GENERATING FUNCTIONS FOR ULTRASPHERICAL
FUNCTIONS

B. VISWANATHAN

1. Introduction. The ultraspherical function

L2 .
TENT(n + 1)

for |1 — x| < 2 is a solution of the differential equation

1) PPk = [—m,m 4+ 200 4+ 55 3(1 — x)]

2
(1.2) (1 -9 % — @\ + Da gg% + n(n + 2\ = 0.

This equation has two independent solutions; of the two, only P,®(x) is
analytic at x = 1, aside for some special values of A\, which we shall not con-
sider. The expression (1.1) vanishes identically when # is a negative integer.
Hence we choose, when # is a positive integer, the ultraspherical polynomial
as

P, (x) = %F[—n, nH 250+ 3551 — %)

otherwise we choose the ultraspherical function as
Fl—=n,n + 250+ 5551 — %))
Replacing the parameter » in (1.2) by y8/dy, we construct the partial

differential equation Lv = 0 where

13) L=(-92 @ty oty
Ox dx ay” dy
This operator L annuls u(x, y) = v{x)y* if and only if v(x) satisfies (1.2).
We show in § 2 that the partial differential equation Lu# = 0 admits a
three-parameter Lie group. Following the methods of Weisner (11), we use
this group to obtain generating functions for ultraspherical functions.

2. Operators. We define the following operators:

|
f

- PSS R ) 9
(2.1) A = y3/3y, B—y{(l x)ax+xyay

- n9 9 _
C—y{(l x)ax xyay 2)\x},
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ULTRASPHERICAL FUNCTIONS 121

and a linear operator 7" which satisfies Tf(x,y) = vy (x, y~), where f is
an arbitrary function.
The operators A, B, and C satisfy the commutation relations

(2.2) [4,B] = —B, 4, C1 = C, and [B, C] = —24 — 2i,

where {4, B} = AB — BA, and therefore generate a three-parameter Lie
group G.
From the relations (2.1) we obtain the relation

(2.3) CB+ A4+ 2\ — 1)A = (1 — «x») L.

Hence it follows that 4, B, and C each commute with (1 — x?)L and there-
fore convert each solution of Lu = Q into another solution. Also we have
that the operator T converts every solution of Ly = 0 into a solution. In
particular,

AF[—nyn 4 2050 + 35 31 — 2) ]y
=nFl—n,n+ 2N+ 5; 3(1 — x)]y",
(24) BF[—n,n+ 2504 530 — )b
=nFl—n+1,n+ 2N — 1; 3+ 3; 5(1 — x)y4,
CPl=n,n+ 200+ 55 3(1 — x)]y”
= —(n+2MFl—n —Ln+ 2"+ 1; A+ §; (1 — x)]y™*,
where # is an arbitrary complex number.

The operator A generates a trivial group; ¥’ = x and v’ =ty (¢ # 0). The
extended form of the group generated by 4, B, and C is described by

(2.5) eCeBf(x, y) = (1 + 2cxy + )M (X, 1),
where

_ b+ (1 + 2bc)xy + c(1 + be)y’
T 2exy A+ SYIIDT A 20(1 + bo)xy + (1 + be) ]

y_ I:zf + 26 (1 + bo)xy + (1 + bc)QyT
- 1+ 2cxy + ¢y '

b and ¢ are arbitrary constants and f(x, ¥) is an arbitrary function. The signs
of the surds being so chosen that X and Y reduce to x and y, respectively,
when 6 = 0 and ¢ = 0.

X

3. Conjugate sets. First we want to examine the functions annulled by
Land R=rA + r, B+ r3 C+ r,, where the #’s are arbitrary constants,
other than r; = r, = v; = v, = 0. It is sufficient to consider one operator
from each of the conjugate sets into which the operators R fall with respect
to the group G.
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122 B. VISWANATHAN

As in (11, p. 1035), we have
3.1 ®4Be 4 = ¢4p, e 4Ce 4 = ¢,
3.2) e’BAe™F = A 4 bB, e"BCe "8 = —2bA4 — b2B 4+ C — 2\,
(3.3) eCde ¢ = A — ¢C, e“Be=°¢ = 2c4A + B — ¢2C + 2)c¢,
(34)  SAS = (14 266)4 4+ B — ¢(1 + be)C + 2\be,

where S = ¢°Ce®®,

It follows that R is conjugate to mA -+ n for suitable choices of «, b, ¢,
m, and n, except when 72 + 4rs7; = 0, in which case it may be inferred
that R is conjugate to mB + = from (3.3).

4. Generating functions annulled by operators of the first order. We
observe that

= Flw o+ 20+ 330 — )l for [1—x] <2
and
y = Fl—v,v+ 20+ 5,11+ )]y for |1+« <2,

where v is an arbitrary constant, are both annulled by L and 4 — ».
Hence from (2.6) and (3.4) it follows that

(4.1) Gilx,y) = M*(1 + 2cxy + ) 2F[—v, v + 20X + §; 3(1—X)]
and  Ga(x,3) = M"(1 + 2xy + c*y?)"2F[—p, v + 2N + §; 31 + X)]
where

M = b+ 2b(1 + be)xy + (1 + be)»y2]?
and

b' + (1 + 2bc)xy + c(1 + bo)y®
M1+ 2cxy + ¢y}

X =

are both annulled by L and
R= (14 2bc)A + 0B — ¢(1 + bc)C + 27bc — .

In the following work, we shall be examining G; or G, depending on which
is analytic at x = 1.
Case 1. In (4.1) putting b = —1 and ¢ = 0, we obtain R =4 — B —»
and
Go(x, y) = p’Fl—v, v + 20N + §; 3(1 + X)]

where p = (1 — 2xy + 92)% and X = (—1 + xv)/p.
This function has an expansion of the form

2 P ()"
n=0
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ULTRASPHERICAL FUNCTIONS 123

The constant ¢, is determined by putting x = 1.
Thus

@2 SF—mrt M+ 30— 0] = 35 0y

where p = (1 — 2xy + %)% and X = (1 — xv)/p for Jy| < |x = (x? — 1)3]].
This is equivalent to that of Brafman (2, p. 945, eq. 18).
Special cases. When v = —2\, we obtain

.3) (1= 20y + 997 =2 PO @)y,
n=0

which is sometimes taken as a definition for ultraspherical polynomials.
When v = — (A 4+ %), we obtain

~afl4+p— xy>5 2 A+ 3 Y ",

cf. (7, p. 82, eq. 4.7.16).

When » = — (A — %), we obtain

- 1—xy+ P>; (A= 3)n z)n o .
Carlitz (5, p. 151, eq. 9) has given an equ1valent result for the Jacobi poly-
nomials.

When v = #u, a positive integer, (4.2) reduces to a polynomial identity:
(4.6) o P (1 _pxy> (2””2 <9;’)>"‘P ® (0)y™;

cf. (2, p. 946, eq. 22).

The above expansion (4.2) is valid only in |y| < |x = (x2 — 1)%];

= (1 — 2xy + )%, not being single valued in the region

v — @ = DI <yl <o+ (2= DY,

cannot have an expansion in the annular region, whereas for the outer region
an expansion can be obtained by the application of the operator 1" of (2.1)
to the next result.

Unless otherwise mentioned the above remark holds good for all subse-
quent expansions.

Case 2. In (4.1), putting b = 0 and ¢ = —1, we obtain R=4 4+ C —»
and

Giw,y) = ¥"(1L = 20y + ¥ )7 Fl—v, v + 200 + 35 31— X)),

where X = (x — v)/p and p = (1 — 2xy + y2)%.
This function has an expansion of the form

2 aFl—n—v,n+v+ 205N+ 531 — o)y

n=0
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The constant is determined by putting x = 1. Thus
@7) Py, v+ 20N+ 330 — X))
— S O b 2+ 30— )

n=0

where p = (1 — 2xy + y2)%, for |y| < |x &= (x2 — 1)} and x # — 1. Truesdell
(9, p. 85, eq. 13) has an equivalent result for Associated Legendre functions.
Special cases. When » = — (N + %), we obtain

(4.8) (x: y)wﬁ»)” : i A — a)n

><F[—n+>\+%,n+>\—%;X—F%:%(I—X)]yn

When » = — (A — 1), we have

B el A B W X o )8
@9 p 1( 2 > :n;_ al
XFl=n4+X—=45n+ N+ 50+ 550 —0)h"

When » = #n, a positive integer, (4.7) reduces to

o - k
(4.10) p AP “><x y) Z;) ( Tk,) Ple(x)y

cf. (6, p. 280, eq. 23).
Case 3. In (4.1) substituting b = w=! and ¢ = —1, we obtain
R=0C—w)4d — B+ ({1 —w)C+ 2\ + wv
and

(4.11) W F[—v, v + 200 + 35 30 — X)]
= ; F(—n, —v; 2x; wlP,® (2)y",

where p = (1 — 2xy + 9} uw = {1 — 201 —w)xy + (1 — w)?y?*, and
x oty =y
up
for |y| < min {jx &= (x2 — 1)}, |[{x = (x2 — 1)} /(1 — w)|}.
Special cases.

1
Fam ®

=2 Fl—n, A+ %; 20 w]P,Y (x)y"

K4

(4.12) H_L{up + 0 —;fwy(x — y)}

<

ll

( 2 1 o
(4.13) p—“{“” Rl +2wy (=] 20 Fl=m N = 5 205012 o)y

2
(4.14) p—?)\—nﬂ’npn()\)[p + wy (x _ llil
p

n! m=0
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After replacing (I — w) by w~! for the annular region,
fofx = (2 — D] < |yl <o+ (2 — DI,
we obtain
(4.15) (1 — 2wey ' 4w’y ) (1 — 20y + %)
X Fl=v,» + 2\ A + 35 3(1 + X))

Z@x+mF[mr+%+mn+hw
n=0
X Fl—n—w,n+v+ 200+ 3101 — )"

—|—i(—_;1—1;—)ﬁF[v—}—2)\,—v+n;n+1;w]

n=1

X Fin—v,—n+v+ 2004+ 330 — )y,

where
yil — A+ waoy dwy)
(= 2xy + ) (1 — 2wxy™" + w'y O}
for |wix & (x* — 1)3}] < |Jy] < |x & (x? — 1)} and x = —1.
Special cases.
(4.16) {1 — 2wy + w'y 1 A — 20y + 5 (1 — 20wy 4wy )
— Wil — 0+ wy™ + wy P

- <)\_%)n 1 1
=2 TN B At — din 1w

n=>0

X:

XFl=n+X+3n+X—5d+ 5301 -0)h"
) 1
+Z=;Q%!2)’1F[>\ — 3N+t En+ 1wl
XFl4n+A+3 =2+ 3= EN+ 530 — )w
(@17 A = 2wxy” 4wy )1 = 2y 4 yH)TTP,P(X)

ZO (nZ;Z) Fl=n, 2\ + n + m;m + 1;w]PY, (x)y"
+ Z _(1_—%___15)_% Fln+ 2\, —n 4+ m;m + 1; w]P;}_)m(x)w”y‘my
m=1 .

where
y{l— A+ wxy ' + wy )
(1= 2xy + 3°) (1 — 2wxy ™ + w'y )}

X:

5. Generating functions annulled by 24 — B+ C 4+ 2\ — w. We
next examine the simultaneous equations Lz = 0 and Bu = —u; the general
solution of the latter equation is # = e~*f(y(1 — x2)%), where f is an arbi-
trary function.
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If this is to be annulled by L, then f(X) must satisfy the equation

-—‘i~f—+2>\ Ly xr=0,

X’

where X = y(1 — x?)%. Two linearly independent solutions of this are
Fl—i N+ §; —1X7]

and

(“IXDIF— 3 =\ —1X)
Hence the solutions of Lz = 0 and (B 4+ 1)u= 0 are
(5.1) cTF =N+ B =y — )],
3y (L — )= — N =121 — &),
The first of these is analytic at x = 1 and we obtain

(5.2) 6‘12,],[_;)\ 1 - ﬂf_x.l] Z ((2)\1)1 PP o)y

n=0

(1) gives an equivalent result for Associated Legendre polynomials.
Equations (2.5), (3.3), and (5.1) show that

pPexpl—w(x — y)y/p% Fl—; M+ 35 —wy*(1 — x?)/4p°]
wherep = (1 — 2xy + y2)‘12', isannulled by L and
R=—-24+ B —C— 2\ + w.

Using the generating function for Laguerre polynomials (7, p. 100), we
obtain

(5.3)  p M exp {—wle — )y/p"  Fl=5 N + &5 —w’y (1 — %) /40"]

— 2 (2>\)7l L(2)\ 18} (w)P()\) (x)ynY

cf. (8).
We have thus obtained in the normalized form functions which are annulled
by L and R =7y A +r: B+ rs C+ ry, where the r's are constants.

6. Generating functions annulled by second-order operators. In
some cases by suitable choice of a new set of variables, the equation Lz = 0
may be transformed into one solvable by the method of separation of varia-
bles.

Taking X = 3y(x + 1) and ¥V = $y(x — 1) the equation Lz = 0 is trans-
formed into

0%u "u

P
Xowi—Yiga+ O+ Dop Y (>\+1)——0
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Without loss of generality, the separation constant can be taken as 1. Four
linearly independent solutions are

(1= Fl=i 2 + 3 396 + DIF—5 0 + 3 3y — 1)),
Gy = DETD) = =N+ 5 e+ DIFI= N+ 3 vl — 1),
s = (366 — DIPFI=30 4 35 yte + DIFL—35 — A byte — D)
lwe = (76" = DPFFI=58 = A byl + DIF[—38 = N Byl — DL
These functions are also annulled by

2

X2+<x+2>~~1——Y<X—Y>‘2L+(A+x+%>B—1

and hence by 4B+ (\+ 3)B — 1.
Of these four solutions, only the first two are analytic at x = 1 and hence
we shall be considering only these two cases. We obtain

62)  Fl=in+ 3 336 + DIF=3 A+ 35 by — 1)
X aa T e

n=0

Similarly,
6.3) {24+ DPFF— 8 — Ny + DIFI— A+ 3 3v(x — 1)]

;—%_M Fl-n+A—3n+ A+ 50+ 330 -0

for x % —1. Both of these equations can be obtained from (10, p. 148, eq. 2).
Equations (2.6), (3.3), and (6.1) show that

G4y JLF 208+ A=+ BXIF—i A+ Y],
' (1 + 2cxy + ¢2y)72b + (1 + 2bc)xy + 6(1 + bc)yz + M}f‘”
where

. {b—l— (A + 2bc)xy + c(1 + be)y® + M\
) 14+ 2cxy + ¢ o

v {b + (1 + 2c)xy + (1 j—zbc)y — Mt
2 14 2cxy + oy fo
with M = [(1 + 2cxy + ¢2y2){b2 + 2b(1 + be)xy + (1 + be)2y% IE, are both
annulled by L and R;
R = 3c(1 + be)A? + bB2 + ¢3(1 + be)C2 + (1 + 4bc)AB
— 2B+ 4bc)AC + 6XMc(1 + 26c)4 + (N + $)(A + 4bc)B
— (A — 1B + 4be)C + r (2N 4+ 1)1 + 2bc) + w.
Case 1. Putting b = —1 and ¢ = 0, we have
R=B>— 4B —- A+ 1B — w.
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Thus
(6.5)  Fl—; N+ 3; 3w —xy + o)]F[—; N+ 3; 3w — xy — p)]

R S Ged AN LT
=L @t D A e P
where p = (1 — 2xy + y?)%
This is equivalent to the result of Weisner (13, p. 154, eq. 6.1) for Bessel
functions.
Similarly

6.6) {11 —xy+ o) F[—;F— s dw(l — xy + )]
X Fl—i M+ 4 dw(l — xy — p)]

where p = (1 — 2xy + 2%, for |y| < |x & (x2 — 1)}|. An equivalent result
for Bessel function is given by Weisner (13, p. 155, eq. 6.2).
Case 2. Putting » = 0 and ¢ = —1, we have

R=38424C*— AB + 3AC+ 60 — (A + H)B + 30\ — 1)C
+ AN+ 1) — w.
Thus

(6.7) ,,—”F[ —iA = x—i—yﬂ]z{ s u‘—”}
2 o 2 o

=2 1Fel—n; N+ 3, 20wl P (x)y"

n=>0

where p = (1 — 2xy + ¥2)%, for |y| < |x &= (x2 — 1)¥; of. (3, p. 1321, eq-
15). Similarly,

afx—y 4} 3 wyx — 3 +op
6.8 1<£—y—> FI:—;— o\ YEZyTe
6.8) » ) 5 5 p

xF[—;w%;—%”—‘p?L”}

S

© x 1), i
ZZB—( ;Z S Fil—min + 30— A wl

X oFi[—n+X—3n+ N+ L0+ 350 — )]y,

where p = (1 — 2xy + 2% for |y < |x & (x> — 1)} and x 3 —1. An
equivalent result for Associated Legendre polynomials is given by Yadao
(14, p. 120, eq. 1.3).
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Note. There is a computational error in Yadao’s result. The correct version

is
—1 mi2
P x—H'P) [_. _ ._El(ﬁc_—f_:ﬁ}
P(l—m)(x—t—p Pl =il —m; 20"

. ._zﬂx_ﬂi@]
XF[ ,1—,_7%, 2[)2

=2 “—Tm) Fl—n;1 —m, 1+ m;y]P," @)1
n=0 .
In the general case, from (6.4) we have
Gilx, ) = (1 + 2exy + )= M+ 31 XTF[—; N + 3; V]
and

Golx,v) = (1 4+ 2exy + c2y?)‘7

b+ (14 2bc)xy + c(1 + be)y® + M}H
2%

X Fl—; 2 =\ XIF[—; N+ &, 1),

where

_w b4 (L 2e)xy 4 c(L+ be)y” + M|
2\ 1+ 2exy + oy’ f

v {b b1+ 2b0)xy + (1 + be)y' — ML,
2 1+ 2exy + 5° f

and M = [(1 + 2cxy + c¢2y){b? + 2b(1 + be)xy + (1 + be)2y? % These give

(6.9) Gi(x,3) = 2 &Py (%),
n=0

where

z": (=1)"(=n)y w"c"™

= — 1.
Cn_m=0(2>\)m()\+%)m m! [ yk+m+ 2,7,2)1)]
and
(6.10) Galar,3) = 20 euPi (@)
where

— i (_1)m+n()\ - 1)m( n)m b—m n— mF[

N m P U W m; wh].

7. Functions annulled by 4B + (A + 5)B — 42 — 204 + »(2\ + »). If
we choose the new variables as X = p —y and Y = p + y, where
p = (1= 2xy + y?)},

the equation Lz = 0 is transformed into

(l—X)———f—(l—Y) (2>\+1)X3”+(2x+1)y

6Y‘
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Selecting »(2\ + ») for the separation constant, the above equation has four
linearly independent solutions:

Fl=v, v + 2)\; >\+2:z(1_X)] Fl—v,v 4+ 2050 + 3, 3(1 = 1),
(l—X)V)\F[-‘V v+ 20N+ 35 5(1 = 1))
XFl—yv =N+ 3 v+ N+ 58— N30 — X)),
(71) (1 -7y A)\F['—V v+ 2050+ 55 51— X))
X Fl=v =N+ &0+ N+ 58—\ 51 = V),
(A =X = D=y =2+ v+ 0+ 53— 030 = X))
X Fl—=y =N+ Lo+ 0+ 58— N30 — )]

These functions are also annulled by

[ -
1 2

2

D&

1-x3y2 @A+DX——+N%+W)

XV+2vy—1
__a%jk)L+AB+0+%B—A?—mA+Mm+ﬂ

and hence by AB + (\+ 3)B — A2 — 224 + »(2\ + v).
We shall be considering the first two cases only. We obtain

(7.2) Fl=v,v + 2050+ 5550 —p +0)IF[—v, v + 2050 4+ 5550 — p — )]

_ (_V) (V + A)n
B nZ:u N 4 2)a(2N),
where p = (1 — 2xy + ¥2)%, for |y] < |x == (x2 — 1)¥]; cf. (2, p. 945, eq. 17).
Special case.

P )y

o o ™ _ je (— )m(n + 2N pr
(7-0} -Pn (P y)P (P + 3’) = 1 ; XmZ::O ( 1)m(2)\)m P< ! )
Next we obtain

1— e
(74) C—§f¥§ Fl—v =N+ 3+ 0+ 38— M 30— o+ 9)]
X Fl=v, v+ 25N+ 331 — p — 9)]

IR N e R e )1 U R e o)

XFl-n—3+MNn+3+ N2+ 2:2(1—°C)]

where p = (1 — 2xy + 2%, for |y| < |x &= (x2 — 1) and x # —1.
From (2.5), (3.4), and (7.1) we obtain

(1 4 2exy + )M [—w, v + 20N + 35 3(1 — X)]
(7.5)

X Fl=v, v + 200+ 55 3(1=1)],
(14 2exy + ¢y)A — X)) Fl—v — A+ %, v+ 2 -+
F=NM3A = XDIF[=r v+ 250 + 53

(S

(1 -=D1)]
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where

¥ - {(1 + wb) 4+ 2(1 + wb) (c + w + whe)xy + (c + w + whe) yZ}’
1+ 2cxy + ¢™*

I8+ 20(1 4 be)ay + (1 + be)%y }
\ 1+ 2exy + ¢*y*

_|_

and

v {(1 + wb)® 4+ 2(1 + wb) (c + w + whe)wy + (c + w + whe)®y® |}
14 2cxy + c® f

B {b + 2501 4 bo)xy + (1 + bc)QyZ}%

v 1+ 2cxy + ¢*y* ’

and that these are annulled by L and R;
R={w-+ 3c + bc)(1 + 2wbc)} 4% + b (1 + bw)B?
4+ c2(1 + be)(c + w + whe)C? — {1 — 2(1 4+ wb) (1 + 2b¢c)}AB
—cfce+ 20+ be)(c + w+ whe)} AC + 2Mw + 3¢(1 + be)
=+ 6wbc(1 4 be)} A + (A + {1 + 20(2¢c + w + 2wbc)} B
+ e\ — ic — 2(1 4+ 2b¢) 2¢c + w + 2wbc)} C
+ A (2N 4+ {1 + 2b(c + w + wbc)} — vw (2N + ).
Case 1. Putting b = —1 and ¢ = 0, we have
R=wA?— (1 —w)B*+ (1 — 2w)AB + 2\xw4
+ AN+ HA = 2w)B — »w(2\ + »).
We obtain, after replacing wy by —y,
(7.6)  Fl—v,v + 202 + 5130 — X)IF[—n v + 20N + 31 301 — V)]

('—V)n(V + 2)\)n . 1 . o) 7
=2 ot .oy, flrhmr b 2w+ b e wlPl )

where

= {1 —w)?—2(1 — wxy + ¥*}* — {w? + 2wxy + y2}?
and

= {(1 —w)? — 2(1 — wyxy + )} + (w2 + 2uwxy + »%}},
for |y| < min{|(1 — w)[x == (x2 — 1)¥]], |wlx £ (x* — 1)%]]}.

Special case.

@7 PPX)PP(Y) = ((m)) Z;o ((xn}r’"(gl:(zf;im

X Fl—n 4+ m,n+ 2\ + m; X + L + m; wlPY (x)y™.
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Similarly
1-X ) 1 1.3 1
(7.8) 5w Fl—v =2+ 3 v+ 2+ 32— 030 —X)]

X Fl—=v,v + 200+ 551 — 1)

A " n
Zo((m;) Fl—y ~ M+ 5,7+ 3+ 58— X = nwlP (x)y"
Case 2. Putting b = 0 and ¢ = —1, we have

R=0B—-—wd?+ 1 —w)C®* —AB+ 3 —2w)AC + 223 — w)4
— A+ HB+ ON—=5EB —2w)C+ AN2N+ 1) + ryw(2\ + »).
We obtain

(7.9) o PF[—v, v+ 200+ 520 = XD)F[—v, v+ 200+ 55 51 — 1)

= ZO sFol—n, —v, v + 20 A + 5, 20 w] PP (v)y"

where

yo =20 —way 4+ (1~ )%’ + wy
p

v — [1— 20 —wxy + (1 — @)’]F — wy
p

and p = (1 — 2xy + 1)}, for |y| < |x &= 2 — 1)¥; cof. (3, p. 1319, eq. 2).
Special cases.

(7.10) p-l{”<92 + 2w 4 wy (e — 9) 4 "1

2 f

(7.11) o PP X)P(Y)

2
{(QM"} Z sFo[—m, —m,n + 2\; N + % 2\, w]])(m)‘) (x)y™,

m=0

and from the second equation of (7.5)

i %_)\
(7.12) p-“<X2;yl) Flow = M Lv 4 0 Bid = A 30— )

X Fl—v,v + 2004 3; 50 — V)]
DI e e S LA S TEP SR 1Y

XF[ n+>\_%n+)\+21>\+2y21—x)]y7
cf. (4, p. 81, eq. 5).
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In the general case, from (7.5) we have

Gile,y) = 1+ 2y + ) Fl—p, v+ 200 4+ 1: 21 — X)]
X Fl=v,v+ 200+ 5,501 — 1),

— 1 2z
Gole,v) = (1 + 2exy + ¢ y " <W>

X Fl=v =N+ v+ 2+ 35— 030 - X)]
X Fl—v,v+ 2004+ 330 — V),

where

P {(1 —wb)? 4+ 2(1 — wb)(c — w — wbp)xy + (c—w— wbc)2y21%
1—{—26xy+czy2 f

B {b + 20(1 + bc)xy + (1 + bc)2y2}2
1+ 2y + ¢ y

and

v - {(1 —wb)’ + 2(1 — wb) (c — w — whe)xy + (¢ — w — wbc)2y21
1+ 2cxy + c* [

fb 4 26(1 4 bo)xy + (1 + b0y }
l 14+ 2y + ¢*y°

In these cases we have

(7.13) G, 3) = O cPY @)y,
n=0

where

s (D (=) (=) 2N " T

DX @, O b
Fl—v4+m2N+v4+m N+ 3+ m;wd

and

(7.14) Galr, 3) = 3 6P ),
=0

where

n+m (>\ 2)m(_n)m b;m Cn_m
o= 3, (-1 =g ]

X Fl=v =X+ 3, v+ N+ 58—\ — m;wb]
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