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Cliquishness and Quasicontinuity of
Two-Variable Maps

A. Bouziad

Abstract. We study the existence of continuity points for mappings f : X × Y → Z whose x-sections

Y ∋ y → f (x, y) ∈ Z are fragmentable and y-sections X ∋ x → f (x, y) ∈ Z are quasicontinuous,

where X is a Baire space and Z is a metric space. For the factor Y , we consider two infinite “point-

picking” games G1(y) and G2(y) defined respectively for each y ∈ Y as follows: in the n-th inning,

Player I gives a dense set Dn ⊂ Y , respectively, a dense open set Dn ⊂ Y . Then Player II picks a point

yn ∈ Dn; II wins if y is in the closure of {yn : n ∈ N}, otherwise I wins. It is shown that (i) f is cliquish

if II has a winning strategy in G1(y) for every y ∈ Y , and (ii) f is quasicontinuous if the x-sections

of f are continuous and the set of y ∈ Y such that II has a winning strategy in G2(y) is dense in Y .

Item (i) extends substantially a result of Debs and item (ii) indicates that the problem of Talagrand on

separately continuous maps has a positive answer for a wide class of “small” compact spaces.

1 Introduction

Let X be a topological space and (Z, d) be a metric space. A mapping f : X → Z is

said to be cliquish [26] if for any ε > 0 and any nonempty open set U ⊂ X there is a

nonempty open set O ⊂ U such that d( f (x), f (y)) < ε for all x, y ∈ O. Following

[15] (see also [12]), the mapping f is said to be fragmentable if the restriction of f to

each nonempty subspace of X is cliquish. Fragmentable mappings are said to be of the

first class in Debs’s paper [7]; given the common meaning of “first class functions”,

we will adopt here Koumoullis’s terminology. Recall also that the mapping f is said

to be quasicontinuous [14] if for every ε > 0, every x ∈ X, and every neighborhood

V of x in X there is a nonempty open set O ⊂ V such that d( f (x), f (y)) < ε for

each y ∈ O. It is well known (and easily seen) that quasicontinuous mappings are

cliquish, and cliquish mappings are continuous at every point of a residual subset of

X (and vice versa if X is a Baire space).

There are many studies in the literature, dating back at least to Baire [1], whose

purpose is to find conditions (as weak as possible) to insure the existence of conti-

nuity points for mappings of two variables. Among them there is the following by

Fudali [9]: every mapping f : X × Y → Z, where X is Baire, Y is second count-

able, and Z is a metric space such that for every (x, y) ∈ X × Y the x-section

fx : Y ∋ y → f (x, y) ∈ Z is cliquish and the y-section f y : X ∋ x → f (x, y) ∈ Z is

quasicontinuous, is a cliquish mapping. See also [8] for similar results and [17, 19]

for closely related results involving quasicontinuous x-sections. There are easy ex-

amples showing that Fudali’s result is false for metrizable Y (an example is included

Received by the editors April 3, 2010; revised August 10, 2010.
Published electronically July 8, 2011.
AMS subject classification: 54C05, 54C08, 54B10, 91A05.
Keywords: cliquishness, fragmentability, joint continuity, point-picking game, quasicontinuity, sepa-

rate continuity, two variable maps.

55

https://doi.org/10.4153/CMB-2011-141-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-141-3


56 A. Bouziad

here); therefore, the following result established by Debs in [7] is of particular inter-

est. Every mapping f : X ×Y → Z whose x-sections are fragmentable and y-sections

are continuous is cliquish, provided that X is a “special” Baire space, X ×Y is a Baire

space, and Y is first countable. The interested reader is referred to [7] for the precise

assumption on X.

In this note Debs’s theorem is improved (see Corollary 3.5): if the y-sections of f

are quasicontinuous, the x-sections are fragmentable, X is Baire, and the π-character

of each point of Y is countable, then f is cliquish. This statement is a special case

of one of the main results of this paper (Theorems 3.4 and 3.7), where the problem

is considered under some fairly general conditions expressed in terms of two point-

picking games played on the factor Y (defined in the next section). The second main

result concerns the mappings f whose x-sections are continuous and y-section are

quasicontinuous. It states, in particular, that such a mapping is quasicontinuous pro-

vided that the space Y has densely many points of countable π-character (Corollary

3.8).

The topic here is closely related to the following problem by Talagrand [25]: let

f : X × Y → R be a separately continuous mapping, where X is a Baire space and

Y is a compact space; is it true that f admits at least a continuity point in X × Y ?

The reader is referred to [5] for further information about this still-open question.

According to Corollary 3.8, we have a positive answer if densely many points of Y (or

X) are of countable π-character. In view of the theorem by Juhász and Shelah [13],

that is, πχ(y,Y ) ≤ t(y,Y ) for every y ∈ Y , the answer is also positive if the compact

Y admits a dense set of points of countable tightness. The definitions of the cardinal

numbers πχ(y,Y ) and t(y,Y ) are recalled below.

2 Two Games

Let Y be a topological space and L be a collection of nonempty subsets of Y . For

y ∈ Y , we consider the following two persons infinite point-picking game G(L, y)

on Y . Player I begins and gives L0 ∈ L, then Player II chooses a point y0 ∈ L0; at

stage n ≥ 1, Player I chooses Ln ∈ L and then Player II gives a point yn ∈ Ln. A play

(Ln, yn)n∈N is won by Player I if y ∈ {yn : n ∈ N}; otherwise, II wins.

We will be concerned in this game with two different collections L of subsets of Y ,

namely, the collection O(Y ) of nonempty open subsets of Y and the collection A(Y )

of somewhere dense subsets of Y . (When the space Y is clearly identified from the

context, we shall simply write O and A.) Recall that a subset F ⊂ Y is said to be

somewhere dense in Y if the interior of its closure Int(F) in Y is nonempty. It should

be mentioned that if L is the collection of all neighborhoods of y in Y , then G(L, y)

is the game introduced by Gruenhage in [10]. The game G(O, y) is the pointwise

version of the one introduced by Berner and Juhász in their paper [2] (from which

the term “picking-point game” is taken): In the n-th step, Player I gives a nonempty

open set Un ⊂ Y , then II picks a point yn ∈ Un; I wins if {yn : n ∈ N} is dense in Y .

Following the terminology of [24], the dual game G∗(A, y) of G(A, y) (respec-

tively, G∗(O, y) of G(O, y)) on Y is defined as follows: at stage n, Player I gives a

dense open set Dn ⊂ Y (respectively, a dense set Dn ⊂ Y ) and then Player II chooses

yn ∈ Dn. Player II wins if y ∈ {yn : n ∈ N}. Using the techniques of [23], one can
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show that these games are indeed dual, meaning that Player II has a winning strategy

in the game G∗(A, y) (respectively, Player I has a winning strategy in G∗(A, y)) if

and only if Player I has a winning strategy in G(A, y) (respectively, Player II has a

winning strategy in G(A, y)). This is also true for the class O.

The next statement and the discussion after its proof show that the difference be-

tween the games G(O, y) and G(A, y) is significant.

Proposition 2.1 Let y ∈ Y and N be a collection of subsets of Y such that

(i) for every neighborhood U of y in Y there is a finite collection F ⊂ N such that

Int(
⋂

F) 6= ∅ and
⋂

F ⊂ U ;

(ii) the closure of the set A = {z ∈ Y : |{N ∈ N : z 6∈ N}| ≤ ℵ0} is a neighborhood

of y in Y .

Then Player I has a winning strategy in the game G(A, y).

Proof Let us fix a bijective map N ∋ n → (φ(n), ψ(n)) ∈ N × N such that n > φ(n)

for every n ≥ 1. Put τy(∅) = A. For y0 ∈ A, i.e., the answer of Player II, let

S0 = {S0
n : n ∈ N} be an enumeration of the collection of all sets of the form

⋂

F, where F is a finite subcollection of N0 = {N ∈ N : y0 6∈ N} (we adopt the

convention
⋂

∅ = Y ). Define τy(y0) = S0
0 ∩ A if S0

0 ∩ A ∈ A and τy(y0) = A

otherwise. At stage n ≥ 1, to define τy(y0, . . . , yn) put Nn = {N ∈ N : yn 6∈ N}
and denote by Sn = {Sn

k : k ∈ N} the collection of all intersections
⋂

F, where F is a

finite subcollection of
⋃

i≤n Ni . Then put τy(y0, . . . , yn) = A∩ S
φ(n)
ψ(n) if A∩ S

φ(n)
ψ(n) ∈ A

and τy(y0, . . . , yn) = A otherwise. The definition of τy is complete.

To show that τy is a winning strategy, let (yn)n∈N ⊂ Y be a play which is compat-

ible with τy and let U ⊂ A be a neighborhood of y in Y . There is a finite set F ⊂ N

such that
⋂

F ⊂ U and Int(
⋂

F) 6= ∅. Let F1 = F ∩ (
⋃

n∈N
Nn). We assume that

F1 6= ∅ (otherwise, {yn : n ∈ N} ⊂ U ). Put S =
⋂

F1 and choose n ∈ N such

that S = S
φ(n)
ψ(n); since ∅ 6= Int(

⋂

F) ⊂ A, the set S ∩ A belongs to A. It follows that

yn+1 ∈ S, hence yn+1 ∈ U since yn+1 ∈ N for every N ∈ F \ F1.

Recall that a network at y in Y is a collection N of subsets of Y such that every

neighborhood of y in Y contains some nonempty member of N. A π-base at y in

Y is a network at y, all members of which are open. The space Y is said to have

a countable π-character at y ∈ Y , in symbol πχ(y,Y ) ≤ ℵ0, if y has a countable

π-base in Y .

Proposition 2.1 applies in the case πχ(y,Y ) ≤ ℵ0 as well as in many other cases.

To illustrate this, let us consider for a cardinal number κ the Cantor cube 2κ of weight

κ. It is well known that πχ(y, 2κ) = κ for every y ∈ 2κ (see [11]); since 2κ is a regular

space, it follows that if κ is uncountable, then A(2κ) does not include any countable

π-network at any point of 2κ. Also, if κ is uncountable, then Player II has a winning

strategy in the game G(O, y) for every y ∈ 2κ: It suffices to confront Player II in the

dual game G∗(O, y) to the dense subset of 2κ given by

Σ(y) = {z ∈ 2κ : |{i ∈ κ : z(i) 6= y(i)}| ≤ ℵ0},

where y = 1 − y. However, Player I always has a winning strategy in the games
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G(A, y), y ∈ 2κ. Indeed, for y ∈ 2κ, the collection

N = {{z ∈ 2κ : z(i) = y(i)} : i ∈ κ}

satisfies the assumption of Proposition 2.1. Observe also that Player I has a winning

strategy in the games G(O, y) played on the dense subspace Σ(0) of 2κ, for every

y ∈ Σ(0) [10].

Clearly, if Player I has a winning strategy in the game G(L, y) on Y , then the

collection L is a π-network at y in Y . (Of course, this holds even if Player II does not

have a winning strategy in this game.) The next lemma, needed below, gives us a bit

more. Let Y<ω stand for the set of finite sequences in Y .

Lemma 2.2 Suppose that Player I has a winning strategy τ in the game G(L, y).

Then, for every neighborhood V of y in Y , Player I has a winning strategy σ in the game

G(L, y) such that σ ⊂ V , that is, σ(s) ⊂ V for every s ∈ Y<ω .

Proof Fix some L0 ∈ L such that L0 ⊂ V . For every finite sequence s =

(y0, . . . , yn) ∈ Y<ω such that y ∈ {y0, . . . , yn} (no separation axiom is assumed),

put σ(s) = L0. For the remaining sequences in Y<ω , including the empty sequence

(that is, the first move of Player I), we proceed as follows. Let s ∈ Y k be such a

sequence (k ∈ N). If τ (s) ⊂ V , put σ(s) = τ (s) and ts = ∅. If not, write

s = (y0, . . . , yk) (if s 6= ∅) and choose a finite sequence ts = (xs
0, . . . , x

s
ns

) ∈ Y ns

such that the sequence (s, ts) is compatible with τ , {xs
0, . . . , x

s
ns
} ∩ V = ∅ and

τ (s, ts) ⊂ V \ {y0, . . . , yk} (or τ (s, ts) ⊂ V if s = ∅); such a sequence exists since τ
is a winning strategy. Then define σ(s) = τ (s, ts). The definition of σ is complete.

Let (yn)n∈N ⊂ Y be a sequence which is compatible with σ and let W ⊂ V be

a neighborhood of y in Y . We may suppose that y 6∈
⋃

n∈N
{y0, . . . , yn}. Put sn =

(y0, . . . , yn) (n ∈ N); then, the sequence (zn)n∈N starting with t∅ and obtained from

(yn)n∈N by inserting each tsn
just after yn, is compatible with τ . Hence there is p ∈ N

such that zp ∈ W ; since no term of the sequences t∅ and tsn
(n ∈ N) belongs to V ,

zp ∈ {yn : n ∈ N}.

3 Main Results

The main results rest on the following proposition. In its proof we shall make use of

the description of first category sets in terms of the Banach–Mazur game. For a space

X and R ⊂ X, a play in the game BM(R) (on X) is a sequence (Vn,Un)n∈N of pairs of

nonempty open subsets of X produced alternately by two players β and α as follows:

β is the first to move and gives V0; then Player α gives U0 ⊂ V0. At stage n ≥ 1, the

open set Vn ⊂ Un being chosen by β, Player α gives Un ⊂ Vn. Player α wins the play

if
⋂

n∈N
Un ⊂ R. It is well known that X is BM(R)-α-favorable (i.e., α has a winning

strategy in the game BM(R)) if and only if R is a residual subset of X. The reader is

referred to [18].

Let us say that the space Y is fragmented by ∆ ⊂ Y ×Y if every nonempty subspace

of Y admits a nonempty (relatively) open subset U such that U ×U ⊂ ∆. In the next

statement, X, Y are topological spaces, (∆x)x∈X is an X-indexed collection of subsets

of Y × Y and L is collection of nonempty subsets of Y such that for every y ∈ Y ,

Player I has a winning strategy in the game G(L, y).
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Proposition 3.1 Let R be a second category subset of X such that Y is fragmented by

∆x for each x ∈ R. Then for every nonempty open set V ⊂ Y , there exist a nonempty

open set U ⊂ X, y ∈ V , and L ∈ L, with L ⊂ V , such that for every b ∈ L the set

{x ∈ U : (b, y) ∈ ∆x} is dense in U .

Proof Assume, on the contrary, that the claim is false for some nonempty open set

V ⊂ Y , and let us prove that X \ R is a residual subset of X, i.e., R is of the first

category in X. For each y ∈ V and L ∈ L, with L ⊂ V , let D(y, L) be the set of x ∈ X

for which there is b ∈ L such that (b, y) 6∈ ∆a for every a in some neighborhood of x

in X; by our assumption, the open set D(y, L) is dense in X.

For each (x, y, L) (where (x, y) ∈ X×V , L ∈ L, and L ⊂ V ) such that x ∈ D(y, L),

choose a point cL(x, y) ∈ L and an open neighborhood O(L, x, y) of x in X such that

(cL(x, y), y) 6∈ ∆a for every a ∈ O(L, x, y). Let us fix for each y ∈ V a winning

strategy τy ⊂ V for Player I in the game G(L, y) (Lemma 2.2). We shall define

a winning strategy σ for Player α in the Banach–Mazur game BM(X \ R) on X as

follows. Let V0 be the first move of Player β in the game BM(X \R) and put σ(V0) =

V0 ∩ D0(y0, L
y0

0 ), where y0 is an arbitrary (but fixed) point of V and L
y0

0 = τy0
(∅).

Define F0 = {y0}.

At stage 1, if V1 is the response of β to σ(V0), first choose x1 ∈ V1, put y1 =

cL
y0
0

(x1, y0) and F1 = {y1}. Then define σ(V0,V1) to be the nonempty open subset

of X given by

V1 ∩ O(L
y0

0 , x1, y0) ∩ D(y0, L
y0

1 ) ∩ D(y1, L
y1

0 ),

where L
y0

1 = τy0
(y1) and L

y1

0 = τy1
(∅).

At stage 2, if V2 is the response of β to σ(V0,V1), first choose x2 ∈ V2, put y2 =

cL
y0
1

(x2, y0), y3 = cL
y1
0

(x2, y1), and F2 = {y2, y3}; then define σ(V0,V1,V2) to be the

nonempty open set given by

V2 ∩ O(L
y0

1 , x2, y0) ∩ O(L
y1

0 , x2, y1) ∩ D(y0, L
y0

2 ) ∩ D(y1, L
y1

1 ) ∩
[
⋂

y∈F2

D(y, L
y
0)
]

,

where L
y0

2 = τy0
(y1, y2), L

y1

1 = τy1
(y3), and L

y
0 = τy(∅) for y ∈ F2.

Continuing inductively, the notations will become more and more complicated

but the process allows us to define a strategy σ for Player α in the game BM(X \ R)

with the following property: To each play s = (Vn)n∈N for β against σ corresponds

a set Fs =
⋃

n∈N
Fn ⊂ Y such that for each y ∈ Fs there is a play (yn)n∈N ⊂ Fs of

Player II in the game G(L, y) against the strategy τy such that (yn, y) 6∈ ∆x for every

x ∈
⋂

n∈N
Vn and n ∈ N.

To conclude, let s = (Vn)n∈N be a play for Player β against σ and let us show that
⋂

n∈N
Vn ⊂ X \ R. Let x ∈

⋂

n∈N
Vn and suppose that x ∈ R. There is an open set

O ⊂ Y such that O ∩ Fs 6= ∅ and (O × O) ∩ (Fs × Fs) ⊂ ∆x. Let y ∈ O ∩ Fs; since

y ∈ {yn : n ∈ N}, there is n ∈ N such that (yn, y) ∈ ∆x, which is a contradiction.

Throughout the rest of the paper, f : X × Y → Z is a mapping, where (Z, d) is a

metric space. Let ε > 0. We shall apply Proposition 3.1 to the collection of subsets of

Y × Y of the form ∆x = {(y, z) ∈ Y × Y : d( f (x, y), f (x, z)) < ε}, x ∈ X. Clearly,

the “ε-fragmentability” of the mapping fx for x ∈ X as defined in the introduction

means that Y is fragmented by ∆x.
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Remark 3.2 Let y ∈ Y be such that fx is continuous at y for every x ∈ R (notations

of Proposition 3.1).

(i) If Player I has a winning strategy τy in the game G(L, y) on Y , then, involving

only the strategy τy , the same method in the above proof allows us to establish the

following assertion:

(∗)

For every ε > 0 and any neighborhood V of y ∈ Y , there is a nonempty

open set U ⊂ X and L ∈ L with L ⊂ V such that for each b ∈ L, the set

{x ∈ U : d( f (x, b), f (x, y)) < ε} is dense in U .

(ii) If y has a countable network N ⊂ L, then the above property (∗) can be

proved easily as follows: Proceeding by contradiction as in the proof of Proposi-

tion 3.1, since the open subset D(y, L) of X is dense in X for every L ∈ L with L ⊂ V ,

there is x ∈ R such that x ∈ D(y, L) for every L ∈ N with L ⊂ V . This gives a count-

able set {yn : n ∈ N} ⊂ Y such that y ∈ {yn : n ∈ N} and d( f (x, yn), f (x, y)) ≥ ε
for every n ∈ N, which is absurd since fx is continuous at y.

The following interesting concept is formulated in [16] (quite similar concepts

were studied by K. Bögel [3,4]): The mapping f : X×Y → Z is said to be horizontally

continuous at (a, b) ∈ X × Y if for every neighborhood W of f (a, b) in Z and every

neighborhood U × V of (a, b) in X × Y , there are a nonempty open set O ⊂ U and

y ∈ V such that f (O × {y}) ⊂ W .

The mapping f : X ×Y → Z is said to be lower quasicontinuous ([6]) with respect

to the variable x at the point (a, b) ∈ X × Y if for every neighborhood W of f (a, b)

in Z and every neighborhood U × V of (a, b) in X × Y , there is a nonempty open

set O ⊂ U such that for each x ∈ O there is y ∈ V such that f (x, y) ∈ W . Lower

quasicontinuity with respect to the variable y is defined similarly. Note that the qua-

sicontinuity of f b at a ∈ X implies that f is horizontally quasicontinuous at (a, b),

which in turn implies that f is lower quasicontinuous with respect to the variable x

at (a, b).

We continue to assume (in Proposition 3.3 and Theorem 3.4 below) that for every

y ∈ Y , Player I has a winning strategy in the game G(L, y).

Proposition 3.3 Suppose that fx is fragmentable for each x in a second category set R

in X, f y is cliquish for every y ∈ Y , and f is horizontally quasicontinuous. Let V ⊂ Y be

a nonempty open set. Then there exist b ∈ Y and a nonempty open set O×W ⊂ X×V

such that d( f (x, y), f (x ′, b)) ≤ ε for every x, x ′ ∈ O and y ∈ W , in each of the

following:

(i) L = O.

(ii) L = A, f y is quasicontinuous for every y ∈ Y and f is lower quasicontinuous

with respect to the variable y.

Proof By Proposition 3.1, there are b ∈ V , a nonempty open set U ⊂ X, and L ∈ L

with L ⊂ V , such that for every y ∈ L the set

Dy = {x ∈ U : d( f (x, y), f (x, b)) ≤ ε/2}
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is dense in U . Since f b is cliquish in both cases, there is a nonempty open set O ⊂ U

such that diam( f b(O)) ≤ ε/2.

To prove (i), we take W = L. Suppose that d( f (x0, y0), f (x1, b)) > ε for

some x0, x1 ∈ O and y0 ∈ L. Since f is horizontally quasicontinuous at (x0, y0)

and L is open, there is a nonempty open set O1 ⊂ O and y1 ∈ L such that

d( f (a, y1), f (x1, b)) > ε for every a ∈ O1. Let a1 ∈ O1 ∩ Dy1
; it follows from

d( f (a1, y1), f (a1, b)) ≤ ε/2 that d( f (a1, b), f (x1, b)) > ε/2, which is a contradic-

tion.

To prove (ii), we take W = Int(L ∩V ) ; since L ∈ A and L ⊂ V , W is nonempty.

Suppose that d( f (x0, y0), f (x1, y)) > ε for some x0, x1 ∈ O and y0 ∈ W . There is

a nonempty open set W1 ⊂ W such that for each y ∈ W1 there is a ∈ O such that

d( f (a, y), f (x1, b)) > ε; taking y1 ∈ W1 ∩ L, we obtain d( f (a1, y1), f (x1, b)) > ε for

some a1 ∈ O. Since f y1 is quasicontinuous, there is a nonempty open set O1 ⊂ O

such that d( f (a, y1), f (x1, b)) > ε for every a ∈ O1; as in the proof of (i), taking

a ∈ O1

⋂

Dy1
gives the contradiction d( f (a, b), f (x1, b)) > ε/2.

Now we state the first main result of this note.

Theorem 3.4 Suppose that f is horizontally quasicontinuous, f y is cliquish for every

y ∈ Y , and fx is fragmentable for each x in the Baire space X. Then f is cliquish in each

of the following:

(i) L = O;

(ii) L = A, f y is quasicontinuous for every y ∈ Y , and f is lower quasicontinuous

with respect to the variable y.

Proof Let U × V ⊂ X × Y be a nonempty open set and ε > 0. By Proposition 3.3

(for X = R = U ), there are b ∈ Y and a nonempty open set O × W ⊂ U × V such

that d( f (x, y), f (x ′, b)) ≤ ε for every x, x ′ ∈ O and y ∈ W . For every x, x ′ ∈ O and

y, y ′ ∈ W , we have

d( f (x, y), f (x ′, y ′)) ≤ d( f (x, y), (x ′, b)) + d( f (x ′, b), f (x ′, y ′)) ≤ 2ε.

In view of Proposition 2.1 and Theorem 3.4(i), we obtain the following improve-

ment of Debs’s result mentioned in the introduction.

Corollary 3.5 Suppose that for each y ∈ Y , πχ(y,Y ) ≤ ℵ0 and f y is quasicontinu-

ous, and X is a Baire space and fx is fragmentable for each x ∈ X. Then f is cliquish.

The concept of cliquish mapping extends in a natural way to mappings taking

their values in uniform spaces. Therefore, Theorem 3.4 and Corollary 3.5 hold more

generally for every uniform space Z. Let us also note that the assumption on the y-

sections of f in Theorem 3.4 allows us to assume in this statement that the x-sections

are fragmentable for x belonging to a dense Baire subspace of X.

If the x-sections of the mapping f are continuous, then the cliquishness of f in

Theorem 3.4 can be significantly improved, as we propose to show in what follows.

We need a variant of Proposition 3.3.
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Proposition 3.6 Suppose that fx is continuous for each x ∈ X, f y is quasicontinuous

for every y ∈ Y and X is a Baire space. Let b ∈ Y be such that Player I has a winning

strategy in the game G(A, b) on Y and let V be a neighborhood of b in Y . Then, for

every nonempty open set U ⊂ X, there is a nonempty open set O × W ⊂ U × V such

that d( f (x, y), f (x, b)) ≤ ε for every (x, y) ∈ O ×W .

Proof By Remark 3.2(i), there are L ∈ A, with L ⊂ V , and a nonempty open set

O ⊂ U such that for every y ∈ L the set {x ∈ U : d( f (x, y), f (x, b)) ≤ ε/2} is dense

in U . It remains to follow the proof of Proposition 3.3(ii) (more simply, because here

the fx’s are continuous).

The following is a variant of Theorem 3.4(ii) (the assumption on the x-sections

of f is strengthened, but there are fewer constraints on Y and the conclusion is

stronger).

Theorem 3.7 Suppose that for each point y in a dense subset of Y , Player I has a

winning strategy in the game G(A, y). If X is a Baire space, fx is continuous for every

x ∈ X and f y is quasicontinuous for every y ∈ Y , then f is quasicontinuous.

Proof Let (a, b) ∈ X × Y , U × V be a neighborhood of (a, b) ∈ X × Y , and ε > 0.

We may suppose that d( f (a, y), f (a, b)) < ε for every y ∈ V . Let c ∈ V be such that

Player I has a winning strategy in the game G(A, c). Since f c is quasicontinuous, there

is a nonempty open set O1 ⊂ U such that d( f (x, c), f (a, c)) < ε for every x ∈ O1.

Let O2 ×W ⊂ O1 ×V be a nonempty open set such that d( f (x, y), f (x, c)) < ε for

every (x, y) ∈ O2 ×W (Proposition 3.6). For every (x, y) ∈ O2 ×W , we have

d( f (x, y), f (a, b)) ≤ d( f (x, y), f (x, c)) + d( f (x, c), f (a, c)) + d( f (a, c), f (a, b))

≤ 3ε.

The following is a consequence of Theorem 3.7; it can be also obtained (directly

and more simply) by using Remark 3.2(ii).

Corollary 3.8 Suppose that for every y in a dense subset of Y , the collection A includes

a countable network at y in Y . If X is a Baire space, f y is quasicontinuous for each y ∈ Y

and fx is continuous for each x ∈ X, then f is quasicontinuous.

Corollary 3.8 shows that the question of Talagrand [25] mentioned in the intro-

duction has a positive answer if one of the two spaces X and Y has a dense subset of

points of countable π-character (since Y is compact, the product X×Y is Baire, hence

the quasicontinuous mapping f : X × Y → Z has at least a continuity point). Re-

lated to this, let us recall from the theorem of Šapirovskiı̌ [22] that all compact spaces

Y that cannot be continuously mapped onto the Tychonoff cube [0, 1]ω1 satisfy the

conditions of Corollary 3.8. This is also the case of all hereditarily normal compact

spaces, by another result of Šapirovskiı̌ [20, 21]. Taking into account the theorem of

Juhász and Shelah [13] that πχ(y,Y ) ≤ t(y,Y ) for every y in the compact space Y ,

the answer to Talagrand’s question is also positive if Y has a dense set of points of

countable tightness. The tightness t(y,Y ) of y in Y is the smallest cardinal κ such

that whenever y ∈ A, A ⊂ Y , there is a set B ⊂ A with |B| ≤ κ such that y ∈ B.
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Example 3.9 In conclusion, we return to the question raised in the introduction

whether it is possible to assume in the main results that the x-sections of the map-

pings f : X ×Y → Z are only cliquish, as is the case if the factor Y is (locally) second

countable [9]. Unfortunately, this is not possible even for metrizable Y . To show this,

let Y be a metrizable space such that the interior of every separable subspace of Y is

empty and take X to be the countably compact (hence Baire) subspace X = Σ(0) of

the Cantor space 2Y . Then the evaluation mapping X × Y ∋ (x, y) → x(y) ∈ {0, 1}
is cliquish in the variable y, continuous in the variable x, but not cliquish if Y is dense

in itself. Furthermore, inverting the roles of X and Y , and taking Y to be a Baire space,

e.g., completely metrizable, we obtain an example showing that the assumption con-

cerning the y-sections of the mapping f in Theorems 3.4 and 3.7 cannot be replaced

by the lower quasicontinuity of f with respect to the variable x.
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