHy). 

Since h~~ (y) e / ~ (CY), this implies 

(2.9.3) f(Ck{y)) = C,. 

From this, we get 

(2.9.4) / o / o 77 o ^(_y) = /(Cx). 

By Lemma (2.2), 

tofo7Tok(y)G:Cy 

and it follows from Lemma (2.7) that 

(2.9.5) h o / o / o 77 o £(>>) = h(x). 

This, together with (2.9.1) implies y Œ g~ (h{x)) and one inclusion of 
(2.9.2) has been verified. To verify the other, let y G g~\h(x)). 
From (2.9.1), we get 

(2.9.6) h o t ofo 77 o k(y) = h(x). 

This, together with Lemma (2.7), implies 

(2.9.7) / o / o 77 o k(y) G Cx 

and we then appeal to Lemma (2.2) to get 
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(2.9.8) fo7rok(y) = Cx. 

But this can be rewritten a s / ( C A ( v ) ) = Cx and since, as we noticed 
previously, h~ (y) = C A ( r ) we have 

f(h-\y)) = Cx. 

Thus, 

y e (h-y\r\cx)\ 
and (2.9.2) has now been verified. 

Next, we note that / ofo 77 is a continuous selfmap of X and thus g must 

be a continuous selfmap of Y since 

<p(t 0 / 0 77) = g. 

This means that g~\h(x) ) is a closed subset of Y and the continuity of 
h now follows from this, statement (2.9.2) and the fact X/tf is a 
O-dimensional Hausdorff space (Lemma (2.2) ) and is therefore generated 
[4], [3, p. 200]. 

We are now in a position to state and prove the two main results. We 
state both before completing any proofs. We emphasize that in the first of 
the two theorems, the only additional requirement on the epimorphism is 

that it not be an isomorphism. 

T H E O R E M A. Let X be an admissible space, let Y be any space with more 
than one point and let <p be a noninjective epimorphism from S(X) onto S( Y). 
Then there exists a continuous function h from X onto Y and a 
homeomorphism k from Y into X such that the following conditions are 
satisfied: 

(A-l ) q>(f) = ho f ok for eachf e S(X). 
(A-2) h o k is the identity mapping on Y. 
(A-3) x and k(h(x) ) lie in the same component of X for each x e X. 
(A-4) h (a) = h(b) if and only if a and b both belong to the same 

component of X. In particular, h is constant on components of X. 

Theorem A essentially states that the existence of an epimorphism 
implies the existence of two functions which satisfy a number of 
conditions. The question now is, "Does the existence of two functions 
satisfying those conditions imply the existence of an epimorphism?" The 
answer is yes. In fact, the conditions can be stated in such a manner that 
they give the appearance of being somewhat less stringent than those 
listed in Theorem A. This is the content of 

T H E O R E M B. Let X be an admissible space, let Y be any space and let h 
and k be continuous maps from X into Y and Y into X respectively which 
satisfy the following conditions: 
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(B-l) h o k is the identity mapping on Y. 
(B-2) x and k(h(x) ) lie in the same component of x for each x e X. 
(B-3) h is constant on components of X. Then the mapping <p defined by 

<jp(/) = hofo k for each f E S(X) is an epimorphism from S(X) onto 
S(Y). 

Proof of Theorem A. Theorem (2.2) of [1] guarantees the existence of two 
functions h and w from X into Y and Y into X respectively such that 

(A-6) v ( / ) = hofowfor e a c h / G S(X). 

Lemmas (2.3) to (2.9) inclusive now apply to the functions h and w. In 
particular, Lemma (2.9) tells us that h is a homeomorphism from XI ^ 
onto 7. Let t be the function in Lemma (2.2) and define a function k by 

(A-7) £ = to h~\ 

The function k is certainly continuous and we assert that 

(A-8) <p(/) = hofok for e a c h / <= £(*)• 

For any x ^ X, Lemma (2.2) assures us that t(Cx) G CX SO t h a t / o /(C\.) 
and / (x ) must belong to the same component for a n y / <E S(X). Since h is 
constant on components, we then have 

(A-9) hofot(Cx) = ho f(x). 

But we also have 

h o f o k o h(x) = h o f o t o h~ (h(x) ) 

= h ofo t(Cx) 

and this with (A-9) implies 

(A-10) h ofo k o h(x) = h of(x). 

Now x and w o h(x) belong to the same component by Lemma (2.4) and 
hence b o t h / o w o h(x) and / (x) must also belong to the same component. 
Again, we appeal to the fact that h is constant on components to conclude 
that 

(A-11) h o f o w o h(x) = h of(x). 

From (A-10) and (A-ll) we have 

(A-12) h ofo k o h(x) = h ofo w o h(x). 

Since the map h is surjective, it follows that 

hofok(y) = hofo w(y) for each y G Y 

and this together with (A-6) implies (A-8). 
Now (A-8) together with the previous lemmas imply the validity of all 
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the conclusions of Theorem A with the exception that k is a homeomor-
phism. But we know that h o k is the identity on Y and this implies that 
k o h is the identity on k[Y]. Since both h and k are continuous, it follows 
that k is a homeomorphism from Y into X. 

Proof of Theorem B. This is really accomplished quite easily. We first 
show that 

(B-4) cp(/o g) = cp(/) o <p(g) for al l / , g e S ( À > 

Let anyj; G y be given. By (B-2), g o /c(j>) and k o h o go k(y) lie in the 
same component of X. Consequently,/o g o k(y) a n d / o k o h o go k(y) 
also lie in the same component. Condition (B-3) then implies 

(B-5) h o / o g o k(y) = h o / o k o h o g o /:( y) 

which means (B-4) holds. For any g e S(Y), 

ko go h e S(X) 

and (B-l) implies 

<p(k o go h) = g. 

Thus, <p is an epimorphism from S(X) onto S(Y). 

3. Applications of theorems A and B. Our first application is to 
determine all congeneric congruences on S(X) where X is any admissible 
space. This is really the problem that motivated this paper. Recall from 
the introduction that a congruence o on S(X) is congeneric if S(X)/o is 
isomorphic to S(Y) for some space Y. Recall also the three congruences ô, 
v and y where 8 is the identity congruence, v is the universal congruence 
and y consists of all pairs ( / g) with the property that if one of the 
functions carries a component A of X into a component B of X then 
the other must also carry A into B. Let us now consider the map \p from 
S(X) to S(X/V) which is defined by 

0K/))(Cv) = Cf(x) 

for each component Cx G A7^. The map \p(f) does indeed belong to 
S (X/V) since 

(*K/) ) O 7T = 7T Of 

It is easily seen that ^ is a homomorphism. To see that it is surjective, take 
any g G S(X/V). Then 

t O g O TT G £ ( .Y) 

where / is the map of Lemma (2.2) and it readily follows that 

\p(t o g o 77) - g. 
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Consequently, \p is an epimorphism from S(X) onto S(X/%). It is 
immediate that the congruence induced by ;// is none other than y. Thus, 
S(X)/y is isomorphic to S(X/(ê) which, according to Lemma (2.2), is a 
O-dimensional Hausdorff space. Since such spaces are generated [4], 
[3, p. 200] it follows that y is a congeneric congruence on S(X) when X is 
admissible. Of course, it is immediate that both 8 and v are congeneric 
congruences. Our next result says that these exhaust the possibilities. 

THEOREM (3.1). Let X be admissible. Then the only congeneric 
congruences on S(X) are Ô, v and y. 

Proof. Let fi be a congeneric congruence on S(X) which is neither 8 nor 
v. Then there exists a space Y and an isomorphism 0 from S(X)/fi onto 
S(F). Let fi be the canonical homomorphism from S(X) onto S(X)/fi. 
Then 6 o fi is an epimorphism from S(X) onto S(Y). Moreover, 0 o fi is 
not an isomorphism since fi ¥= 8 and Y must have more than one point 
since fi ¥= v. Thus, according to Theorem A there exists a continuous map 
h from X onto Y and a homeomorphism k from Y into X such that 

(3.1.1) 0 o # ( / ) = h o / o A: for e a c h / G S(Ar) 

and the maps h and /c satisfy conditions (A-2) to (A-4) inclusive. Now 
suppose ( / g) G fi 2indf[A] c J? where A and i? are two components of 
X. We want to show that g[A] c B also. Since (/, g) G /?, we have 
/?(/) = /?(g) which implies 

(3.1.2) h o / o k = h o g o k. 

Take any # e ^ . Then k(h(a) ) ^ A by (A-3) and (3.1.2) implies 

(3.1.3) /z o / o /c o h (a) = h o g o k o //(#). 

Then /o k o h(a) and g o k o h(a) belong to the same component by (A-4). 
B u t / o k o h(a) e 5 and it follows that g maps 4̂ into 5. This shows that 
P c y. 

Now suppose (/, g) e y. Then if one of the functions carries 
a component ^ of I into a component #, the other function must do 
the same. Since h is constant on components, it readily follows that 
hofok = h o g o k. Thus, 

e o kf) = e o kg) 
which implies /?(/) = J3(g) since # is injective. This means ( / g) & fi and 
we have verified that fi = y. This completes the proof. 

Our next result, although not specifically stated, has essentially been 
proved in the previous section. 

THEOREM (3.2). Let X be an admissible space and let Y be a space with 
more than one point which is not homeomorphic to X. Then the following 
statements are equivalent: 
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(3.2.1) S(Y) is a homomorphic image of S(X). 
(3.2.2) Y is homeomorphic to XI m. 
(3.2.3) There exists a continuous function h from X onto Y and a 

homeomorphism k from Y into X such that the following conditions are 
satisfied: 

(i) h o k is the identity mapping on Y 
(ii) x and k(h(x)) lie in the same component of Xfor each x e X 

(iii) h is constant on components of X. 

Proof. Assume (3.2.1) and let <p be an epimorphism from S(X) onto 
S(Y). Since X is not homeomorphic to 7, Theorem (2.3) of [2, p. 198] 
assures us that y cannot be an isomorphism. Thus Theorem A applies and 
we have (3.2.3). Of course (3.2.3) implies (3.2.1) because of Theorem B. 
Statement (3.2.1) implies (3.2.2) because of Lemma (2.9). To complete the 
proof we must show that (3.2.2) implies either (3.2.1) or (3.2.3). The latter 
can be shown by defining h = v o IT and k = t o v~ where 7T is the 
canonical map from X onto Xi'% v is any homeomorphism from J /^on to 
Y and / is the mapping of Lemma (2.2). However, we have also essentially 
shown that (3.2.2) implies (3.2.1) for in the first paragraph of this section 
we constructed an epimorphism from S(X) onto S(X/^) and when XI ($ 
and Y are homeomorphic, S(X/^) and S(Y) must be isomorphic. 

The next result is an immediate consequence of the previous theorem. 

COROLLARY (3.3). Let X be an admissible space and let Y be any space 
whatsoever. Then S{Y) is a homomorphic image of S(X) if and only if Y is 
homeomorphic to either X, XI <& or the one-point space. 

Recall that a semigroup is Hopfian if every epimorphism of the 
semigroup onto itself is an automorphism. 

THEOREM (3.4). Let X be any admissible space. Then S(X) is Hopfian. 

Proof. The conclusion is immediate if X consists of only one point so we 
assume otherwise. Let <p be an epimorphism of S(X) onto itself and 
suppose that it is not an automorphism. It then follows from Lemma (2.9) 
that Xand AV^are homeomorphic. But X / ^ i s a O-dimensional Hausdorff 
space by Lemma (2.2) and we now have a contradiction since Theorem 
(3.6) and Corollary (4.2) of [1] assure us that every epimorphism of S(X) 
must be an automorphism. 

THEOREM (3.5). Let X be an admissible space and let Y be any space such 
that S(Y) is a homomorphic image of S(X). Then there exists an 
isomorphism from S(Y) into S(X). 

Proof The conclusion is immediate if Y has only one point so assume 
otherwise and let <p be an epimorphism from S(X) onto S( Y). If <p happens 
to be an isomorphism then the conclusion follows so we need only 
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consider the case where <p is not an isomorphism. Then according to 
Theorem A there exists a continuous map h from X onto Y and a 
homeomorphism k from Y into X such that (A-l) to (A-4) inclusive are 
satisfied. Define a map \p from S(Y) into S(X) by 

(3.5.1) iK/) = * o / o h for e a c h / G S(y) . 

î  is a homomorphism because of (A-2) and it is injective because k is 
injective and h is surjective. 

The symbol U~Y denotes the full transformation semigroup on the 
set Y. 

THEOREM (3.6). Let X be admissible. Then there exists a set Y with more 
than one point such that J'y is a homomorphic image of'S(X) if and only if X 
is not connected and all of its components are open. 

Proof. Suppose first that X is not connected and all of its components 
are open. Then XI ^ i s discrete and consists of more than one point. If X is 
homeomorphic to XI'% then there is an isomorphism from S(X) onto 
S(XI^). If X is not homeomorphic to XI'% then Theorem (3.2) applies 
and there exists a homomorphism from S(X) onto S(XIC€). Since AV^is 
discrete, S{XI^) is the full transformation semigroup on XI <€ and the 
conclusion follows. 

Now suppose card Y > 1 and £?~Y is a homomorphic image of S(X). We 
regard F as a discrete topological space and we then have a homomor­
phism S(X) onto S(Y). If X is homeomorphic to Y then it is immediate 
that it is not connected and its components are open. If X is not 
homeomorphic to Y then Theorem (3.2) applies once again and (3.2.2) 
tells us that Xltëis discrete and consists of more than one point. Hence, in 
this case also, X is not connected and its components are open. 

The situation for locally connected spaces is particularly simple and we 
state several results for such spaces. 

THEOREM (3.7). Let X be a locally connected completely regular Hausdorff 
space whose components and arc components coincide. Then there exists a set 
Y with more than one point such that lTY is a homomorphic image of S(X) if 
and only if X is not connected. 

Proof. Since X is locally connected, all of its components are open so 
that (2.1.3) and (2.1.4) are trivially satisfied. Consequently, Xis admissible 
and the proof now follows from Theorem (3.6). 

THEOREM (3.8). Let X be a locally connected completely regular Hausdorff 
space whose components and arc components coincide and let Y be any space 
which is not discrete. Suppose there exists an epimorphism <pfrom S(X) onto 
S(Y). Then <p must necessarily be an isomorphism and X and Y are 
homeomorphic. 
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Proof. As in the previous proof, X is admissible. If <p is not an 
isomorphism then Theorem (3.2) applies and Y is homeomorphic to XI ^ 
by (3.2.2). But XI ^ h discrete since Xis locally connected. Thus, we have 
a contradiction so we conclude that <p must be an isomorphism. It follows 
from Theorem (2.3) of [2, p. 198] that X and Y are homeomorphic. 

4. Some concluding remarks. We first expand on a remark made at the 
conclusion of Lemma (2.8). Most of the lemmas in Section 2 deal with two 
functions h and k which induce an epimorphism from S(X) onto S(Y). 
The function h must be continuous but, as we mentioned after the proof of 
Lemma (2.8), the function k need not be continuous. Of course, what we 
did in order to prove Theorem A was to replace k (we called it w in the 
proof of Theorem A) with a function we knew to be continuous (in fact, it 
turned out to be a homeomorphism) and we chose the function so that 
together with h, it induced the same epimorphism as did k. Examples in 
which k is not continuous are abundant. We give one. Let 

let / = [0, 1] and let X = Y X I. Define a mapping h from X onto Y by 
h{a,b) = a and a mapping k from y into Xhy k(a) = (a, 0) for a ¥= 0 and 
k(0) = (0, 1/2). Then k is not continuous but nevertheless the mapping <p 
defined by 

<jp(/) = h o / o k 

is an epimorphism from S(X) onto S(Y). 
We next say a few words about a type of congruence on S(X) whose 

definition was motivated by the congeneric congruence y. Let X be any 
topological space and let s? be any nonempty collection of nonempty 
subsets of X which satisfy the following two conditions: 

(1) For a n y / e S(X) and any A ^ s/ there exists a B <E stf such that 
f[A] a B. 

(2) For a n y / <= 5(Ar), i G j < 5 e ^ a n d nonempty E c A,f[E] c B 
implies/[^4] c B. 

One can associate with s/ a. congruence o(s/ ) on S(X) by declaring two 
functions to be equivalent if whenever one of the functions carries A into 
B(A, B e s/) then the other does also. It follows easily from (1) and (2) 
that o(s/) is a congruence. If s/is taken to be all components of X then 
o(s/) is just the congruence y (which, it should be mentioned, may not be 
a congeneric congruence if X is not admissible). Other examples of 
families J / satisfying (1) and (2) are the collection of all arc components 
and the collection of all singletons. In the latter case, o(s/) is just the 
identity congruence. That is, ( / g) <E o(srf) if and only if/ = g. One can 
obtain the universal congruence by taking J / = {X}. It may well turn out 
to be an interesting project to investigate families satisfying conditions (1) 
and (2) and the congruences arising therefrom. 
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In closing, we make a few remarks: About one possible generalization of 
Theorem A. We recall from [2, p. 146] that an /-subsemigroup of a 
semigroup T is any subsemigroup of the form 

Tv = [a E T:av = va = a) 

where v is any idempotent of T. Of course, Tv coincides with T whenever v 
is the identity of T. Now suppose X is admissible and we have a 
noninjective homomorphism <p from S(X) onto a /-subsemigroup S( Y\ of 
S(Y). Let F denote the range of the idempotent v. It is a straight forward 
matter to check that the map a defined by a(f) = / / V is an isomorphism 
from S(Y)V onto S(V) and that a~\g) = g o v for each g <= S(V). Thus 
a o <p is a noninjective homomorphism from S(X) onto 5(F) and thus, 
Theorem A applies. It follows that there exists a continuous function h 
from X onto V and a homeomorphism /c from V into X such that (A-2), 
(A-3) and (A-4) are satisfied. Moreover, from (A-l), we get 

(a o <p)(f) = h o / o /c 

which implies that 

q>(f) = « (h o f o k) = h o f o k o v 

for e a c h / G S(^0- Thus, we see that Theorem A generalizes easily to a 
statement about homomorphisms onto 7-subsemigroups. 
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Added in proof. M. C. Thorton obtained results analogous to some of the 
results in this paper for a completely different class of spaces than those 
considered here. (Semigroups of isotone selfmaps on partially ordered sets, J. 
London Math. Soc. (2) 14 (1976), 545-553.) 
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