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Abstract Let G be a periodic residually finite group containing a nilpotent subgroup A such that
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1. Introduction

It is now well known that periodic groups need not be locally finite. Examples constructed
in [4–6, 11] show that there even exist periodic residually finite groups that are not
locally finite. On the other hand, following Zel’manov’s solution of the restricted Burnside
problem [12,13], certain useful theorems on local finiteness of such groups have recently
been established. The main goal of the present paper is to prove the following result.

Theorem 1.1. Let G be a periodic residually finite group containing a nilpotent
subgroup A such that CG(A) is finite. Assume that 〈A, Ag〉 is finite for any g ∈ G. Then
G is locally finite.

The above theorem essentially belongs to the same type of result as those obtained in
Shalev [8] and Shumyatsky [9]. In fact, Shalev’s results show that in the case in which A

is a finite 2-group, the hypothesis that 〈A, Ag〉 is finite for any g ∈ G can be omitted (if
A is of order 2, then, by virtue of Shunkov’s theorem [10], even the assumption that G is
residually finite is not required). It seems, however, that the 2-group case is special and
in general the hypothesis on 〈A, Ag〉, or something similar, is necessary. We also mention
that Golod’s example [4] shows that we cannot drop out the hypothesis that CG(A) is
finite.

The main idea of the proof of Theorem 1.1 is to use a powerful Lie-theoretic criterion for
a finitely generated residually finite group to be finite, discovered by Zel’manov [14, The-
orem 1.6], combining it with a theorem of Bahturin and Zaicev on polynomial identities
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in graded Lie algebras [1]. The reduction of the theorem to a Lie-theoretic problem is
performed using some deep results of Hartley on automorphisms of finite groups. Since
Hartley’s results have not been published, their full proofs are included in the next sec-
tion.

2. Finite groups with a fixed-point-free nilpotent group of automorphisms

We say that A acts fixed-point-freely on G, if CG(A) = 1. The main goal of this section
is to prove the following theorem.

Theorem 2.1 (Hartley). If a finite nilpotent group A acts fixed-point-freely on a
finite group G, then G is soluble.

The following lemmas will be useful.

Lemma 2.2. Let q be a prime and let A be a finite q-group acting fixed-point-freely
on a finite group G. Then G is soluble.

Proof. It is a well-known corollary of the classification of finite simple groups that if
a finite group G admits a coprime fixed-point-free group of automorphisms, then G is
soluble. However if |G| is divisible by q, then A fixes an element of order q. �

Lemma 2.3. Let A be a finite nilpotent group acting on a finite group G, and sup-
pose that CG(A) = 1. Let N be a soluble normal A-invariant subgroup of G. Then
CG/N (A) = 1.

Proof. If CG/N (A) �= 1, then there exists a non-trivial cyclic subgroup H/N of G/N

such that A acts trivially on H/N . Then H is a soluble group, and A normalizes it. We
have NHA(A) = A, and so A is a Carter subgroup of HA. Therefore, NA/N is a Carter
subgroup of HA/N and since it is normal in HA/N , we find that NA/N = HA/N ,
hence H = N , a contradiction. �

Proof of Theorem 2.1. Let G be a minimal counterexample to the theorem. Then it
follows from Lemma 2.3 that the soluble radical of G is trivial, and then, by considering
a minimal normal subgroup of GA, that G is a direct product of copies of a simple non-
abelian group permuted transitively by A. Write G = S1 ×· · ·×Sn, and let B = NA(S1).
Then B is nilpotent and acts fixed-point-freely on S1, hence we obtain S1 = G. Thus we
have that G is non-abelian simple. We think of G as a normal subgroup of J = Aut(G),
and so A � J . If A ∩ G �= 1, then since A ∩ G is normal in A we have Z(A) ∩ G �= 1, a
contradiction. So A ∩ G = 1. If G is sporadic or alternating, then |J/G| is a power of 2.
So by Lemma 2.2 we get a contradiction.

Hence G is of Lie type. We think of G as embedded in a simple algebraic group of
adjoint type Ḡ in the usual way. More precisely, we have a Frobenius map σ on Ḡ, and
G = Op′

(Ḡσ). In what follows we use the notation of [7]. Thus

J = ḠσΦGΓG.
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We prove by induction on |G| that under these assumptions CG(A) �= 1. Consider
again a minimal counterexample to this statement. Let A = A1 × · · · × As, where the
factors are the non-trivial Sylow subgroups of A. For each i choose a subgroup Zi of
prime order in Z(Ai). Suppose first that Zi ∩ Ḡσ = 1 for some i. Let C = CG(Zi). Then
by [7, Lemma 3.1 ] C is insoluble. On the other hand, A acts on C. So by the induction
assumption we get a contradiction.

So we assume that Zi ∩ Ḡσ �= 1 for all i, while A ∩ G = 1. This means that every
prime divisor of |A| also divides |Ḡσ/G|, which is the group of diagonal automorphisms.
It follows that the order of A is prime to the characteristic of the field over which Ḡ

is defined. Now Ḡσ/G is a 2-group or a 3-group except in the case when Ḡ is of type
A. So, except in this case, A is a 2-group or a 3-group and by Lemma 2.2 we get a
contradiction. Therefore Ḡ is of type A. Every prime divisor of |Ḡσ/G| also divides |G|.
It follows from Lemma 2.2 that |A| is divisible by at least two distinct primes q and r.
Let Z be a central subgroup of order q in A. So we have Ḡ = PGLn(K), where K is some
algebraically closed field of characteristic p distinct from q and r. Thus |Ḡσ/G| divides
n, and so qr|n, hence

q < n.

Let D = CḠ(Z). Then by [7, Lemma 3.4] the group CG(Z) = Op′
(D0

σ), involves a smaller
simple group of the same type as G which is a contradiction. This concludes the proof. �

Corollary 2.4. Let A be a finite group. Then there exists a finite insoluble group G

and a fixed-point-free action of A on G, if and only if A is not nilpotent.

Proof. If A is not nilpotent, then the existence of G follows from [2]. The converse is
clear from the above theorem. �

3. Main result

Lemma 3.1. Let G be a periodic group acted on by a nilpotent group A such that
CG(A) = 1. Suppose that 〈A, Ag〉 is finite for any g ∈ G. Assume N is an A-invariant
normal subgroup of G. Then CG/N (A) = 1.

Proof. Assume CG/N (A) �= 1 and choose a non-trivial element xN ∈ CG/N (A).
Consider the subgroup H generated by x and all elements of the form x−1xa, where
a ranges through A. Then H is a finite A-invariant subgroup of G. By Theorem 2.1
H is soluble and so, by Lemma 2.3, CH/H∩N (A) = 1. This yields a contradiction since
x(H ∩ N) obviously lies in CH/H∩N (A). �

Given a finite group G, the Fitting subgroup of G will be denoted, as usual, by F (G).
By induction we set F0(G) = 1 and Fi+1(G)/Fi(G) = F (G/Fi) for i � 0. Recall that
if G is soluble, the Fitting height h(G) of G is defined as the least number h such that
G = Fh(G).

Lemma 3.2. Let G be a periodic group acted on by a nilpotent group A such that
CG(A) = 1. Suppose that 〈A, Ag〉 is finite for any g ∈ G. Let R be any finite A-invariant
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section of G. Then R is soluble and h(R) is bounded by a function depending only on
the order of A.

Proof. It follows from Lemma 3.1 that CR(A) = 1 and, therefore, by Theorem 2.1, R

is soluble. Hence A is a Carter subgroup of the finite soluble group RA. It is a well-known
result of Dade that the Fitting height of a finite soluble group is bounded by a function
depending only on the order of a Carter subgroup [3]. �

Lemma 3.3. Let p be a prime. Let G be a finitely generated periodic residually finite
p-group acted on by a nilpotent group A such that CG(A) = 1. Suppose that 〈A, Ag〉 is
finite for any g ∈ G. Then G is finite.

Proof. Let B be the maximal p′-subgroup of A. It is easy to see that CG(B) = 1.
Thus, replacing A by B we can assume that A is a p′-group. Let Di denote the ith term
of the Lazard series of G, and let Lp(G) be the corresponding Lie algebra constructed as
in Zel’manov [14]. In a natural way, the group A acts on each quotient Di/Di+1. This
induces an action of A on Lp(G) and so we can view A as an automorphism group of
Lp(G). Lemma 3.1 shows that A is fixed-point-free on each quotient Di/Di+1 and so we
deduce that 0 is the only fixed-point of A in Lp(G). Since A is a p′-group, the theorem
of Bahturin and Zaicev [1] guarantees that Lp(G) satisfies a polynomial identity. Thus,
finiteness of G follows by Theorem 1.6 in Zel’manov [14]. �

Proof of Theorem 1.1. Since G is residually finite, we can choose a normal subgroup
H of finite index such that H ∩ CG(A) = 1. Of course, it is sufficient to show that H

is locally finite. We regard A as a fixed-point-free group of automorphisms of H. By
Lemma 3.2, any A-invariant finite quotient of H is soluble and has Fitting height bounded
by some function that depends only on the order of A. It follows that H possesses
a characteristic series of finite length H = H1 � H2 � · · · � Hs = 1 all of whose
quotients are residually finite-nilpotent. Arguing by induction on s we can assume that
H is residually nilpotent. Then H is a direct product of its Sylow p-subgroups and so
without any loss of generality we can assume that H is a p-group for some prime p. Since
any finite subset of H is contained in a finitely generated A-invariant subgroup, local
finiteness of H is immediate from Lemma 3.3. �
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