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Dynamics of a thin film of fluid spreading over a
lubricated substrate
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We examine the gravity-driven flow of a thin film of viscous fluid spreading over a
rigid plate that is lubricated by another viscous fluid. We model the flow over such a
‘soft’ substrate by applying the principles of lubrication theory, assuming that vertical
shear provides the dominant resistance to the flow. We do so in axisymmetric and
two-dimensional geometries in settings in which the flow is self-similar. Different flow
regimes arise, depending on the values of four key dimensionless parameters. As the
viscosity ratio varies, the behaviour of the intruding layer ranges from that of a thin coating
film, which exerts negligible traction on the underlying layer, to a very viscous gravity
current spreading over a low-viscosity, near-rigid layer. As the density difference between
the two layers approaches zero, the nose of the intruding layer steepens, approaching a
shock front in the equal-density limit. We characterise a frontal stress singularity, which
forms near the nose of the intruding layer, by performing an asymptotic analysis in
a small neighbourhood of the front. We find from our asymptotic analysis that unlike
single-layer viscous gravity currents, which exhibit a cube-root frontal singularity, the
nose of a viscous gravity current propagating over another viscous fluid instead exhibits a
square-root singularity, to leading order. We also find that large differences in the densities
between the two fluids give rise to flows similar to that of thin films of a single viscous
fluid spreading over a rigid, yet mobile, substrate.

Key words: gravity currents, thin films

1. Introduction

Flows of thin films of viscous fluid spreading under the action of gravity are ubiquitous
in the world around us, as seen in various industrial (Oron, Davis & Bankoff 1997),
environmental (Simpson 1982) and geophysical (Huppert 2006) applications. These range
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from the spread of oil on the sea (Hoult 1972) to the dynamics of lava flows (Griffiths
2000), for example. Particularly striking is the range of possible behaviours when a thin
film of viscous fluid spreads under gravity over a soft-bedded, or liquid-infused, substrate.
Small-scale industrial applications of such lubricated flows include multi-layer thin-film
coating processes, such as for electronics and medical devices (Ying et al. 2015), and
three-dimensional printing or additive manufacturing applications (Mukherjee et al. 2016;
Sames et al. 2016), for example. In the latter context, molten material (liquid) is continually
added to soft, solidifying substrates that are partially solid and partially liquid, and hence
deformable (Khairallah et al. 2016; Kowal, Davis & Voorhees 2018).

Other examples on the small scale include physiological applications, such as that of
nasal drug and vaccine delivery, in which an intranasally delivered liquid drug solution
or vaccine interacts with a viscous layer of mucus (Masiuk, Kadakia & Wang 2016).
A poor understanding of drug–mucus interactions currently hinders the development
of effective nasally delivered vaccines, despite their potential to boost effectiveness by
targeting respiratory viruses at the point of entry into the body (Madhavan et al. 2022).
A recent clinical trial prompted the need for research to help such vaccines remain in the
nose and to reliably quantify the proportion of the drug or vaccine that is cleared away
down the nasal passages towards the pharynx and gastrointestinal tract by mucociliary
clearance (Masiuk et al. 2016; Madhavan et al. 2022).

On much larger scales, flows of lubricated viscous fluids are relevant to a range of
geophysical applications such as the flow of ice sheets (Schoof & Hewitt 2013), which
flow over a layer of unconsolidated, water-saturated subglacial sediment, or till. Till is
known to act as a basal lubricant for the flow of the overlying ice. It has also been found to
accelerate the flow of ice, noticeably flattening its upper surface (Kowal & Worster 2015).
Viscous coupling between ice and till has also been postulated as a possible cause of
the formation of fast-flowing ice streams, as observed experimentally (Kumar et al. 2021;
Gyllenberg & Sayag 2022). This complements other ice-stream formation mechanisms,
including positive feedback between sliding and basal melt production (Fowler & Johnson
1995; Sayag & Tziperman 2008), a triple-valued sliding law (Sayag & Tziperman 2009;
Kyrke-Smith, Katz & Fowler 2014), and thermo-viscous fingering (Payne & Dongelmans
1997; Hindmarsh 2004, 2006). Subglacial till has also been found to accumulate in the
grounding zones of ice sheets as observed seismically (Alley et al. 1987; Batchelor &
Dowdeswell 2015) and in fluid-mechanical experiments (Kowal & Worster 2020).

Other geophysical applications of such two-layer flows include magma or lava flows
in which a layer of molten material propagates over a solidifying solid–liquid substrate
of higher viscosity (Griffiths 2000), two-layer flows resulting from the interaction of
dissimilar magmas (Snyder & Tait 1995, 1998), ejecta flows of impact craters (Xiao &
Komatsu 2013), and flows in which molten material solidifies by cooling from above
(Balmforth & Craster 2000). Layered flows in porous media are another example (Woods
& Mason 2000), though notably, viscous coupling between the layers – of relevance to the
present paper – is absent in a porous medium.

Theoretical and experimental investigations of viscous gravity currents to date include
single-layer (Smith 1969; Huppert 1982a,b) and two-layer (Kowal & Worster 2015; Dauck
et al. 2019; Shah, Pegler & Minchew 2021) flows over horizontal and inclined substrates,
intrusions at the interface between two dissimilar fluids (Lister & Kerr 1989), flows over
curved surfaces (Takagi & Huppert 2010) and topological features (Hinton & Hogg 2022),
and thin-film flows of non-Newtonian viscous fluids (Hewitt & Balmforth 2013; Hinton
2022; Christy & Hinton 2023), to name a few. Such flows are often modelled by applying
the principles of lubrication theory, which is valid when the fluid layers are long and thin,
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Figure 1. Schematic of a thin film of viscous fluid spreading under gravity over a rigid horizontal substrate
pre-wetted by another viscous fluid in an axisymmetric geometry.

and similarity solutions often exist in these situations. For example, the frontal position of
a viscous gravity current spreading over a horizontal substrate, fed at constant source flux,
propagates as t4/5 and t1/2 in two-dimensional and axisymmetric geometries, respectively
(Huppert 1982b). These scalings are also respected for two-layer viscous gravity currents
(Kowal & Worster 2015; Dauck et al. 2019), including when modified by a power-law
rheology (Leung & Kowal 2022a). Frequently, such similarity solutions serve as global
attractors, which other solutions approach at late times, despite the variety of possible
initial conditions (Ball & Huppert 2019). These similarity solutions have been proven to
be stable to small perturbations for single-layer viscous gravity currents propagating over
horizontal substrates and for gravity-driven flows in porous media (Mathunjwa & Hogg
2006a,b), for example.

A perhaps unexpected feature of some similarity solutions is that in certain
configurations, the associated flows may exhibit symmetry-breaking instabilities, similar
to viscous fingering instabilities. In particular, we demonstrate in a companion paper
(Yang & Kowal 2024), that viscous gravity currents intruding into another thin film of
viscous fluid are susceptible to a novel frontal viscous fingering instability. The instability
is similar to the Saffman–Taylor instability for viscous fluids intruding into one another in
a Hele-Shaw cell or other porous medium, but this time without a Hele-Shaw cell or any
porous medium present.

We examine the base flow susceptible to this instability in the present paper. In
particular, we examine the flow of a viscous gravity current spreading under its own
weight over a horizontal substrate that is pre-wetted by another thin film of viscous fluid
of different density and viscosity, as depicted in figure 1. We assume that the flow of
both layers is resisted dominantly by vertical viscous shear stresses, and that the effects of
inertia and surface tension are negligible. In particular, we apply principles of lubrication
theory to model the flow in terms of depth-integrated quantities, and examine similarity
solutions describing the flow.

We extend the work of Dauck et al. (2019), in which a version of this problem was
examined theoretically and experimentally, focusing on the limit in which the two layers
are of equal density. This problem is also relevant to the work of Lister & Kerr (1989)
on the propagation of viscous gravity currents at the interface between two dissimilar
fluids. Setting the properties of the uppermost fluid to match that of vapour recovers the
present set-up under some additional assumptions made by Lister & Kerr (1989), which
we remove. These include setting up a quasi-steady equilibrium in which there is no net
flux of lower fluid through any cross-section of the flow, and assuming that the intruding
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fluid is of uniform velocity, which is applicable when the viscosity of the intruding fluid
is not much smaller than that of the ambient fluids. We find that a number of our results
are recoverable under these assumptions. Other two-layer flows most relevant to our work
include those of Kowal & Worster (2015), in which the intruding fluid is supplied from
below rather than from above, its generalisation to power-law fluids (Gyllenberg & Sayag
2022; Leung & Kowal 2022a), and related two-layer flows down an inclined plane (Shah
et al. 2021).

We begin with a theoretical development, deriving the governing equations and
similarity solutions in two-dimensional and axisymmetric geometries in § 2. We also
characterise a frontal singularity by performing an asymptotic analysis near the nose of the
intruding layer in both geometries. We use our similarity solutions in the two geometries
to map out the range of different flow behaviours in § 3, discussing changes in the flow
regimes as parameters vary, and some asymptotic limits. Finally, we present concluding
remarks in § 4.

2. Theoretical development

Consider the flow of two thin films of incompressible, Newtonian viscous fluids of
viscosities μu and μl, and densities ρu and ρl, in the configuration depicted in the
schematic of figure 1. The subscripts u and l correspond to quantities involving the upper
and lower layers, respectively. The plane z = 0 denotes a rigid, horizontal substrate that
has been initially pre-wetted with a uniform depth h∞ of lower-layer fluid. The thicknesses
of the upper and lower layers are denoted by H(x, t) and h(x, t), respectively, where x
is the spatial variable: x = (r, θ, z) or (x, y, z) in the axisymmetric and two-dimensional
geometries, respectively.

Although the flow is depicted in an axisymmetric geometry in figure 1, we consider
both axisymmetric and two-dimensional geometries in this work. In the axisymmetric
geometry, the two fluids are supplied from a point source at the origin, while in the
two-dimensional geometry, the fluids are instead supplied from a line source at x = 0.
The upper viscous fluid occupies a region from the source up to the intrusion front,
denoted by r = rN(t) in the axisymmetric geometry, and x = xN(t) in the two-dimensional
geometry. The intrusion front is a moving boundary that splits the domain into two regions:
a two-layer region, involving both viscous fluids (0 < r < rN(t) and 0 < x < xN(t)
in the axisymmetric and two-dimensional geometries, respectively), and a single-layer
region (r > rN(t) and x > xN(t) in the axisymmetric and two-dimensional geometries,
respectively) of the same material properties as the lower-layer fluid.

In developing a theoretical framework, we assume that the effects of inertia are
negligible, giving rise to a balance of viscous and buoyancy forces, and assume that surface
tension and the effects of mixing at the interface between the two fluids are negligible
(Huppert 1982b). We also assume that the horizontal length scale associated with the two
films of viscous fluid is much greater than the corresponding vertical length scale, and
that vertical shear provides the dominant resistance to the flow. We therefore apply the
approximations of lubrication theory, and obtain the momentum equations

0 = −∇pi + ρig + μi
∂2ui

∂z2 , (2.1)

where ui = ui(x, t) is the velocity, assumed to be horizontal, the subscript i = u, l denotes
the upper and lower layers, respectively, g = −gez is the acceleration due to gravity, and
ez is the unit basis vector in the z-direction.
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Our approach is in line with generalised frameworks for two-layer thin film flows (e.g.
Gyllenberg & Sayag 2022; Christy & Hinton 2023) and the related work of Dauck et al.
(2019). The latter presented generalised equations for a variation of the problem studied
here, later focusing on the limit in which ρu = ρl. Here, we explore flows for which
ρu /= ρl, and investigate additional buoyancy effects present in this scenario, which, in
particular, change the behaviour of the flow near the intrusion front. We note that the equal
density limit is a singular limit in which the order of the equations reduces by one, giving
rise to shock-front solutions. These no longer appear when the densities are unequal.

In what follows, we obtain depth-integrated governing equations modelling the flow
in axisymmetric and two-dimensional geometries simultaneously. The main difference
between the two geometries is the orientation of vectors, such as the velocity vector
ui. These vectors are aligned with the radial and x-directions in the axisymmetric and
two-dimensional geometries, respectively. We organise the main governing equations by
the relevant regions: the two-layer region and the single-layer region.

2.1. The two-layer region
Given that vertical shear stresses provide the dominant resistance to the flow, the pressure
in the two layers is hydrostatic, so that

pu = ρug(H + h − z), (2.2)

pl = ρugH + ρlg(h − z) (2.3)

(see e.g. Kowal & Worster 2015). We assume the upper layer is stress-free at its upper
surface, so that

μu
∂uu

∂z
= 0 at z = H + h. (2.4)

We assume that the velocity and shear stress at the interface between the upper and lower
fluids are continuous, so that

ul = uu at z = h, (2.5)

μl
∂ul

∂z
= μu

∂uu

∂z
at z = h. (2.6)

We also assume that the lower layer satisfies the no-slip condition at the substrate, so that

ul = 0 at z = 0. (2.7)

Solving (2.1) for the velocity field subject to (2.4)–(2.7) gives

uu =
(

(h − z)(h + 2H − z)
2μu

− hH
μl

)
∇pu − h2

2μl
∇pl, (2.8)

ul = −Hz
μl

∇pu + z(z − 2h)

2μl
∇pl. (2.9)

Integrating these velocities across the depth of each layer yields the depth-integrated flux
of upper- and lower-layer fluids, per unit width, given by

qu = −ρug
3μl

[(
MH3 + 3

2
Hh2 + 3H2h

)
(∇H + ∇h) + 3

2
DHh2 ∇h

]
, (2.10)

ql = −ρug
3μl

[(
3
2

Hh2 + h3
)

(∇H + ∇h) + Dh3 ∇h
]

. (2.11)
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These align with the relevant expressions presented in Kowal & Worster (2015) and Dauck
et al. (2019) in two-dimensional and axisymmetric configurations. Here, the dimensionless
parameters

M = μl

μu
, (2.12)

D = ρl − ρu

ρu
, (2.13)

define the viscosity ratio and relative density difference, respectively.
The upper surface and the interface between the two fluids evolve in line with the mass

conservation equations

∂H
∂t

+ ∇ · qu = 0, (2.14)

∂h
∂t

+ ∇ · ql = 0, (2.15)

for the upper and lower layers, respectively. These equations, along with (2.10)–(2.11) for
the depth-integrated fluxes, fully specify the evolution of the two free surfaces, subject to
appropriate boundary conditions, which we discuss in §§ 2.3 and 2.4.

2.2. The single-layer region
In the single-layer region, we retain the subscript l to reflect that the material properties
are the same as that of the lower layer upstream of the intrusion front. Similarly to the
two-layer region, the pressure is hydrostatic in the single-layer region, so that

pl = ρlg(h − z) (2.16)

(see Huppert 1982b). The upper surface satisfies the stress-free condition

μl
∂ul

∂z
= 0 at z = h, (2.17)

and we assume the no-slip condition at the substrate,

ul = 0 at z = 0. (2.18)

Solving (2.1) subject to (2.17) and (2.18) for the velocity profile, and integrating across the
depth of the current, gives rise to the depth-integrated flux

ql = −ρug
3μl

(D + 1)h3 ∇h, (2.19)

in line with Huppert (1982b). This is supplemented by the mass conservation equation

∂h
∂t

+ ∇ · ql = 0, (2.20)

which determines the evolution of the free surface. What remains to be done to close
the problem is to specify the remaining boundary conditions and matching conditions to
couple the two regions, which we organise by geometry.
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2.3. Axisymmetric currents
In the axisymmetric geometry, the upper and lower layers flow radially outwards so
that qu = quer and ql = qler, where er is the radial unit basis vector. We outline the
corresponding boundary conditions and matching conditions across the intrusion front
below.

Following Kowal & Worster (2015), we assume that the upper and lower layers are
supplied at a constant source flux Q̂u and Q̂l, respectively, at the origin, so that

lim
r→0

2πrqu = Q̂u, (2.21)

lim
r→0

2πrql = Q̂l. (2.22)

The thickness and the flux of the lower layer are continuous across the intrusion front
r = rN(t), so that

[h]+− = 0 at r = rN, (2.23)

[ql]+− = 0 at r = rN . (2.24)

In addition, the upper-layer flux vanishes at the front, so that

qu = 0 at r = rN . (2.25)

The front evolves kinematically, which gives rise to an evolution equation for the frontal
position,

drN

dt
= lim

r→r−
N

qu

H
, (2.26)

as in Kowal & Worster (2015, 2019a,b) and Gyllenberg & Sayag (2022), for example. In
the far field, we approach a uniform thickness, so that

lim
r→∞ h = h∞. (2.27)

This condition implies that the flux vanishes in the far field.
The boundary conditions and matching conditions specified in this section fully close

the problem for the evolution of the two liquid layers. This includes the frontal position,
which needs to be determined as part of the solution of the problem.

2.3.1. Self-similar axisymmetric flows
Although there is an externally imposed vertical length scale h∞, the lack of a horizontal
length scale is sufficient to allow for the existence of a similarity solution, which we
can also deduce by performing a scaling analysis. In the axisymmetric geometry, such
similarity solutions exist only when the source flux is constant, as assumed here. However,
as discussed in § 2.4.1, similarity solutions do not exist if the source flux is constant in the
two-dimensional geometry. Instead, it is necessary for the source flux to follow a specific
power law, proportional to ta for some constant a, in order for similarity solutions to exist
in two dimensions. For a related problem in which a viscous gravity current intrudes at the
interface between two dissimilar fluids, it has been reported that in either geometry, the
late-time behaviour of the injected fluid depends crucially on a (Lister & Kerr 1989).
Below a critical value, the injected fluid reduces in height with time, allowing us to
approximate the lower fluid layer to be uniform in height. Above the critical value, the
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injected fluid height increases with time, allowing the effects of the lower fluid to be
neglected, thus recovering the classical single-layer gravity current. At the critical value,
the injected fluid height is constant in time, and exact similarity solutions exist (Lister &
Kerr 1989).

Formally, solutions obtained from specific initial conditions approach a similarity
solution at late times for diffusive problems of the type considered here (Ball & Huppert
2019). This is seen also in analogue laboratory experiments, in which flows become
self-similar after an initial transient (Huppert 1982b).

To formulate the governing equations in terms of similarity variables, and to
non-dimensionalise the problem, we introduce the changes of variables

(ξ, ξN) =
(

Qt
2πh∞

)−1/2

(r, rN) = (2π)3/8
(

ρugQ3

3μl

)−1/8

t−1/2(r, rN) (2.28)

for the spatial variable and the frontal position,

(F(ξ), f (ξ)) = 1
h∞

(H(r, t), h(r, t)) = (2π)1/4
(

ρug
3μlQ

)1/4

(H(r, t), h(r, t)), (2.29)

for the thicknesses, and

(φu(ξ), φl(ξ)) =
√

2πt
h∞Q

(qu(r, t), ql(r, t)) =
(

(2π)5ρugt4

3μlQ5

)1/8

(qu(r, t), ql(r, t))

(2.30)
for the flux of both layers. Here, we define

Q = 2πh4
∞

ρug
3μl

(2.31)

to be a dimensional measure of the flux associated with depth h∞. Using this measure, we
non-dimensionalise the source fluxes as

(Qu,Ql) = Q−1(Q̂u, Q̂l). (2.32)

Substituting into the governing equations (2.14)–(2.15) and (2.20), describing mass
conservation, yields the ordinary differential equations

−1
2

F′ξ + 1
ξ

(ξφu)
′ = 0, (2.33)

−1
2

f ′ξ + 1
ξ

(ξφl)
′ = 0, (2.34)

where the radial components of the fluxes of fluid within the two layers, in both regions of
the domain, are given by

φu =
{

−
[(
MF3 + 3

2 Ff 2 + 3F2f
)

(F′ + f ′) + 3
2DFf 2f ′

]
, 0 < ξ < ξN,

0, ξ ≥ ξN,
(2.35)

and

φl =
{

−
[(

3
2 Ff 2 + f 3

)
(F′ + f ′) + Df 3f ′

]
, 0 < ξ < ξN,

−(D + 1)f 3f ′, ξ ≥ ξN .
(2.36)
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These are obtained from (2.10)–(2.11) and (2.19). Here, the prime ′ denotes differentiation
with respect to ξ . These equations are supplemented by the boundary conditions

ξφu → Qu, ξφl → Ql as ξ → 0+, (2.37a,b)

[ f ]+− = 0, [φl]+− = 0, φu = 0 at ξ = ξN, (2.38a–c)

φu

F
→ 1

2
ξN as ξ → ξ−

N , (2.39)

f → 1 as ξ → ∞, (2.40)

at the source, at the intrusion front, and in the far field, all derived from the
dimensional boundary conditions (2.21)–(2.27). This system of differential equations
and corresponding boundary conditions and matching conditions fully prescribes the
evolution of the two layers in similarity coordinates. These equations were solved using
a shooting method implemented using Mathematica’s in-built solver NDSolve. The
governing equations were integrated outwards from the front on a finite domain. Instead of
subtracting the singularities at ξ = 0 and ξ = ξN analytically, the domain was truncated to
avoid the singular points, and auxiliary boundary conditions using the asymptotic solution
of § 2.3.2 were implemented. Numerical results are discussed in subsequent subsections.

2.3.2. Asymptotic solutions near the nose of axisymmetric intrusions
Near the intrusion front ξ = ξN , the normal component of the upper-layer flux φu and the
upper-layer thickness F tend to 0, while thickness gradients and stress diverge. A similar
stress singularity features at the intrusion front of single-layer (Huppert 1982b) and
two-layer (Kowal & Worster 2015, 2019b; Gyllenberg & Sayag 2022; Leung & Kowal
2022a,b) viscous gravity currents under the approximations of lubrication theory.

We examine the singular point ξ = ξN asymptotically by performing a local analysis
following the approach of Huppert (1982b), Kowal & Worster (2015) and Leung &
Kowal (2022a). As shown in Appendix A, we obtain asymptotic solutions that feature
a square-root singularity of the form

F ∼ A1δ
1/2 + A2δ + · · · , (2.41)

f ∼ a0 + a1δ
1/2 + a2δ + · · · , (2.42)

valid for δ = (1 − ξ/ξN) � 1. Equations (A3) and (A10)–(A11) in Appendix A
demonstrate that the coefficients a1, A2 and a2 of the higher-order terms can be written
in terms of A1, a0 and ξN . The latter set of coefficients can be determined by matching
to the outer numerical solutions. This square-root singularity is also observed by Lister &
Kerr (1989) in a similar scenario involving a thin current moving over a nearly uniform
lower layer, and by Dauck et al. (2019) in the equal-density limit. The asymptotic solution
identified by Lister & Kerr (1989) in this scenario is in agreement with (2.41)–(2.42) if we
set Ql = 0 to account for the lower layer remaining uniform.

The asymptotic approximations (2.41)–(2.42) elucidate the behaviour near the front, and
inform an appropriate scheme for the numerical solution of the full system of governing
differential equations. These asymptotic solutions are shown in figure 2(a) up to O(δ1/2)
and O(δ), in comparison to the full numerical solutions, which are valid throughout the
domain. As expected, the more terms we include in the asymptotic expansion, the better
the agreement with the full numerical solution near the front, as can be seen by including
terms up to O(δ) versus terms up to O(δ1/2). Our asymptotic calculation also indicates
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(a)
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ξ
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(b)

Figure 2. The full numerical solution versus the asymptotic solutions (2.41)–(2.42) near the intrusion front in
(a) axisymmetric and (b) two-dimensional geometries, for M = 0.1, D = 0.3, Qu = 1 and Ql = 0.5. Solid
curves indicate the full numerical solution. Dotted curves indicate the asymptotic solution containing terms up
to O(δ1/2). Dashed curves indicate the asymptotic solution containing terms up to O(δ).

that the upper-layer pressure gradient F′ + f ′ is singular at the front, while the lower-layer
pressure gradient F′ + (1 + D)f ′ is non-singular.

We note that the structure of the frontal singularity at ξ = ξN differs from that of
single-layer viscous gravity currents propagating over a rigid horizontal substrate, for
which the thickness is O(δ1/3) rather than O(δ1/2), as δ → 0 (Huppert 1982b). This also
contrasts with the structure of the singularity at the front of a thin film of viscous fluid
spreading beneath another viscous gravity current, for which the thickness of the intruding
layer is also O(δ1/3) as δ → 0 (Kowal & Worster 2015, 2019a,b).

We include O(δ) terms in the asymptotic solution (2.41)–(2.42) during the initialisation
of the numerical computation, as they play a role in determining the lower-layer flux at the
nose. In particular, replacing quantities associated with the lower layer by their asymptotic
approximations gives rise to the following leading-order asymptotic expression for the
lower-layer flux:

φl = 3a2
0A2

1D
4ξN(D + 1)

+ a3
0

ξN
A2 + a3

0(D + 1)

ξN
a2 + O(δ1/2), (2.43)

which simplifies to

φl = a0ξN

3
− a2

0A2
1D

4ξN(D + 1)
+ O(δ1/2), (2.44)

using (A10)–(A11). Importantly, (2.43) shows that the leading-order contribution to
φl includes correction terms involving the second-order coefficients a2 and A2. The
appearance of these coefficients in the leading-order expression for the lower-layer flux
emphasises the need to determine them, which is equivalent to determining the O(δ) terms
in the asymptotic solution (2.41)–(2.42).
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Dynamics of thin films spreading over lubricated substrates

2.4. Two-dimensional currents
In the two-dimensional configuration, the upper and lower layers flow in the x-direction so
that qu = quex and ql = qlex, where ex is the unit basis vector in the x-direction. Below,
we specify the associated boundary conditions and matching conditions to couple the two
regions of the flow.

For reasons described in § 2.3.1, we assume that the upper and lower layers are supplied
at specified line fluxes Q̂uta and Q̂lta, respectively, where Q̂u, Q̂l and a > −1 are
constants. Explicitly,

qu = Q̂uta, ql = Q̂lta at x = 0. (2.45a,b)

Equivalently, the volume of injected fluid is given by Q̂uta+1/(a + 1) and Q̂lta+1/(a + 1)

for the upper and lower layers, respectively. When −1 < a < 0, the two fluids are supplied
at a rate that is decreasing with time from a point singularity at t = 0, while the volume
is increasing with time. Experimentally, such a flow can be achieved by releasing a finite
volume of fluid at t = 0, followed by a time-dependent supply of fluid at the source.

The thickness and the normal flux of the lower layer are assumed to be continuous
across the intrusion front x = xN(t), so that (2.23)–(2.24) hold but at x = xN rather
than at r = rN . In addition, the normal component of the upper-layer flux vanishes at
the front, so that (2.25) holds but at x = xN . The front evolves kinematically, which
yields the evolution equation (2.26) for the frontal position, with rN replaced by xN . In
the far field, the thin film approaches a uniform thickness, so that (2.27) continues to
hold. These boundary/matching conditions and the two-dimensional version of the system
of differential equations (2.10)–(2.11), (2.14)–(2.15), (2.19)–(2.20) are sufficient to fully
specify the evolution of the two-dimensional flow.

2.4.1. Self-similar two-dimensional flows
In contrast to axisymmetric flows, similarity solutions do not exist in the two-dimensional
geometry when the flux is constant, as mentioned in § 2.3.1. Instead, a specific power law is
required for a similarity solution to exist, consistently with prior work on related problems
(Lister & Kerr 1989; Dauck et al. 2019). In particular, the flow becomes self-similar
when a = −1

2 , as can be seen through a scaling argument. Such similarity solutions serve
as attractors, to which other two-dimensional solutions, associated with different initial
conditions, converge at late times (Ball & Huppert 2019). To formulate the governing
equations in similarity variables, we introduce the changes of variables

(ξ, ξN) = h∞
Qt1/2 (x, xN) =

(
3μl

ρugQ3

)1/5

t−(1/2)(x, xN) (2.46)

for the spatial coordinate and the frontal position,

(F(ξ), f (ξ)) = 1
h∞

(H(x, t), h(x, t)) =
(

ρug
3μlQ2

)1/5

(H(x, t), h(x, t)) (2.47)

for the thicknesses, and

(φu(ξ), φl(ξ)) = Q−1t1/2(qu(x, t), ql(x, t)) (2.48)

for the fluxes of the two layers. Here, we define

Q =
(

ρug
3μl

)1/2

h5/2
∞ (2.49)
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to be a dimensional measure of the flux associated with the thickness h∞. Using this
measure, we express the two constants describing the source fluxes in dimensionless form
as

(Qu,Ql) = Q−1(Q̂u, Q̂l). (2.50)

In similarity coordinates, the governing equations yield the system of ordinary differential
equations

−1
2 F′ξ + φ′

u = 0, (2.51)

−1
2 f ′ξ + φ′

l = 0, (2.52)

describing conservation of mass within the two layers, where the upper- and lower-layer
fluxes in both regions of the domain, upstream and downstream of the intrusion front, are
given by the same expressions (2.35)–(2.36) as in the axisymmetric geometry.

As we switch to the two-dimensional geometry, the only boundary conditions that
change are the source flux conditions

φu = Qu, φl = Ql at ξ = 0. (2.53a,b)

The remaining boundary conditions and matching conditions remain the same. This
includes continuity of thickness and flux across the intrusion front (2.37a,b), the kinematic
condition for the evolution of the intrusion front (2.39), and the far-field condition (2.40).
These governing equations and boundary conditions are sufficient to fully determine the
two-dimensional similarity solutions.

2.4.2. Asymptotic solutions near the nose of two-dimensional intrusions
It can be verified that the local analysis of § 2.3.2, including the asymptotic solutions
(2.41)–(2.42) and the relationships between a1, A2 and a2 and the quantities A1, a0 and
ξN , apply to the two-dimensional geometry without modification. The expansions are
identical in the two geometries as the analysis is local to the front, and the governing
equations are identical in the two geometries apart from differences in the divergence in
flux (factors of ξ and 1/ξ ), which affects only the asymptotic solution at higher orders.
Apart from differences in the divergence in flux, the equations are identical because
the similarity scalings reflect a non-constant source flux (proportional to t−1/2) in the
two-dimensional case, and a constant source flux in the axisymmetric case. Had the source
fluxes in both geometries been constant, there would have been additional differences
in the governing equations, and hence in the asymptotic solutions, between the two
geometries. An illustration of this difference includes prior work in which the intruding
layer is supplied from below (see e.g. Kowal & Worster 2015).

A comparison between the asymptotic solutions up to O(δ1/2) and up to O(δ) against
the full numerical solutions, valid throughout the whole domain, is shown in figure 2(b) in
the two-dimensional geometry. As in the axisymmetric case, it is unsurprising that there
is better agreement between the asymptotic solutions and the full numerical solutions near
the front, the more terms are included in the asymptotic expansion. In particular, including
terms up to O(δ) improves the agreement over a wider neighbourhood of the front in
comparison to terms up to O(δ1/2). The structure of the singularity remains the same as in
the axisymmetric geometry; namely, the thickness is O(δ1/2) as δ → 0. This contrasts with
the structure of the frontal singularity for single-layer viscous gravity currents propagating
over a rigid horizontal substrate, and for thin films of viscous fluid intruding beneath
another viscous gravity current (Huppert 1982b; Kowal & Worster 2015, 2019a,b).

1001 A47-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
82

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1082


Dynamics of thin films spreading over lubricated substrates

Q

5.0

(a)

(b)

1

0

2

3

1

2

3

1

2

3

2 4 6 2 4 6 2 4

10210010–2

6

2 4 6 2 4 6 2 4 6

20

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4 6 2 4 6 2 4 6

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1.0

0.2

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

Q

2.0 1

2

3

1

2

3

1

2

3

2 64 8 2 64 8 2 64 8

2 64 8 2 64 8 2 64 8

2 64 8 2 64 8 2 64 8

10210010–2

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1.0

0.5

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

M
Figure 3. Numerical solutions for the self-similar flow of a thin film of viscous fluid spreading over another
thin film of fluid in (a) axisymmetric and (b) two-dimensional geometries for various viscosity ratios M and
source fluxes Qu and Ql, such that Qu = 5Ql = Q. The density difference is fixed at D = 1.

3. Results and discussion

As found in § 2, the flow of thin films of viscous fluid over pre-lubricated substrates
depends upon the four dimensionless parameters M, D, Qu and Ql, yielding a range
of different flow regimes. Figure 3 depicts typical similarity solutions for the profile
thicknesses of the two layers in axisymmetric and two-dimensional geometries as the
viscosity ratio M and fluxes Qu and Ql vary, while the flux ratio Ql/Qu remains fixed.
The main difference in the profiles between the two geometries is the presence of a
logarithmic singularity at the origin, in which the thickness of both layers diverges,
for axisymmetric flows. This is a purely geometric effect, arising from the fact that
axisymmetric flows are supplied at non-zero flux from a point source. This is also the
case for single-layer axisymmetric flows supplied at non-zero flux (Huppert 1982b).
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A range of possible flow profiles across parameter space is displayed in figures 3(a,b)
for the axisymmetric and two-dimensional geometries, respectively. Relative to the lower
layer, the upper layer is thick and of small extent when the viscosity ratio is low
and the upper-layer flux is high, as seen in the top-left panels of figures 3(a,b), and
thin when the viscosity ratio is high, as seen in the top-right panels. Decreasing the
upper-layer flux reduces the thickness and extent of the upper layer, as seen in the
bottom-right panels of figures 3(a,b), while decreasing the viscosity ratio further increases
the thickness of the upper layer, and reduces its extent, as seen in the bottom-left panels. In
general, low-viscosity ratios correspond to thick upper layers, while high viscosity ratios
correspond to thin upper layers, which coat the lower layer from above. Such low-viscosity,
thin coating films exert negligible traction at the interface between the two fluids, and only
negligibly affect the dynamics of the lower layer, save near the front.

There is a change in behaviour of the flow as we traverse from the origin to the nose,
in that the contribution qlb ≡ −(1 + D)f 3f ′ to the lower-layer flux from gravitational
spreading under its own weight (associated with lower-layer buoyancy forces) is positive
near the source and negative near the front, as can be identified by examining the sign of f ′.
In particular, as displayed in the top-left panels of figures 3(a,b), for example, the interface
slope f ′ changes sign from negative near the source to positive near the front, hence the
opposite sign change occurs for qlb. This indicates that lower-layer buoyancy forces tend
to decrease the outwards flow of the lower layer near the front. These buoyancy forces
are relatively more important, over a larger proportion of the domain the more viscous
the upper layer (the smaller M is). For very viscous upper layers, the flow is mainly
uniform within the upper layer, and the curvature of the interface between the two layers
is relatively small over most of the domain, save for a small region in which the slope of
the interface between the two layers changes sign, as demonstrated in the top-left panels
of figures 3(a,b) and in figure 4. That is, the change in sign of qlb is more pronounced,
the more viscous the upper layer. This occurs in both axisymmetric and two-dimensional
geometries, which precludes geometric effects, arising from the singularity at the origin
in the axisymmetric geometry.

The flow at low viscosity ratios is equivalent to the upper layer being almost solid and
lubricated from below by a much less viscous fluid. Rescaling variables with respect to the
upper layer rather than the lower layer reveals an analogy to the plug flow of a thin film of
viscous fluid over an inviscid layer. This regime is in some degree relevant to experiments
involving the flow of ice shelves floating freely over the ocean, except that here we neglect
the resistance of viscous extensional stress or any transverse shear stress, which would
be more important than shear stress in nature. Examples include experiments of viscous
gravity currents over an inviscid layer in unconfined geometries (Robison, Huppert &
Worster 2010; Pegler & Worster 2012) and in a narrow channel (Pegler et al. 2013; Kowal,
Worster & Pegler 2016). Another example involves experiments of the formation of lava
deltas in the limit in which the injected fluid is less dense than the ambient inviscid layer
(Taylor-West, Balmforth & Hogg 2024).

Radial velocity profiles of the two thin films are depicted in figure 4 in an axisymmetric
geometry for various viscosity ratios. As shown in figure 4(a), the velocity profile is mainly
uniform within the upper layer for small viscosity ratios, and most of the shear is confined
to the lower layer alone. The flow of the lower layer transitions from a primarily Couette
flow, upstream of the intrusion front, to a parabolic Poiseuille flow ahead of the intrusion
front. As the viscosity ratio increases, the upper layer thins and its velocity increases, as
do the velocity gradients within the upper layer, as shown in figures 4(b,c).
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Figure 4. Radial velocity profiles in similarity coordinates (in the axisymmetric geometry), integrated over a
disc of radius ξ , for (a) M = 0.1, (b) M = 1, and (c) M = 10, where D = 0.5, Qu = 0.5, Ql = 0.1.
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Figure 5. Scaled lower-layer radial velocity near the nose as a function of depth in similarity coordinates
in the axisymmetric geometry (solid curves), evaluated at ξ = 0.99ξN for varying D = 0.5, 1, 3, 10, 500 and
M = 10, Qu = 0.1, Ql = 0.001. The velocity becomes negative near the lower boundary for large enough
density differences. These velocity profiles are compared against the lower-layer velocity profile predicted by
Lister & Kerr (1989), which is valid for Qu � 1 and Ql = 0 (dashed red curve).

As seen in figure 5, for large enough density differences, the velocity of the lower layer
near the intrusion front becomes negative (the flow reverses) near the lower boundary. This
reflects the existence of a stagnation line (where the velocity is zero), which intersects the
bottom boundary near the front. Similar flow reversals have been reported by Lister &
Kerr (1989), in the limiting scenario in which the lower layer is shallow, which requires
Qu � 1 and Ql = 0 in our notation. In fact, the velocity profiles of figure 5 approach
that of Lister & Kerr (1989) (shown in figure 5 as a dashed red curve, from their (2.27))
as D → ∞. Such flow reversals occur above a critical value of the density difference,
above which the lower layer spreads mainly under its own weight. In particular, in contrast
to single-layer flows, gradients of the lower-layer thickness are positive near the nose,
giving rise to negative contributions to the velocity profile, akin to those of blade coating
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Figure 6. Profile thicknesses (solid curves) in (a) axisymmetric and (b) two-dimensional geometries as the
density difference varies, in comparison to the large-D asymptotic solution (dashed curve). Parameter values
used: M = 2, D = 0.05, 0.2, 0.5, 1, 3, 10, 100, Ql = 0.1 and Qu = 0.5.

ξN

1.5

1.4

1.2

1.3

0.1 0.5 1.0 5.0 100.010.0 50.0

D
Figure 7. The extent of the intruding layer of fluid as a function of the density difference. The large-D
limit is shown as a dashed curve. Parameter values used: M = 2, Ql = 0.1 and Qu = 0.5. Blue indicates
axisymmetric flows; black indicates two-dimensional flows.

problems. This effect is more pronounced for low viscosity ratios, for which the upper layer
is relatively more viscous in comparison to the lower layer and there are greater thickness
gradients near the nose. An alternative explanation for this reverse flow near the front can
be understood by considering mass conservation. The negative velocity near the substrate
counteracts higher velocities near the interface, arising from viscous coupling between the
two layers, so as to conserve mass. This is particularly relevant when the density of the
lower layer greatly exceeds that of the upper layer (large D), in which case the lower-layer
thickness gradient and flux become small.

As seen in the numerical solutions displayed in figure 6, it is interesting to note that
the slope of the interface between the two layers steepens as we decrease the density
difference towards zero. The smaller the density difference, the steeper the interface near
the intrusion front. As the density difference decreases, these solutions approach a shock
front in which the thickness of the upper layer is non-zero at the front while the thickness
of lower layer is discontinuous. These shock-front solutions arise in the equal-density limit
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Figure 8. The extent of the intruding layer of fluid as a function of the viscosity ratio. Parameter values used:
D = 2, Ql = 0.1 and Qu = 0.5. Blue indicates axisymmetric flows; black indicates two-dimensional flows.
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Figure 9. The average thickness of the upper layer as a function of the viscosity ratio. Parameter values used:
D = 2, Ql = 0.1 and Qu = 0.5. Blue indicates axisymmetric flows; black indicates two-dimensional flows.

under the approximations of lubrication theory, as described by Dauck et al. (2019), when
the viscosity ratio is large enough.

On the other hand, as the density difference approaches infinity, the lower layer becomes
significantly denser than the upper layer, and the interface between the two layers becomes
flat to leading order, as demonstrated through an asymptotic analysis for D 	 1, outlined
in Appendix B. Asymptotic solutions valid for D 	 1 are overlain in figure 6, depicting a
close match to full numerical solutions when D is large. The higher the density difference
D, the flatter the interface between the two fluids, as depicted in figure 6.

In contrast to changes in the thickness gradients near the nose, the position of the nose
varies only minimally as the density difference varies over three orders of magnitude, as
shown in figure 7. With the chosen scaling for the similarity variable ξ as defined in (2.28)
for the axisymmetric geometry, and (2.46) for the two-dimensional geometry, this implies
that the speed of the upper-layer fluid remains largely unchanged by the density of the
lower-layer fluid.

There are two asymptotic limits corresponding to small and large viscosity ratios M,
as depicted in figures 8 and 9, which display the frontal position ξN and the average
thickness of the upper layer as a function of the viscosity ratio and how these approach
different power laws in both limits. We examine these limits by rescaling the dependent
variables with respect to the lower (or upper) layer for small (or large) viscosity ratios.
For large viscosity ratios (μu � μl), the upper layer is much more mobile, undergoing
larger deformations than the lower layer. This gives rise to upper layers that are long
and thin, as depicted in the right-hand panels of figures 3(a,b) and in 10. In this limit,
the deformation of the lower layer is negligible compared to that of the upper layer, and
the nose position can be determined solely by the upper layer. Therefore, we expect the
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Figure 10. Profile thicknesses in (a) axisymmetric and (b) two-dimensional geometries as the viscosity ratio
varies. Parameter values used: D = 2, M = 0, 1, 10, 100, Ql = 0.1 and Qu = 0.5.

nose position to scale with the horizontal length scale associated with the deformation of
the upper layer. That is, it is appropriate to scale the similarity variable ξ with respect
to quantities describing the properties of the upper layer. This can be done by rescaling
the spatial similarity coordinates (2.28) and (2.46) by factors M1/8 in the axisymmetric
geometry and M1/5 in the two-dimensional geometry, and the thicknesses (2.29) and
(2.47) by factors M−1/4 in the axisymmetric geometry and M−1/5 in the two-dimensional
geometry. As shown in figure 8, the nose position indeed varies as M1/8 and M1/5 for
M 	 1, in the axisymmetric and two-dimensional geometries, respectively. Similarly, the
average thickness of the upper layer indeed scales as M−1/4 and M−1/5 for M 	 1, in
the axisymmetric and two-dimensional geometries, respectively, as shown in figure 9.

For small viscosity ratios (μu 	 μl), the upper layer is much less mobile, undergoing
much smaller deformations than the lower layer. The upper layer thickness is large
relative to the lower layer, and its extent is small, as depicted in the left-hand panels
of figures 3(a,b) and in 10 for a range of values of the viscosity ratio. In this limit, the
lower layer undergoes significantly greater deformation compared to the upper layer, so the
nose position is solely determined by lower-layer dynamics. As such, scaling with respect
to quantities describing the properties of the lower layer is appropriate, as in our initial
choice of similarity scalings (2.28)–(2.30) and (2.46)–(2.48). Under this choice of scaling,
we expect the nose position to approach a constant as the viscosity ratio approaches zero
(M � 1), which is confirmed in figure 8. Similarly, the average upper-layer thickness
approaches a constant as the viscosity ratio approaches zero (M � 1), as depicted in
figure 9.

As illustrated in figure 11 in both geometries, variations in the upper-layer flux Qu lead
to two distinct parameter regimes, characterised by whether Qu � Ql ∼ Q∞ or Qu 	
Ql ∼ Q∞, given a fixed value of Ql ∼ Q∞. Here, Q∞ is a dimensionless measure of flux
associated with the depth of the lower layer in the far-field. Although we find it illuminating
to refer to Q∞ explicitly in this discussion, we note that owing to our choice of similarity
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Figure 11. The extent of the intruding layer of fluid as a function of the upper-layer flux. Asymptotic solutions
for Qu � 1, derived in Appendix C, are shown as dashed lines. Parameter values used: M = 2, D = 1 and
Ql = 1. Blue indicates axisymmetric flows; black indicates two-dimensional flows.
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Figure 12. Profile thicknesses in (a) axisymmetric and (b) two-dimensional geometries as the upper-layer
flux varies. Parameter values used: M = 2, D = 1, Ql = 1 and Qu = 0.05, 1, 5, 10, 20.

scalings, we have Q∞ = 1. Thickness profiles in both of these parameter regimes are
depicted in figure 12 for a range of values of Qu. In the former limit (Qu � Ql ∼ Q∞), the
nose position is determined by the dynamics of the lower layer, which is fed at a specified
flux determined by Ql, so that ξN tends towards a constant as Qu → 0. We examine this
limit in more detail in Appendix C, where we arrive at an asymptotic solution for the
nose position when Qu � 1, which compares well against the full numerical solutions,
as shown in figure 11. The upper layer thickness becomes small in this limit, and scales
with Qu � 1. In the latter limit (Qu 	 Ql ∼ Q∞), the upper layer is much thicker than
the lower layer, as shown in figure 12. The nose position in this limit is determined by
the dynamics of the upper layer, for which the effects of the lower layer are negligible. In
effect, the dynamics of the upper layer tend towards that of a single-layer viscous gravity
current fed at a specified flux determined by Qu as Qu → ∞. Therefore, the nose position
ξN scales with the upper-layer flux as Q3/5

u in the two-dimensional geometry, and Q3/8
u in
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Figure 13. The extent of the intruding layer of fluid as a function of the lower-layer flux. Parameter values
used: M = 2, D = 1 and Qu = 1. Blue indicates axisymmetric flows; black indicates two-dimensional flows.
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Figure 14. Profile thicknesses in (a) axisymmetric and (b) two-dimensional geometries as the lower-layer flux
varies. Parameter values used: M = 2, D = 1, Qu = 1 and Ql = 20, 13, 8, 4, 0.01.

the axisymmetric geometry, as confirmed by the power laws depicted in figure 11. These
can be obtained by rescaling the similarity variable ξ in terms of the upper-layer source
flux instead of Q.

Similarly, as illustrated in figure 13 for both geometries, variations in the lower-layer
flux Ql lead to two slightly different parameter regimes, Ql � Qu ∼ Q∞ or Ql 	 Qu ∼
Q∞, given a fixed value of Qu ∼ Q∞. In the former limit, ξN approaches a constant as
Ql → 0. In the latter limit, the upper layer forms a thin film that coats the underlying fluid
from above, as depicted in figure 14. In this limit, the lower layer drags the upper layer
along with it and behaves as a single-layer viscous gravity current fed at a specified flux
determined by Ql, with a pre-wetting film of small thickness. As such, the nose position
ξN scales with the lower-layer flux as Q3/5

l in the two-dimensional geometry and Q3/8
l in

the axisymmetric geometry, which is confirmed by the power laws depicted in figure 13.
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Figure 15. The extent of the intruding layer of fluid as a function of both of the upper- and lower-layer fluxes.
Parameter values used: M = 2, D = 1 and Qu = Ql = Q ∈ [0.1, 10]. Blue indicates axisymmetric flows;
black indicates two-dimensional flows.
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Figure 16. Profile thicknesses in (a) axisymmetric and (b) two-dimensional geometries as both the upper-
and lower-layer fluxes vary. Parameter values used: M = 2, D = 1 and Qu = Ql = Q = 0.01, 1, 4, 7, 10.

These can be obtained by rescaling the similarity variable ξ in terms of the lower-layer
source flux instead of Q.

In contrast to figures 11 and 13, figure 15 displays the frontal position ξN as the upper-
and lower-layer fluxes vary whilst their ratio is kept constant. Specifically, we set Qu ∼
Ql ∼ Q and note that the nose position scales as Q3/5 in the two-dimensional geometry,
and Q3/8 in the axisymmetric geometry, for both Q � 1 and Q 	 1. When Q � 1, both
source fluxes are negligible, so ξN → 0 as displayed in figure 15. This contrasts with the
limits in which Qu � Ql ∼ Q∞ and Ql � Qu ∼ Q∞, discussed previously. The value of
Q effectively determines the depth of the two layers in comparison to the far field depth.
Small values of Q give rise to flows over a deep lower layer, which is effectively uniform,

1001 A47-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
82

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1082


H. Yang, N.J. Mottram and K.N. Kowal

while large values of Q correspond to flows over a thin lower layer, where lower-layer fluid
prominently accumulates ahead of the intrusion front, as shown in figure 16.

4. Conclusions

In this work, we examined the flow of a viscous gravity current spreading over a thin film
of viscous fluid of dissimilar density and viscosity. We considered similarity solutions
in axisymmetric and two-dimensional configurations, and characterised the flow across
parameter space spanned by four key dimensionless parameters: the viscosity ratio, the
density difference, and the dimensionless source fluxes for the two layers. In particular,
we characterised the thicknesses and velocities of the two layers as well as the extent of
the upper layer as parameters vary. We have also conducted an asymptotic analysis of a
stress singularity that forms at the intrusion front when the density difference is non-zero,
obtaining asymptotic solutions valid near the front.

We found that a range of flow behaviours is possible, depending on the dimensionless
parameters, and we discussed possible asymptotic limits. In terms of shape, the upper layer
is thick and of small extent for small viscosity ratios and small upper-layer source fluxes,
and it is thin and of large extent for large viscosity ratios and large upper-layer source
fluxes. There are notable differences in the velocity profiles for different viscosity ratios.
For small viscosity ratios, the velocity profile is mainly uniform within the upper layer,
while most of the shear is confined to the lower layer alone, which is characterised by a
primarily Couette (Poiseuille) flow upstream (downstream) of the intrusion front. This is
no longer the case for large viscosity ratios, for which the velocity of the upper layer and
its gradients become relatively large, and most of the shear is instead confined to the upper
layer.

Our study also indicates that thickness gradients near the intrusion front steepen as the
density difference between the two layers decreases, ultimately approaching a shock-front
solution in the equal-density limit. Large density differences give rise to dynamics that
would not be expected in the equal-density limit, including flow reversals near the intrusion
front owing to the gravitational spreading of the lower layer under its own weight. While
the frontal position changes only gradually with the density difference, the thicknesses of
the two layers, and in particular the front steepness, undergo more pronounced changes as
the density difference varies.

A limit of particular interest is one in which the viscosity ratio is large, which
corresponds to thin films of viscous fluid spreading over a much more viscous lower layer.
These flows mimic those of thin films spreading over a soft, deformable substrate. As
demonstrated in a companion paper (Yang & Kowal 2024), these flows are susceptible
to a novel viscous fingering instability, referred to as a non-porous viscous fingering
instability. The instability is similar to, yet distinct from, the Saffman–Taylor viscous
fingering instability in that it does not involve a Hele-Shaw cell or other porous
medium.
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Appendix A. Asymptotic expansions near the intrusion front

We examine the behaviour of the flow near the intrusion front by deriving an asymptotic
solution in the axisymmetric geometry, and note that the derivation in the two-dimensional
geometry is similar, leading to an identical solution. In particular, we expand the
thicknesses of the two layers as

F ∼ A1δ
1/2 + A2δ + A3δ

3/2 + · · · , (A1)

f ∼ a0 + a1δ
1/2 + a2δ + a3δ

3/2 + · · · , (A2)

in the coordinate δ = (1 − ξ/ξN) � 1. Although we aim to derive asymptotic solutions
valid up to O(δ), we include the O(δ3/2) contributions as they feature in the derivations
before ultimately dropping out in a final solvability condition.

At leading order, specifically O(δ−3/2), the governing equation (2.34) for the lower layer
yields the relationship

(D + 1)a1 + A1 = 0, (A3)

between the coefficients A1 and a1. Physically, this condition indicates that the lower-layer
pressure gradient F′ + (1 + D)f ′ is non-singular at the nose.

The leading-order contribution to the governing equation (2.33) for the upper layer is of
O(δ−1/2) and gives rise to the relationship

(D + 1)a2 + A2 + A2
1D

a0(D + 1)
− ξ2

N

3a2
0

= 0. (A4)

At next order, we notice that the governing equations for the two layers yield
relationships that depend on a3 and A3 through the combination (D + 1)a3 + A3.
Specifically, the O(δ−1/2) contribution to (2.34) and the O(1) contribution to (2.33) yield

(D + 1)a3 + A3 + γ1 = 0, (A5)

(D + 1)a3 + A3 + γ2 = 0, (A6)

respectively, where γ1 and γ2 are algebraic expressions in terms of a0, a2, A1, A2 and ξN .
Explicitly,

γ1 = − A3
1D

a2
0(D + 1)2

− A2A1(2 − 3D)

2a0(D + 1)
+ A1ξ

2
N

3a3
0(D + 1)

− a2A1

a0
(A7)

and

γ2 = 2A3
1D(DM + M − 3)

9a2
0(D + 1)2

+ 8A2A1D
3a0(D + 1)

+ 2a2A2(D + 1)

3A1
− 2A2ξ

2
N

9a2
0A1

+ 2A2
2

3A1
. (A8)

The combination (D + 1)a3 + A3 can be eliminated by subtracting (A5) from (A6), which
gives

γ1 = γ2. (A9)
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Solving (A4) and (A9) for a2 and A2 yields

a2 = ξ2
N

3a2
0(D + 1)

+ A2
1(4M − 9)

9a0(D + 1)
− A2

1
3a0(D + 1)2 , (A10)

A2 = 4A2
1

3a0

(
1

D + 1
− M

3

)
. (A11)

This fully determines the asymptotic solution up to O(δ) in terms of a0, A1 and ξN . The
values of these parameters are determined by matching to the outer solution and applying
the two source flux boundary conditions and the far field condition.

We note that this calculation could also be performed in a more general travelling-wave
framework, resulting in a similar asymptotic calculation.

Appendix B. Large D asymptotics

We examine the D 	 1 limit by expanding

F = F0 + D−1F1 + O(D−2), f = f0 + D−1f1 + O(D−2), (B1a,b)

φu = φu0 + D−1φu1 + O(D−2), φl = φl0 + D−1φl1 + O(D−2). (B2a,b)

At O(D), the upper- and lower-layer fluxes vanish, so that

0 = −3
2 f 2

0 F0f ′
0 and 0 = −f 3

0 f ′
0, (B3a,b)

from which we deduce that f ′
0 vanishes. Matching to the single-layer region ahead of the

intrusion front, and applying the far-field boundary condition, determines the constant of
integration, which gives f0 = 1.

At O(D0), we find that the leading-order fluxes reduce to

φu0 = −3
2 F0f ′

1 − 1
2 (2F2

0M + 6F0 + 3)F0F′
0, φl0 = −f ′

1 − 3
2 F0F′

0 − F′
0, (B4a,b)

and the mass conservation equations reduce to

1
2

ξF′
0 = 1

ξn (ξnφu0)
′, 0 = 1

ξn (ξnφl0)
′, (B5a,b)

where n = 0 in the two-dimensional geometry, and n = 1 in the axisymmetric geometry.
Integrating the second of these equations directly, and applying the source flux boundary
condition, we obtain the lower-layer flux explicitly as φl0 = Ql/ξ

n. Eliminating f ′
1, we find

that the upper-layer flux can be written in terms of F0 and its derivative alone. Explicitly,

φu0 = −1
4 ((4MF0 + 3)F0F′

0 − 6Qlξ
−n)F0. (B6)

While (B5a) and (B6) have no closed-form analytic solution, they form a complete set
of equations, which can be integrated numerically. These asymptotic solutions, valid for
D 	 1, are shown in figure 6 in comparison to full numerical solutions for a range of
values of D.
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Appendix C. Small Qu asymptotics

We examine the Qu � 1 limit by expanding

F = QuF1 + O(Q2
u), f = f0 + Quf1 + O(Q2

u), (C1a,b)

φu = Quφu1 + O(Q2
u), φl = φl0 + Quφl1 + O(Q2

u). (C2a,b)

We find that the lower layer is independent of the flow of the upper layer at leading order.
Specifically, at O(Q0

u), we find that the governing equations for the lower layer reduce to

φl0 = −(D + 1)f 3
0 f ′

0 and
1
2

ξ f ′
0 = 1

ξn (ξnφl0)
′, (C3a,b)

where n = 0 in the two-dimensional geometry, and n = 1 in the axisymmetric geometry.
These form a complete set of equations, which are independent of the upper layer and
are identical to the equations describing the flow ahead of the intrusion front. These are
supplemented by the source flux boundary condition and the far field boundary condition.

At O(Qu), we find that the governing equations for the upper layer reduce to

φu1 = −3
2

(D + 1)f 2
0 F1f ′

0 and
1
2

ξF′
1 = 1

ξn

(
ξnφu1

)′
. (C4a,b)

These simplify to a single equation

F′
1

F1
= −3(D + 1)f0( f0(ξnf ′

0)
′ + 2ξn( f ′

0)
2)

ξn(3(D + 1)f 2
0 f ′

0 + ξ)
, (C5)

which involves a singular point at the intrusion front. The position of the intrusion front
can therefore be determined by finding the value of ξ for which the denominator vanishes.
Specifically, ξ = ξN is the solution to 3(D + 1)f 2

0 f ′
0 + ξ = 0, or equivalently, ξ = 3φl0/f0.

The position of the intrusion front is shown to converge to this asymptotic limit as Qu → 0
in figure 11.
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