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In the present study, we investigate the relation between temperature (T ′) and streamwise
velocity (u′) fluctuations by assessing the state-of-the-art Reynolds analogy models. These
analyses are conducted on three levels: in the statistical sense, in spectral space and via
the distribution characteristics of temperature fluctuations. It is observed that the model
proposed by Huang et al. (HSRA) (1995 J. Fluid Mech. 305, 185–218), is the only model
that works well for both channel flows and turbulent boundary layers in the statistical
sense. In spectral space, the intensities of T ′ at small scales are discovered to be larger
than the predictions of these models, whereas those at scales corresponding to the energy-
containing eddies and the large-scale motions are approximately equal to and smaller
than the predictions of the HSRA, respectively. The success of the HSRA arises from
this combined effect. In compressible turbulent boundary layers, the relationship between
the intensities of positive temperature and negative velocity fluctuations is found to be
well described by a model proposed by Gaviglio (1987 Intl J. Heat Mass Transfer, 30,
911–926), whereas that between negative temperature and positive velocity fluctuations is
accurately depicted by the HSRA. The streamwise length scale, rather than the spanwise
length scale, is found to be more suitable for characterising the scale characteristics of the
u′ − T ′ relation in spectral space. Combining these observations and a newly proposed
modified generalised Reynolds analogy (Cheng & Fu 2024 J. Fluid Mech. 999, A20),
models regarding the relations in spectral space for both compressible channel flows
and turbulent boundary layers are developed, and a strategy for generating more reliable
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temperature fluctuations as the inlet boundary condition for simulations of compressible
boundary layers is also suggested.

Key words: turbulent boundary layers, turbulence theory, turbulence modelling

1. Introduction
The Reynolds analogy model, which depicts the relationship between temperature and
velocity fields, is a pacing item for predicting the thermal and aerodynamic force effects in
high-speed wall-bounded turbulence. It is made up of two aspects: one is the relationship
between the mean fields of these two fields, and another one is the counterpart for the
fluctuating fields. Studies of the former have been constructed for nearly one hundred years
since the work of Busemann (1931), and with the aid of direct numerical simulation (DNS)
and large-eddy simulation (LES), substantial breakthroughs have been achieved in past
decades (Busemann 1931; Crocco 1932; Morkovin 1962; Walz 1962; Duan & Martin 2011;
Zhang et al. 2014; Song et al. 2023; Chen et al. 2024). However, for the latter, research is
still underway. Numerous studies have focused on this subject in recent years (Chen et al.
2023b; Cogo et al. 2023; Cheng et al. 2024; Cheng & Fu 2024c; Gerolymos & Vallet 2024;
Gibis et al. 2024). This is also the topic of the present study. We will comprehensively
evaluate the existing relations between the two fluctuating fields and give some suggestions
for their improvement. Hence, we will firstly recap the existing temperature–velocity
fluctuating relationships developed over the last hundred years. Based on this, we will
then introduce in detail the motivations of the present study.

1.1. Crocco–Busemann relation and strong Reynolds analogy
In the 1930s, Busemann (1931) and Crocco (1932) independently discovered the first
temperature–velocity relationship for laminar flows, assuming that the fluid’s Prandtl
number (Pr) equals one. Later, van Driest (1951) expanded this relationship to turbulent
boundary layers. Both studies highlight a strong analogy between the two fluctuating fields

H ′ = Uwu′, (1.1)

where H and u denote the total enthalpy and the streamwise velocity, respectively, and
ξ ′ represents the fluctuating component of a variable ξ , which is the difference between
the instantaneous value of ξ and its Reynolds-averaged statistic ξ̄ . The value of Uw is a
constant for a boundary layer, which can be expressed as Uw = −Prq̄w/τ̄w (qw and τw

denote the wall heat flux and the wall shear stress, respectively). Regarding an adiabatic
boundary layer with qw = 0, an exact relationship between the instantaneous u′ and the
temperature fluctuation T ′ can be deduced from (1.1), i.e.

T ′ = − ū

C p
u′, (1.2)

where C p is the specific heat at constant pressure. Morkovin (1962) further proposed
several statistical inferences, which are dubbed as the strong Reynolds analogy (SRA)
and take the form of

Cu′T ′ = u′T ′√
u′2

√
T ′2

= −1, (1.3)
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Prt = ρu′v′

ρT ′v′
∂ T̄

∂ ū
= 1, (1.4)

√
T ′2/T̄

(γ − 1)M2
√

u′2/ū
= 1, (1.5)

√
T ′2

T̄w − T̄δ

= 2
ū

ūδ

√
u′2

ūδ

, (1.6)

where ρ, v, γ and M denote the density, the wall-normal velocity, the specific heat ratio
and the local mean Mach number, respectively, and the subscripts ‘w’ and ‘δ’ denote the
quantity evaluated at the wall and the boundary layer edge, respectively.

The Crocco–Busemann relation’s assumption of Pr = 1 is highly idealised, given that
Pr ≈ 0.7 for air. In addition, the underling assumption of (1.2) is that the fluctuation of the
total temperature (T ′

t ) is negligible, which is contradicted by both experimental (Debieve
et al. 1982; Gaviglio 1987) and DNS results (Guarini et al. 2000; Maeder et al. 2001;
Duan et al. 2011). As a consequence, the SRA relations generally perform poorly. Only
the relation (1.5) is satisfied by experiments and DNS of wall turbulence with adiabatic
walls (Gaviglio 1987; Guarini et al. 2000). Several works attempted to extend the SRA to
diabatic flows by considering the variation of mean total temperature within the boundary
layer (Cebeci & Smith 1974; Gaviglio 1987). However, these extended versions still deviate
from the real turbulence when heat transfer at the wall is non-negligible (Gaviglio 1987).
We will not introduce them in detail here.

1.2. Modified strong Reynolds analogy (MSRA)
For the state-of-the-art relationships between these two fluctuating fields, the starting
point is the phenomenological model reported by Gaviglio (1987). Gaviglio (1987)
observed that, in a compressible boundary layer, the intensities of velocity and temperature
fluctuations transported by large-scale eddies are proportional to the gradients of their
mean quantities. Their corresponding ratios are positively related to the velocity length
scale (�u) and the temperature length scale (�T ), respectively. That is to say

a

√
T ′2/∂y T̄ =

√
u′2/∂yū, (1.7)

where a = �u/�T , which is the ratio between the velocity and the temperature length
scales; a is modelled as 1, 1.34 and the turbulent Prandtl number Prt in the model of
Gaviglio (1987), Rubesin (1990) and Huang et al. (1995), respectively. Herein, we denote
them as GSRA, RSRA and HSRA, respectively. A more commonly used form of (1.7) is√

T ′2/T̄

(γ − 1)M2
√

u′2/ū
= 1

a
(
1 − ∂ T̄t/∂ T̄

) , (1.8)

where Tt = T + u2/(2C p). Equation (1.7) can also be expressed in the instantaneous sense
as follows:

aT ′/∂y T̄ = u′/∂yū. (1.9)

Among the MSRA family, the statistical form of the HSRA, namely (1.7) or (1.8)
with a = Prt , is reported to work best for wall turbulence with different wall thermal
conditions (Huang et al. 1995; Pirozzoli et al. 2004; Duan & Martin 2011; Fu et al. 2021;
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Huang et al. 2022). However, to the authors’ knowledge, the instantaneous form in (1.9)
has not been widely examined for its accuracy.

1.3. Generalised Reynolds analogy model
The generalised Reynolds analogy (GRA) proposed by Zhang et al. (2014) is a systematic
model. They generalised the velocity–enthalpy relation by introducing a general recovery
enthalpy Hg as follows:

H̄g − H̄w = Uwū, (1.10)

where Hg = C pT + rgu2/2, and rg is an extended form of the recovery factor. A residual
temperature φ′ is also introduced to build a weak analogy between the fluctuating velocity
and temperature fields, namely

H ′
g + C pφ

′ = Uwu′. (1.11)

Combining (1.10) and (1.11), we can derive a governing differential equation for the
mean quantities

T̄ − ū

2

[
∂ T̄

∂ ū

∣∣∣∣
w

+ 1

Pre

∂ T̄

∂ ū

]
= T̄w, (1.12)

where Pre is called the effective Prandtl number by Zhang et al. (2014), whose definition
is

Pre ≡ Prt

1 + ε
, Prt ≡ (ρv)′u′

(ρv)′T ′
∂ T̄

∂ ū
, ε = (ρv)′φ′

(ρv)′T ′ , (1.13)

where Prt is a new definition of the turbulent Prandtl number, and its value is only a little
different from that of Prt (see (1.4)) in the outer layer of a boundary layer with a high Mach
number (Zhang et al. 2014; Cheng & Fu 2023). For the fluctuating fields, their relation can
also be deduced as

T ′ + φ′ = 1

Pre

∂ T̄

∂ ū
u′. (1.14)

Zhang et al. (2014) further assumed Pre = 1, making (1.12) solvable. The final form of
the deduced mean velocity–temperature relation is

T̄

T̄δ

= T̄w

T̄δ

+ T̄rg − T̄w

T̄δ

ū

ūδ

+ T̄δ − T̄rg

T̄δ

(
ū

ūδ

)2

, (1.15)

where T̄rg = T̄δ + rgū2
δ/(2C p). This relation has been extensively verified by the DNS data

(Zhang et al. 2014, 2018; Huang et al. 2022; Cogo et al. 2023). For the relation between the
fluctuating fields, Zhang et al. (2014) modelled φ′ as ((ρv)′φ′/(ρv)′u′)u′, and the HSRA
can be restored with a = Prt ≈ Prt . Nevertheless, few studies have directly examined
the accuracy of (1.14). Equation (1.14) suggests that a component of the temperature
fluctuation (i.e. T ′ + φ′) is coherent with the whole velocity fluctuation u′. If this scenario
is unphysical, it implies that modelling φ′ as ((ρv)′φ′/(ρv)′u′)u′ is only a makeshift. The
statistical version of (1.14) is

(T ′ + φ′)rms = 1

Pre

∣∣∣∣∂ T̄

∂ ū

∣∣∣∣ u′
rms, (1.16)

where the subscript ‘rms’ denotes the root-mean-square value.
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1.4. Modified generalised Reynolds analogy model
In a very recent work, the authors of the present study have modified the GRA by
introducing a residual velocity χ ′ into the entire framework (hereafter, we denote this
model as MGRA) (Cheng & Fu 2024c). We hypothesise that it is not u, but a new velocity
ue, named the local effective velocity, that constitutes the local effective recovery enthalpy
(He), i.e. He = C pT + rgu2

e/2. The local effective velocity can be decomposed into two
components

ue = u + χ ′, (1.17)

where χ ′ has a zero mean value but non-negligible fluctuation, and thus ūe = ū. On the
other hand, the generalised mean enthalpy–velocity relation is

H̄e − H̄w = Uwūe. (1.18)

For the relationship between the fluctuating local effective enthalpy and velocity, the
following formula can be introduced:

H ′
e + C pφ

′ = Uwu′
e, (1.19)

where H ′
e = C pT ′ + rgūeu′

e. Combining (1.18) and (1.19), the well-established ū − T̄
relation (1.15) can also be deduced without assuming Pre = 1. The reader can refer to
our paper for a detailed derivation (Cheng & Fu 2024c). On the other hand, the u′ − T ′
relation is deduced to be

T ′ + φ′ = ∂ T̄

∂ ū
(u′ + χ ′). (1.20)

It can be observed that, if we ignore the effect of χ ′, the present model can revert to
the GRA. Equation (1.20) shows a distinct scenario compared with the GRA, that is, the
duality relationship between u′ and T ′ is more significantly broken, and only a component
of u′ (i.e. u′ + χ ′) is linearly coherent with a component of T ′ (i.e. T ′ + φ′). The new
model is shown to be capable of eliminating the defects of the GRA, and demonstrated to
be more accurate in depicting the relationship between u′ and T ′. The statistical version
of (1.20) is

(T ′ + φ′)rms =
∣∣∣∣∂ T̄

∂ ū

∣∣∣∣ (u′ + χ ′)rms. (1.21)

We have demonstrated that (1.21) is established in canonical compressible wall turbulence,
with different geometries and wall thermal conditions. However, the instantaneous version,
i.e. (1.20), has not yet been evaluated.

1.5. Some remarks on the u′ − T ′ relations and motivations of present study
As can be seen, the state-of-the-art u′ − T ′ relations can be classified into two types.
One is those which sketch the relationship between the whole velocity and temperature
fluctuations, including the SRA and the MSRA family. Another is the models which
characterise the intrinsic duality relation between u′ and T ′ tied by the mean fields. The
latter includes the GRA and the MGRA. Note that the latter type of relation cannot
be validated using the existing open-source statistical data of compressible flows, as
they do not provide statistical information about φ′ and χ ′. Alternatively, some extra
approaches should be deployed to dissect the instantaneous field, such as the spectral
linear stochastic estimation (SLSE). This tool will be comprehensively introduced in § 3.
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Model Basic formula Root-mean-square formula Remark

SRA T ′ = −ūu′/C p (

√
T ′2/T̄ )/((γ − 1)M2

√
u′2/ū) = 1 N/A

GSRA aT ′/∂y T̄ = u′/∂y ū a
√

T ′2/∂y T̄ =
√

u′2/∂y ū a = 1

RSRA aT ′/∂y T̄ = u′/∂y ū a
√

T ′2/∂y T̄ =
√

u′2/∂y ū a = 1.34

HSRA aT ′/∂y T̄ = u′/∂y ū a
√

T ′2/∂y T̄ =
√

u′2/∂y ū a = Prt

GRA (T ′ + φ′)/∂y T̄ = u′/∂y ū (T ′ + φ′)rms = ∣∣∂ T̄ /∂ ū
∣∣ u′

rms φ′ = −T ′
nl

MGRA (T ′ + φ′)/∂y T̄ = (u′ + χ ′)/∂y ū (T ′ + φ′)rms = ∣∣∂ T̄ /∂ ū
∣∣ (u′ + χ ′)rms φ′ = −T ′

nl ,
χ ′ = −u′

nl

Table 1. The Reynolds analogy models for fluctuating fields involved in the present study. The definitions of
T ′

nl and u′
nl can be found in § 3.

The above-mentioned Reynolds analogy models for fluctuating fields are summarised in
table 1.

Previous studies have extensively reported the validations of the statistical form of the
SRA and the MSRA, namely, (1.5) and (1.8), in compressible channel flows (Huang et al.
1995; Brun et al. 2008) and turbulent boundary layers (Pirozzoli et al. 2004; Huang
et al. 2022; Cogo et al. 2023). However, there are few assessments of the accuracy of
the instantaneous versions of these relations, i.e. (1.2) and (1.9). Notwithstanding this,
numerous studies have employed them to develop approaches to generate instantaneous
flow fields of compressible wall-bounded turbulence. For example, Xu & Martin (2004)
and Martin (2007) employed the SRA to obtain instantaneous temperature fluctuations
through velocity fluctuations for constructing the inflow boundary condition of DNS of a
compressible wall boundary layer with an adiabatic wall. Mo et al. (2023) also utilised the
GSRA to achieve this. As a matter of fact, the establishment of a Reynolds analogy for
instantaneous fields is quite strict. It is generally believed that u′ and T ′ are two different
kinds of physical quantities in compressible flows, and thus it is unrealistic for these
relations to be true at every moment and spatial position. Nevertheless, it is still a seminal
work to appraise the accuracy of the instantaneous versions of these relations under weaker
conditions, for example, by examining the instantaneous distributions characteristics of T ′
according to them, to address the deficiencies of previous studies.

On the other hand, it can be seen that the relations between temperature field and
streamwise velocity field described by all these models are all determined by the mean
profiles of these two fields. Hence, a question arises: Does this kind of relation conform
to the descriptions of various Reynolds analogy models at every scale in spectral space?
Answering this question is another target of the present study. In summary, in the present
work, we will systematically assess the existing Reynolds analogy models both in the
statistical sense and in spectral space, including the two types of models summarised
above. We believe that this work is revealing for the development of the related physical
models and the simulation methodologies.

The remainder of this paper is organised as follows. In §§ 2 and 3, the DNS data and
the analytical approaches are introduced, respectively. The relations between temperature
field and streamwise velocity field in different levels are investigated via examining
the state-of-the-art u′ − T ′ relations in § 4. In § 5, some discussions are given, such as
the phase difference between u′ and T ′, the relationship between the small-scale T ′ and
u′, the spectral models based on the foregoing results and a method for generating more
reliable temperature fluctuations as the inlet boundary condition for the DNS/LES of
compressible boundary layers. Concluding remarks are provided in § 6.
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Case Mb Reb Reτ Re∗
τ �x+ �z+ �y+

min �y+
max T uτ /h

Ma08Re17K 0.8 17 000 882 778 10.8 6.5 0.63 6.4 15.3
Ma15Re20K 1.5 20 020 1150 780 9.3 4.7 0.49 6.9 8.0
Ma30Re15K 3.0 15 000 1243 396 12.0 6.0 0.53 7.4 7.1

Table 2. Parameter settings of the compressible DNS database of channel flows. Here, Re∗
τ denotes the semi-

local friction Reynolds number, �x+ and �z+ denote the streamwise and spanwise grid resolutions in viscous
units, respectively, �y+

min and �y+
max denote the finest and coarsest resolution in the wall-normal direction,

respectively and T uτ /h indicates the total eddy turnover time used to accumulate statistics.

Case M∞ Re∞ T∞(K ) Tw/Tr Lx × L y × Lz Reτ tsu∞/δi

M20T050 2.0 9081 220 0.5 24.8δi × 8.1δi× 8.7δi 665–806 589.4
M20T100 2.0 26 631 220 1.0 30.1δi× 8.2δi × 10.6δi 674–819 584.6
M80T050 8.0 422 782 51.8 0.5 13.8δi× 6.8δi× 5.0δi 650–715 271.5
M80T100 8.0 1 186 116 51.8 1.0 14.3δi × 7.0δi× 5.1δi 601–654 231.1

Table 3. The key parameters of DNS database of compressible turbulent boundary layers. Here, M∞, Re∞ and
T∞ represent the free-stream Mach number, Reynolds number and temperature, respectively; Tw/Tr denotes
the ratio of isothermal wall temperature to recovery temperature; Lx , L y and Lz denote the selected domain
sizes along the streamwise, wall-normal and spanwise directions, respectively; δi and Reτ represent the inlet
boundary layer thickness and the friction Reynolds-number range of the selected domain, respectively; and
tsu∞/δi denotes the statistical sampling time period.

2. Direct numerical simulation database
The DNS database of compressible turbulent channel flows used here was generated
in our previous studies (Cheng & Fu 2022, 2023). Cases with bulk Mach numbers
Mb = Ub/Cw = 0.8, 1.5 and 3.0 (Ub is the bulk velocity, and Cw is the speed of sound
at wall temperature) and bulk Reynolds numbers Reb = ρbUbh/μw = 17 000, 20 020 and
15 000 (ρb denotes the bulk density, h the channel half-height and μw the dynamic
viscosity at the wall) are selected. These cases were performed in a computational domain
of 4πh × 2πh × 2h in the streamwise (x), spanwise (z), and wall-normal (y) directions,
respectively, and are of the largest friction Reynolds number at the given Mb in our dataset.
Details of the parameter settings of the database are tabulated in table 2. The details of the
simulations and their validations are provided at length in Cheng & Fu (2022, 2023). We
will not repeat them here for the sake of brevity.

The DNS database of supersonic and hypersonic turbulent boundary layers used here
is built by Zhang et al. (2022), which is simulated by using an open-source solver
STREAmS developed by Bernardini et al. (2021). For each case, a selected domain is
adopted for analysing, and the parameters are provided in table 3. It can be observed that
the Reynolds-number effects are negligible because the corresponding variation of Reτ is
not large. Under the circumstances, the two-dimensional (2-D) analysis introduced in § 3
can be applied. More details about the computational set-ups and the numerical methods
regarding the DNS of this dataset can be found in Zhang et al. (2022).

Only the Reynolds-averaged and fluctuating statistics are utilised in the present study.
Hereafter, we use the superscript ‘+’ to represent normalisation with ρw, the friction
velocity (denoted as uτ , uτ = √

τw/ρw) and the viscous length scale (denoted as δν ,
δν = νw/uτ , νw = μw/ρw). We also use the superscript ‘∗’ to represent normalisation
with the semi-local units, i.e. u∗

τ = √
τw/ρ and δ∗

ν = ν(y)/u∗
τ . Additionally, for turbulent
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boundary layers, δ denotes the mean boundary layer thickness of the selected region for
each case tabulated in table 3. To avoid lengthy descriptions, in § 4, we only use a turbulent
channel flow case Ma15Re20K and two cases of boundary layers M20T050 and M20T100
to display the general results . Other cases listed in table 2 and table 3 will be used in § 5
to discuss the modelling approach.

3. Diagnostic tool and methodology
As we mentioned in the introduction, the original versions of the u′ − T ′ relations
indicated by the GRA and the MGRA cannot be examined by using the open-source data,
which only contain the mean and fluctuating statistics of a compressible flow due to the
existence of the residual temperature and velocity fluctuations, i.e. φ′ and χ ′. Taking (1.14)
as an example, an additional approach should be resorted to extracting the component of
T ′ which is linearly coherent with u′ at a given wall-normal locus (denoted as T ′

l ). Only by
comparing the intensities of T ′

l with (∂ T̄ /∂ ū)u′, can we validate (1.14). Hence, we adopt
the SLSE herein.

The SLSE is a data-driven decomposition method for investigating the multiphysics
couplings in both the incompressible and compressible wall-bounded turbulence (for
example, Baars et al. 2017, Wang et al. 2021, Cheng & Fu 2023 and Ying et al. 2024,
to name a few). This method quantifies the linear correlation between two flow variables
and enables the reconstruction of a target physical quantity’s instantaneous signal using
another variable as the input. Owing to the inherent linearity of the SLSE approach, the
estimated signal maintains a strictly linear relationship with the input signal. It takes the
form of

T ′
l (y) = F−1

x,z

{
HT u (λx , λz; y) Fx,z[u′ (y)]}, (3.1)

where Fx,z and F−1
x,z denote the 2-D fast Fourier transform (FFT) and the inverse 2-D

FFT in the streamwise and the spanwise directions, respectively. Here, HT u is the transfer
kernel, which gauges the correlation between T̂ ′(y) and û′(y) at streamwise length scale
λx and spanwise length scale λz , and can be calculated as

HT u (λx , λz; y) = 〈T̂ ′ (λx , λz; y)
˘̂
u′ (λx , λz; y)〉

〈û′ (λx , λz; y)
˘̂
u′ (λx , λz; y)〉

, (3.2)

where 〈·〉 denotes the ensemble averaging, û′ and T̂ ′ are the Fourier coefficients of u′

and T ′, respectively, and ˘̂
u′ represents the complex conjugate of û′. In this regard, the

uncorrelated component can be calculated as T ′
nl = T ′ − T ′

l . Similarly, we can also extract
the component of u′ that holds a linear relationship with T ′, that is

u′
l (y) = F−1

x,z

{
HuT (λx , λz; y) Fx,z[T ′ (y)]}, (3.3)

where the kernel function HuT can be constructed by analogy. We will not show it here
for the sake of brevity. The uncorrelated component can be calculated as u′

nl = u′ − u′
l .

Additionally, to measure the overall coherence of T ′ and u′ at a given length scale, a 1-D
linear coherence spectrum (LCS) can also be introduced. Taking the streamwise length
scale λx as an example, the LCS can be expressed as
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γ 2 (λx ; y) = |〈T̂ ′ (λx ; y)
˘̂
u′ (λx ; y)〉|2

〈|T̂ ′ (λx ; y) |2〉〈|û′ (λx ; y) |2〉 , (3.4)

where | · | is the modulus. Here, γ 2 evaluates the square of the scale-specific correlation
between T ′(y) and u′(y) with 0 � γ 2 � 1. To be specific, γ 2 = 1 suggests a perfectly linear
correlation between the velocity and temperature signals at a given λx , whereas γ 2 = 0
implies a purely uncorrelated relationship. The physical implication of γ 2 given here is
an extension of that of the one-point correlation function in physical space, the reader
can refer to Bendat & Piersol (2011), Baars et al. (2016) and Cheng & Fu (2023) for more
details. In Cheng & Fu (2023), we employed γ 2 to shed light on the physical mechanisms
of the u′ − T ′ coupling at a given wall-normal position in supersonic channel flows. We
observed that γ 2 is of large values at the scales corresponding to the energy-containing
motions populating this wall-normal locus. The spanwise version γ 2(λz; y) can be defined
similarly.

As per the linear nature of the SLSE, it is not difficult to observe that, if the GRA is
correct, T ′ + φ′ in (1.14) should be T ′

l in (3.1), because it is just the component of T ′ that
shares a linear relationship with u′. Similarly, if the MGRA is sufficiently accurate, T ′ + φ′
and u′ + χ ′ in (1.20) should be T ′

l and u′
l , respectively, and thus −φ′ and −χ ′ ought to

be T ′
nl and u′

nl , respectively. The parameters T ′
nl and u′

nl are the small-scale components
of T ′ and u′, respectively, which are free from the influences of the mean fields (Cheng &
Fu 2024c). Hence, we can appraise these two models directly with the SLSE serving as an
effective tool.

To further inspect the relation between u′ and T ′ in scale space, a 1-D ratio function can
be defined, namely

RSuT (λx ; y) =
√

〈|T̂ ′ (λx ; y) |2〉
〈|û′ (λx ; y) |2〉 . (3.5)

The parameter RSuT (λx ; y) inherently evaluates the ‘energy ratio’ between T ′ and u′ at a
wavelength λx . Similar definition and physical explanation are also given in Gupta et al.
(2021) and Cheng & Fu (2023). In addition, the function associated with T ′

l and u′
l can

also be defined and denoted as RSul Tl . It is noted that these functions can also be defined
as functions of the spanwise length scale λz in a similar way.

The values of these ratio functions at a selected wavelength can be compared with those
indicated by the SRA, the MSRA, the GRA and the MGRA, i.e.

f0(y) =
∣∣∣∣ ū

C p

∣∣∣∣, (3.6)

f1(y) =
∣∣∣∣1
a

∂ T̄

∂ ū

∣∣∣∣, (3.7)

f2(y) =
∣∣∣∣∂ T̄

∂ ū

∣∣∣∣. (3.8)

Note that, the magnitude of a = Prt in (3.7) for the HSRA is computed from the DNS
data, unless otherwise specified.

1017 A34-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
44

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10445


C. Cheng and L. Fu

4. Results

4.1. Relation between temperature and streamwise velocity fluctuations
The relation between temperature and streamwise velocity fluctuations can be dissected
at three levels. The first is the overall relation, namely, the ratio between the statistical
moments of these two fluctuating fields. This level of relation is associated with the
descriptions of the statistical forms of the MSRA (cf. (1.7)), the GRA (cf. (1.16)) and
the MGRA (cf. (1.21)). The second level is the relation in spectral space, namely, their
intensities at each length scale. Since u′ − T ′ coupling is documented to be linked with
the multi-scale eddies (Cheng & Fu 2023, 2024b), and thus this level of relation can
also be hypothesised to be scale-dependent and Reynolds-number dependent. To the best
knowledge of the authors, it has not been clarified before. The third level of relation is in
the realm of instantaneous fields, namely, to what extent do the distribution characteristics
of T ′ follow the delineation of the existing Reynolds analogy models. In this section, we
will elaborate on these three aspects in return.

4.1.1. Overall relation between temperature and streamwise velocity fluctuations
Let us examine the MSRA family first. Although this kind of work has been reported
by previous studies extensively, we still include them here for the completeness
of the present study. To facilitate comparison, a ratio function is defined as r1 =
((1/a)|(∂ T̄ /∂ ū)|u′

rms)/T ′
rms.

Figures 1(a), 1(c) and 1(e) show the variations of r1 for different Reynolds analogy
models in a turbulent channel flow and two boundary layers with varying wall thermal
conditions. For the channel flow, it can be found that the HSRA works excellently in
the near-wall region, and gradually deteriorates when y/h > 0.3. For the GSRA and the
RSRA, the values of r1 deviate significantly from unity throughout the entire channel.
Apparently, for this kind of flow, the HSRA is the most accurate model in the statistical
sense. For the turbulent boundary layer with an adiabatic wall, the scenario is distinct.
The values of r1 associated with the HSRA and the GSRA are slightly larger and smaller
than unity, respectively, while that of the RSRA deviates from it significantly. However,
when the flow over a cold wall is taken into consideration, the performance of the HSRA
is the best, whereas those of the RSRA and the GSRA are drastically worse. In summary,
the accuracy of the GSRA is case-dependent and relies on the wall temperature and the
geometry of the flow. By contrast, the HSRA is the most accurate, and the RSRA is the
least accurate.

Next, we verify the predictions of the GRA and the MGRA. To this end, we also
define two ratio functions r2 = (|∂ T̄ /∂ ū|u′

rms)/T ′
l,rms and r3 = (|∂ T̄ /∂ ū|u′

l,rms)/T ′
l,rms .

Figures 1(b), 1(d) and 1( f ) display their distributions for all cases mentioned above.
Apparently, the performance of the MGRA is superior to that of the GRA for all cases,
except within the near-wall region of a turbulent boundary layer with a diabatic wall. It
highlights the fact that the MGRA provides a more accurate description of the intrinsic
duality relation between u′ and T ′ tied by the mean fields (for more physical analyses, one
can refer to Cheng & Fu 2024c). Hence, in the following analyses, we mainly concentrate
on the MGRA rather than the GRA.

To gain more insights into the relation between u′ and T ′, in figure 2, we show the
variations of u′2

nl/u′2and T ′2
nl /T ′2 for these two types of flows. As can be seen, for a

turbulent boundary layer with an adiabatic wall, the majority of the energy of u′ is
contained in u′

nl in the near-wall region, i.e. the component of u′ which is not linearly

coherent with T ′. The ratio u′2
nl/u′2 decreases with the increase of the wall-normal height
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Figure 1. (a,c,e) Variations of ratio function r1 for the MSRA models in (a) a turbulent channel flow
Ma15Re20K, (c) a boundary layer with an adiabatic wall M20T100 and (e) a boundary layer with a cold
wall M20T050; (b,d, f ) variations of ratio functions r2 and r3 for the GRA and the MGRA in (b) a turbulent
channel flow Ma15Re20K, (d) a boundary layer with an adiabatic wall M20T100 and ( f ) a boundary layer
with a cold wall M20T050.

and maintains a nearly constant value in the outer region. For the case with a diabatic
wall, most of the energy of u′ is contained in u′

nl in the proximity of the location of the
peak of T̄ . Similar observations can be made between T ′

nl and T ′. For a channel flow, a
greater proportion of the fluctuation intensities of u′ and T ′ are retained in u′

nl and T ′
nl

with the increase of the wall-normal height, respectively. All these information suggests
that u′ − T ′ coupling is heavily influenced by the wall thermal boundary conditions and
the geometries of the flows.
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Figure 2. (a,b) Variations of (a) u′2
nl/u′2 and (b) T ′2

nl /T ′2 for turbulent boundary layers; (c) the counterparts
for a channel flow case Ma15Re20K.

4.1.2. Relation between temperature and streamwise velocity fluctuations in spectral space
In the upper subsection, we show the results of the so-called first-level relation, i.e.
the overall relation in the statistical sense. A natural question arises: Is there the same
relationship at each scale? It would certainly be interesting to explore this aspect.
To measure the relative intensity at each scale with respect to the predictions of the
above-mentioned models, the following error functions are defined:

εT = RSuT − f1

f1
× 100 %, (4.1)

εTl = RSul Tl − f2

f2
× 100 %. (4.2)

Here, εT and εT l gauge the relative intensities of T ′ and T ′
l with respect to u′ and u′

l in
spectral space, and are tailored for the MSRA family and the MGRA, respectively. If εT
(εTl ) is larger than 0, it suggests that T ′ (T ′

l ) responds stronger than the overall intensity
predicted by (1.7) ((1.21)) at a given length scale, and vice versa. It is to be noted that,
although the HSRA is demonstrated to be the most accurate one among the MSRA family
in the statistical sense, we still compare all these models in spectral space herein, because
other members, such as the SRA and the GSRA, are still frequently adopted or modified
for generating instantaneous temperature field because of their conciseness (Xu & Martin
2004; Martin 2007; Mo et al. 2023). We will report the results of the MSRA family and
the MGRA in turn.
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Figure 3. Distributions of the error function εT with respect to (a,c,e) streamwise and (b,d, f ) spanwise length
scales, which are related to : (a,b) HSRA, (c,d) GSRA, (e, f ) RSRA. A channel case Ma15Re20K is taken into
consideration. The value in each panel is expressed as a percentage count. The black and white dashed lines in
panels are 15 % and −15 % isolines, respectively.

Let us look at the results of the channel flow Ma15Re20K first. Figure 3 shows
distributions of the error function εT with respect to the (a,c,e) streamwise and (b,d, f )
spanwise length scales covering the whole channel, respectively. The results of the (a,b)
HSRA, the (c,d) GSRA, and the (e, f ) RSRA are displayed for comparison. It bears
emphasising that the wall-normal distribution of T̄ is of no extreme point for this kind
of flow. For the HSRA, it can be observed that the value of εT is nearly zero for
y∗ < 20 at all scales, for both the streamwise and spanwise scales. It implies that T ′
and u′ at each scale are of fluctuation intensities predicted by the HSRA below the
buffer layer. However, for y∗ > 20, the scales with small λx and λz are of significantly
stronger temperature fluctuation intensities than the prediction, whereas for large scales,
their behaviours still follow the HSRA’s prediction. This is the underlying reason why
the magnitude of r1 related to the HSRA is remarkably smaller than unity in the outer
region, see figure 1(a). Only the temperature fluctuations at scales corresponding to the
energy-containing motions behave according to the intensity given by the HSRA, whereas
those at small scales are stronger than the model prediction. In § 5.3, we will discuss the
scale boundaries of these two regimes. For the other two models, the spectral ranges where
εT > 0 are wider than those of the HSRA. Even the scales with large and moderate λz are
of stronger temperature fluctuation intensities than their predictions in the outer region,
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Figure 4. Distributions of the error function εT with respect to (a,c,e) streamwise and (b,d, f ) spanwise length
scales, which are related to: (a,b) HSRA, (c,d) GSRA, (e, f ) RSRA. A turbulent boundary layer case with an
adiabatic wall M20T100 is taken into consideration. The value in each panel is expressed as a percentage count.
The black and white dashed lines in panels are 15 % and −15 % isolines, respectively.

see figure 3(b,d, f ). It highlights the limitations of the GSRA and the RSRA for the
channel flow.

The counterparts for the case Ma20T100, namely, a turbulent boundary layer with an
adiabatic wall, are shown in figure 4. For this case, the wall-normal distribution T̄ is also
of no extreme point. Interestingly, for the HSRA, its performance is not entirely similar to
that observed in the turbulent channel flow in spectral space. At an arbitrary wall-normal
position, even below the buffer layer, value of εT varies gradually with increasing λx .
To be specific, the temperature fluctuation intensities at small λx are stronger than the
prediction of the model. As the increase of λx , the velocity and temperature intensities at
the corresponding scales gradually tend to follow the prediction. However, in the range
of y+ > 100, for wavelengths with λx > 2δ and λz ≈ 1δ, values of εT can be found to
be smaller than zero. In other words, the first-level relation successfully described by the
HSRA is a comprehensive outcome of this multi-scale effect. For the GSRA, it can be
seen that the small-scale region with large errors in spectral space is wider than that of the
HSRA, while for wavelengths within 2δ < λx < 4δ, its accuracy is higher. This explains
why the magnitudes of r1 for the HSRA and the GSRA are larger and smaller than unity,
respectively (see figure 1c). For the RSRA, the relations between velocity and temperature
fluctuation intensities at almost all scales are poorly predicted. As a sanity check, the
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Figure 5. Distributions of the error function εT with respect to (a,c,e) streamwise and (b,d, f ) spanwise length
scales, which are related to: (a,b) HSRA, (c,d) GSRA, (e, f ) RSRA. A turbulent boundary layer case with a
cold wall M20T050 is taken into consideration. The value in each panel is expressed as a percentage count.
The black and white dashed lines in panels are 15 % and −15 % isolines, respectively.

results associated with the SRA for the case with an adiabatic wall are supplemented in
Appendix A.

Figure 5 exhibits the counterparts for the case Ma20T050, a turbulent boundary layer
with a diabatic wall. The local maximum of T̄ is located at y+ ≈ 55, and thus the
distribution of Prt is singular near this wall-normal location. Apparently, all models
belonging to the MSRA family fail to give a precise description of the u′ − T ′ relation
in the wall-normal region adjacent to the local maximum of T̄ for all scales. The further
away from the extreme point of T̄ , the more accurately the HSRA predicts the relation
at intermediate-scale range. However, this model still performs poorly for small scales in
the outer region. For other two models, their performance is visibly worse than that of the
HSRA, even away from the location of the extreme point of T̄ .

All in all, for flows with different geometries and wall thermal conditions, the most
accurate model in the MSRA family is the HSRA. It can describe well the u′ − T ′ relations
at all scales only below the buffer layer of a compressible channel flow. Besides, for the
small scales in turbulent boundary layers, the temperature fluctuation intensities of them
are larger than the predictions given by all models of the MSRA family. For the large
scales, their temperature intensities are lower than that given by the HSRA, but better
predicted by the GSRA. Only the fluctuation intensities at the moderate scales, i.e. those
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Figure 6. Distributions of the error function εT l with respect to (a,c,e) streamwise and (b,d, f ) spanwise
length scales. The cases are: (a,b) a turbulent channel flow Ma15Re20K, (c,d) a boundary layer with an
adiabatic wall M20T100, (e, f ) a boundary layer with a cold wall M20T050. The MGRA is taken into
consideration. The value in each panel is expressed as a percentage count. The black and white dashed lines in
panels are 15 % and −15 % isolines, respectively.

corresponding to the energy-containing eddies, follow the prediction of the HSRA. The
success of the HSRA arises from this combined effect. None of these models can depict
the u′ − T ′ relation in the region where the extreme point of T̄ profile appears.

For the second type of the u′ − T ′ relation summarised in the introduction, we can also
resort to the distributions of εT l for all cases to shed light on the relation between the u′

l
and T ′

l , which are exhibited in figure 6. Note that, u′
l and T ′

l are energetic at moderate and
large scales, not small scale (Cheng & Fu 2024c). Compared with the distributions of εT
shown above, it is not difficult to observe that the diagrams resemble those of the GSRA at
each case. A notable aspect is that for the case M20T100, the values of εT l at large scales
with λx > 4δ in the outer region are close to f2, which are not adequately predicted by the
HSRA, but well predicted by the GSRA. This is the reason that the MGRA outperforms
the HSRA in the intermittent layer of a boundary layer, see figure 1.

As a final note, the present analyses highlight the multi-scale behaviours of temperature
fluctuations. The intensities of T ′ at small scales are higher than the predictions of the
models. This is expected, as small-scale eddies are intermittent and accompanied by
extreme events (Frisch & Donnelly 1996). On the contrary, the fluctuations at large scales
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are typically low in amplitude. Only the fluctuations at moderate scales, which are dictated
by the mean fields, can be described by the Reynolds analogy models (Cheng & Fu 2024c).

4.1.3. Distribution characteristics of temperature fluctuations according to the Reynolds
analogy models

At last, let us turn to the relation regarding distribution characteristics of T ′. To facilitate
the description, we denote T ′

s , T ′
h , T ′

g , T ′
r and T ′

mg as −(ū/C p)u′, (1/Prt )(∂ T̄ /∂ ū)u′,
(∂ T̄ /∂ ū)u′, (1/1.34)(∂ T̄ /∂ ū)u′ and (∂ T̄ /∂ ū)u′

l , respectively. Their instantaneous
properties can be compared with those of the instantaneous signals of T ′ and T ′

l obtained
from DNS accordingly.

Figures 7(a), 7(c) and 7(e) show the probability density functions (p.d.f.s) of T ′
h , T ′

g and
T ′

r at (a) y∗ = 10, (c) y = 0.2h, (e) y = 0.5h for Ma15Re20K, which correspond to the
near-wall region, the logarithmic region and the outer region, respectively. The p.d.f. of T ′
at each wall-normal locus is also added for comparison. One can observe that, in the near-
wall region, the p.d.f.s of T ′

h , T ′
g and T ′

r are close to that of T ′, indicating the success of the
MSRA family in this region. Moreover, the p.d.f.s of T ′

h and T ′
g nearly collapse with each

other due to Prt ≈ 1 in the vicinity of the wall for a channel flow. On the other hand, as the
increase of the wall-normal height, the negative tail of the p.d.f. of T ′ decays more slowly,
which cannot be recovered by the MSRA family, although the p.d.f. of T ′

h is the closest,
whereas for the positive tail, the p.d.f.s of T ′

h , T ′
g , and T ′

r are closer to it. This suggests
that the strong negative temperature fluctuations cannot be captured by the MSRA models
for the channel flow. The results reported in § 4.1.2 show that the temperature fluctuations
at small scales cannot be well depicted by the HSRA. It may imply that the small-scale
eddies primarily carry negative strong temperature fluctuations. One can also refer to the
instantaneous signals compared in figure 8(a) at these wall-normal positions.

In figures 7(b), 7(d) and 7( f ), we compare the p.d.f.s of T ′
l and T ′

mg at these three select-
ed wall-normal positions. As can be seen, unlike the results associated with the MSRA,
the p.d.f.s of T ′

mg are closer to those of T ′
l for the fluctuations with high probabilities of

occurrence at all wall-normal positions. Figure 8(b) displays their instantaneous signals
at three selected wall-normal heights. It is apparent that T ′

mg is in sync with T ′
l below the

core region of a channel flow. As T ′
l and u′

l are demonstrated to be the components of T ′
and u′ controlled by the mean fields and carried by the energy-containing motions (Cheng
& Fu 2024c) (see (1.20)), it can be envisioned that it is the small-scale eddies which cause
T ′ and u′ to be out of sync beyond the near-wall region, see figure 8(a).

Unlike the channel flow, the behaviour of these models in turbulent boundary layers
remains nearly unchanged at wall-normal positions far from the extreme point of T̄ , see
figure 1. Hence, we select only one wall-normal locus for analysis. Figures 9(a) and 9(c)
show the p.d.f.s of T ′

h , T ′
g and T ′

r , along with those of T ′ obtained from the DNS data
at y/δ = 0.4 for M20T100 and M20T050, respectively. The p.d.f. of T ′

s is also included
in figure 9(a) for comparison. For the flow over an adiabatic wall, it is evident that the
positive branch of the p.d.f. of T ′ can be roughly recovered by that of T ′

g , whereas for its
negative branch, the p.d.f. of T ′

h is the closest, especially for the fluctuations with high
probabilities of occurrence. This scenario can also be traced for the case with a diabatic
wall, i.e. M20T050, see figure 9(c). However, this is not evident for the channel flow,
see figure 7. It underscores the fact that negative and positive temperature fluctuations in
compressible turbulent boundary layers establish connections with positive and negative
velocity fluctuations in different ways, irrespective of the wall thermal condition. To the

1017 A34-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
44

5 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10445


C. Cheng and L. Fu

(a)

101

100

10−1

10−2

10−3

10−4

10−5

10−6

(c)

101

100

10−1

10−2

10−3

10−4

10−5

10−6

(d )

101

100

10−1

10−2

10−3

10−4

10−5

10−6

(b)

101

100

10−1

10−2

10−3

10−4

10−5

10−6

−5 0 5

T ′/T ′
rms

−10 −5 0 5

T ′/T ′
rms

T ′
   HSRAh

T ′
   GSRAg

T ′
   RSRAr

T ′  DNS

T ′
   HSRAh

T ′
   GSRAg

T ′
   RSRAr

T ′  DNS

T ′
   HSRAh

T ′
   GSRAg

T ′
   RSRAr

T ′  DNS

T ′
     MGRAmg

T ′
     DNSl

T ′
     MGRAmg

T ′
     DNSl

−5 0 5

T ′/T ′
rms

−4 0−2 2

T ′/T ′
rms(e)

101

100

10−1

10−2

10−3

10−4

10−5

10−6

( f )

101

100

10−1

10−2

10−3

10−4

10−5

10−6

T ′/T ′
rms

−15 −10 −5 0 5

T ′/T ′
rms

−4 0−2 2

T ′
     MGRAmg

T ′
     DNSl

Figure 7. (a,c,e) Probability density functions of T ′
h , T ′

g and T ′
r at (a) y∗ = 10, (c) y = 0.2h, (e) y = 0.5h;

(b,d, f ) p.d.f.s of T ′
mg at (b) y∗ = 10, (d) y = 0.2h, ( f ) y = 0.5h. A channel case Ma15Re20K is taken into

consideration, and the p.d.f.s of T ′ and T ′
l obtained from DNS at each locus are included for comparison.

authors’ knowledge, this phenomenon has not been previously reported. Therefore, it
may be sensible to describe the relationship between T ′ and u′ in compressible turbulent
boundary layers by taking their signs into account. Considering ∂ T̄ /∂ ū < 0 in the outer
region of a compressible boundary layer, it implies that u′ > 0 and T ′ < 0 are correlated
with each other via the HSRA, whereas the relation between u′ < 0 and T ′ > 0 can be
described by the GSRA.
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Figure 8. (a) Instantaneous signals of T ′, T ′
h , T ′

g and T ′
r along streamwise direction at y∗ = 10, y = 0.2h

and y = 0.5h; (b) instantaneous signals of T ′
mg and T ′

l along streamwise direction at y∗ = 10, y = 0.2h and
y = 0.5h. A channel case Ma15Re20K is taken into consideration.

To further elucidate this relationship between T ′ and u′, we define two additional ratio
functions, which can be cast as

rp =
(∣∣∣∣∂ T̄

∂ ū

∣∣∣∣ u′
rms|u′<0

)
/T ′

rms|T ′>0, (4.3)

rn =
(

1
Prt

∣∣∣∣∂ T̄

∂ ū

∣∣∣∣ u′
rms|u′>0

)
/T ′

rms|T ′<0. (4.4)

Here, rp and rn are intended to diagnose the relations between T ′ > 0 and u′ < 0, and that
between T ′ < 0 and u′ > 0, respectively. Their distributions are illustrated in figure 10.
The variations of r1 for the GSRA and the HSRA are also contained for comparison. It is
transparent that in the outer region away from the extreme point of T̄ , the magnitudes of
rp and rn are closer to unity for each case, in contrast to those of r1 related to the HSRA
and the GSRA. This highlights the fact that the relation between T ′ > 0 and u′ < 0 follows
the description of the GSRA, while that between T ′ < 0 and u′ > 0 follows the HSRA in
compressible turbulent boundary layers. A single formula cannot accurately describe the
relation between T ′ and u′, without taking their signs into account. The reasons for these
asymmetric behaviours between positive and negative signals are currently unclear and
warrant further investigations in the future. In summary, we suggest a new relation for the
compressible wall boundary layer with ∂ T̄ /∂ ū < 0 (not applicable to the channel flow),
which can be expressed in a commonly used from as

√
T ′2/T̄

(γ − 1)M2
√

u′2/ū
=

⎧⎪⎪⎨
⎪⎪⎩

1
|Prt

(
1 − ∂ T̄t/∂ T̄

)| for u′ > 0 and T ′ < 0,

1
|(1 − ∂ T̄t/∂ T̄

)| for u′ < 0 and T ′ > 0.

(4.5)

As an aside, the p.d.f.s of T ′
s and T ′

h nearly collapse with each other for the case
M20T100. It suggests that the performance of the SRA and the HSRA is nearly identical
for turbulence over an adiabatic wall. Figures 9(b) and 9(d) compare the p.d.f.s of T ′

l and
T ′

mg at y/δ = 0.4 for these two cases. Apparently, they agree well with each other for the
fluctuations with high probabilities of occurrence, just like the scenario in the channel
flow, see figure 7(b,d, f ). The underlying reason is given above and is omitted here.
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Figure 9. (a,c) Probability density functions of T ′, T ′
h , T ′

g and T ′
r at y = 0.4δ for (a) M20T100 and (c)

M20T050; (b, d) p.d.f.s of T ′
l and T ′

mg at y = 0.4δ for (b) M20T100 and (d) M20T050. In panel (a), the
p.d.f. of T ′

s is also added for comparison.

5. Discussion

5.1. Phase difference between u′ and T ′

Some may wonder whether there is a phase difference between instantaneous u′ and
T ′, which affects the performance of the MSRA and MGRA models in capturing the
instantaneous characteristics. For example, nearly two decades ago, Xu & Martin (2004)
assumed the following relation between the instantaneous u′ and T ′ in compressible
turbulent boundary layers:

T ′(t)
T ′

rms
= c

u′(t + fphase)

u′
rms

, (5.1)

where t and fphase denote time and frequency difference, respectively, and c = ±1. The
exact value of c is determined by the gradients of ū and T̄ . However, they have not
examined the existence of fphase. Due to the convection effect, the frequency difference
and the space phase difference correspond to each other.

Accordingly, to check whether these differences exist, we can calculate the following
cross-correlation:

Ru′T ′(�r; y) =
∣∣∣∣∣ 〈T

′(x, y)u′(x + �r, y)〉√〈T ′2〉〈u′2〉

∣∣∣∣∣, (5.2)
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Figure 10. (a,b) Variations of ratio functions rp and rn for (a) Ma20T100 and (b) Ma20T050. The
distributions of r1 related to the HSRA and the GSRA for each case are also shown for comparison in each
panel.
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Figure 11. Variations of �rp/h (�rp/δ) as functions of wall-normal height for the cases Ma15Re20K,
M20T100 and M20T050.

where �r denotes the streamwise delay. If �rp ≈ 0, it suggests that the phase difference
between them is negligible at a given y. Here, �rp denotes the streamwise delay
corresponding to the peak in Ru′T ′ . Figure 11 displays the variations of �rp/h (�rp/δ)
as functions of wall-normal height for the cases Ma15Re20K, M20T100 and M20T050.
For the channel flow Ma15Re20K, �rp/h decreases from 0 in the near-wall region to a
small value –0.03 at y/h = 0.5 (approximately three streamwise grid spacings) and –0.06
in the channel centre (approximately seven streamwise grid spacings). For the flow over an
adiabatic wall M20T100, �rp/δ remains zero across the whole boundary layer, whereas
for the flow with a cold wall M20T050, �rp/δ is only significant around the extreme
point of T̄ and tends to keep a small value for y > 0.2δ (approximately two streamwise grid
spacings). The deviation around the extreme point of T̄ is acceptable, because u′ and T ′ are
decorrelated near this zone. All in all, these observations bring to the fore the negligible
effect of the phase difference between the instantaneous u′ and T ′ in most regions of a
flow, as �rp/h (�rp/δ) are of small magnitudes in most wall-normal positions. In the
core region of an internal flow, the influences of the acoustic mode are non-negligible
(Chen et al. 2023b; Xu et al. 2023; Cheng & Fu 2024b). As a result, the phase difference
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between u′ and T ′ in the core region of a channel flow is larger than that of a boundary
layer, although its magnitude is not that large within the case under scrutiny.

5.2. Relationship between small-scale temperature and velocity fluctuations
The above elaborate analyses indicate that the HSRA is the only model in the MSRA
family that works well for both the channel flow and the turbulent boundary layer in
the statistical sense. Furthermore, the MGRA is also shown to be effective in describing
the intrinsic duality relation between u′

l and T ′
l tied by the mean fields and the energy-

containing motions, regardless of the geometry of flow. Accordingly, combining these two
relations, namely (1.7) and (1.21), and using u′

lu
′
nl = 0 and t ′l t ′nl = 0 (these two relations

are verified by analysing the present database, and not shown here for brevity), we can
derive a formula that depicts the statistical relation between the small-scale components
of these two fields (u′

nl and T ′
nl )

T ′
nl,rms

u′
nl,rms

=
∣∣∣∣∂ T̄

∂ ū

∣∣∣∣
√√√√ u′2

l

u′2
nl

[(
1

Prt

)2

− 1

]
+

(
1

Prt

)2

. (5.3)

If Prt = 1, (5.3) becomes T ′
nl,rms = |(∂ T̄ /∂ ū)|u′

nl,rms . This observation implies that the
deviation of Prt from unity results in a complicated relationship between the small-scale
components of these two fields. Numerous studies have reported the modelling of the
distribution of Prt , hence our focus of analyses below is the modelling of the ratio term
u′2

l /u′2
nl .

Figures 12(a) and 12(b) show the distributions of u′2
l /u′2

nl for all channel flows and
boundary layers considered in the present study, respectively. Significant differences can
be observed in the near-wall region, owing to the distinct wall thermal boundary condition
of each case. However, for the turbulent boundary layers, the magnitude of this ratio
for each case converges to a constant with increasing wall-normal height, even in the
outer layer, that is, u′2

l /u′2
nl ≈ 1.2. In this regard, u′2

l /u′2
nl = 1.2 is the simplest model of

this term for turbulent boundary layers. For the channel flows, its value decays beyond
the near-wall region and is nearly Mach-number independent, which can be fitted to be
u′2

l /u′2
nl = exp(0.86 − 2.3y/h) ≡ g(y). Accordingly, (5.3) can be simplified as

T ′
nl,rms

u′
nl,rms

=
∣∣∣∣∂ T̄

∂ ū

∣∣∣∣
√

(g(y) + 1)

(
1

Prt

)2

− g(y), (5.4)

for channel flows. For turbulent boundary layers, it becomes

T ′
nl,rms

u′
nl,rms

=
∣∣∣∣∂ T̄

∂ ū

∣∣∣∣
√

2.2
(

1
Prt

)2

− 1.2. (5.5)

As long as Prt < 1, it can be proved from (5.4) and (5.5) that (T ′
nl,rms/u′

nl,rms) >

(1/Prt )|(∂ T̄ /∂ ū)| > |(∂ T̄ /∂ ū)| > (1/1.34)|(∂ T̄ /∂ ū)|. This is consistent with the obser-
vations reported in § 4.1.2 that the intensity of small-scale T ′ with respect to that of u′ is
larger than the predictions of the MSRA models under consideration. It bears emphasising
that, although the variations of u′2

l /u′2
nl are different in channel flows and boundary layers,

they are all Mach-number independent in the outer region. The underlying mechanisms of
this phenomenon deserve further investigations in future study.
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Figure 12. (a,b) Distributions of u′2
l /u′2

nl for (a) channel flows and (b) turbulent boundary layers; (c,d)
distributions of the ratios of the left-hand term to the right-hand term of (5.4) and (5.5) for (c) channel flows
and (d) turbulent boundary layers. The red dashed line in panel (a) denotes u′2

l /u′2
nl = exp(0.86 − 2.3y/h), and

the transverse dashed line in panel (b) denotes u′2
l /u′2

nl = 1.2.

Figures 12(c) and 12(d) display the distributions of the ratios of the left-hand term to
the right-hand term of (5.4) and (5.5) for all cases. Note that, the Prt in each formula
is calculated from DNS. Apparently, (5.4) and (5.5) provide a reasonable description for
the intensities of the small-scale temperature and velocity fluctuations within broad wall-
normal regions for each type of flow. The errors may be ascribed to the inaccuracy of the
HSRA in the intermittent layer of a boundary layer and the core region of a channel flow
(see figure 1a,c,e).

5.3. Spectral models for u′ − T ′ relation
We can still go further. To be specific, we can also demarcate the spectral regions
where (1.21), (5.4) and (5.5) hold. To this end, the 1-D LCS introduced in § 3 is employed.
Note that in previous studies, we inspected the u′ − T ′ coupling in an x−z plane with the
aid of the 2-D LCS (Cheng & Fu 2023, 2024a,b). For the 2-D LCS, the linear coherence
is shown as a function of λx and λz simultaneously, which is not as simple as that of a
1-D LCS for modelling purposes. Additionally, the 2-D LCS is not suitable for displaying
changes in coherence along the wall-normal direction. Hence, we resort to the 1-D LCS in
the present study.
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Figure 13. (a,c,e) Variations of γ 2(λx ; y) for (a) a turbulent channel flow Ma15Re20K, (c) a boundary layer
with an adiabatic wall M20T100 and (e) a boundary layer with a cold wall M20T050 with λx scaled by the
outer scale at several selected wall-normal positions; (b,d, f ) variations of γ 2(λx ; y) for (b) a turbulent channel
flow Ma15Re20K, (d) a boundary layer with an adiabatic wall M20T100 and ( f ) a boundary layer with a cold
wall M20T050 with λx scaled by the wall-normal heights at several selected wall-normal positions.

Figure 13 shows the variations of γ 2(λx ; y) as functions of λx at some selected wall-
normal locations for several cases. In figure 13(a,c,e), λx is scaled by the outer scale,
namely h or δ, whereas in figure 13(b,d, f ), λx is scaled by the corresponding wall-normal
height y. For the turbulent channel flow Ma15Re20K, the profiles of γ 2 do not agree with
each other if λx is scaled by the outer scale. However, when λx is scaled by the wall-normal
height, the profiles collapse well. It implies that the wall-normal height is the characteristic
length scale of the u′ − T ′ coupling in a turbulent channel flow. Interestingly, this scenario
is reversed for turbulent boundary layers, see figure 13(c− f ). It can be observed that the
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distributions of γ 2(λx ; y) match fairly well with each other if they are plotted against
λx/δ (see figure 13c,e). On the contrary, these profiles are scattered when λx is scaled
by y (see figure 13d, f ). This observation highlights the fact that the outer scale is the
key parameter in shaping the u′ − T ′ coupling in compressible turbulent boundary layers,
which is in stark contrast to that of a channel flow. We conjecture that it is the geometry of
the flow that results in this difference. It is well known that there is no obvious wake region
in an internal flow (Trettel & Larsson 2016; Griffin et al. 2021). In this regard, its outer
region can be regarded as an extension of the logarithmic region where the flow properties
are characterised by the wall-normal height. On the contrary, the wake region is a pivotal
part of a boundary layer, where the characteristic length scale is δ. This also gives an
explanation for the distinct variation tendencies of velocity and temperature correlations
(i.e. Cu′T ′ defined by (1.3)) in turbulent channel flows and turbulent boundary layers, which
have been widely reported in numerous studies. The magnitude of Cu′T ′ in a channel flow
is attenuated with increasing wall-normal height (see figure 2c of Cheng & Fu 2023),
whereas for a compressible boundary layer, Cu′T ′ maintains around -0.6 in the wake region
(see figure 17 of Cogo et al. 2023), irrespective of the wall thermal condition and free-
stream Mach number.

The well-established scalings exhibited in figure 13 can serve as a cornerstone for
tracking the spectral boundaries of the deduced relations (1.21), (5.4) and (5.5). Through
trial and error, we find that γ 2(λx ; y) = 0.6 is a suitable condition for determining the
spectral range affected by energy-containing motions for both these two types of wall
turbulence. Correspondingly, it is expected to coincide with λ�x = 14y and λ�x = 4δ for a
channel flow and a turbulent boundary layer, respectively (see the dashed lines figure 13).
Herein, we use λ�x to represent the streamwise length scale corresponding to the spectral
boundary. Interestingly, the first value represents the streamwise length scale of the self-
similar energy-containing motions at a given wall-normal height in both incompressible
and compressible flows (Baars et al. 2017; Baars & Marusic 2020; Cheng & Fu 2022), and
the latter is believed to be the spectral length boundary between the large-scale and very-
large-scale motions in the wake region of a boundary layer (Hutchins & Marusic 2007;
Smits et al. 2011). To further appraise the accuracy of these determined λ�x , we defined the
following two metrics, which take the form of:

r4 =
(∣∣∣∣∂ T̄

∂ ū

∣∣∣∣ u′
rms

∣∣
λx>λ�x

)
/ T ′

rms
∣∣
λx>λ�x

, (5.6)

and

r5 =
⎛
⎝∣∣∣∣∂ T̄

∂ ū

∣∣∣∣
√√√√ u′2

l

u′2
nl

[(
1

Prt

)2

− 1

]
+

(
1

Prt

)2

u′
rms|λx<λ�x

⎞
⎠ /T ′

rms|λx<λ�x , (5.7)

where u′
rms|λx>λ�x denotes the intensity of streamwise velocity fluctuations at scales λx >

λ�x for a given wall-normal height. The meanings of other symbols with similar subscripts
can be inferred by analogy. For turbulent boundary layers and channel flows, u′2

l /u′2
nl

is modelled as 1.2 and g(y), respectively. If the chosen λ�x accurately demarcates the
spectral regions where (1.21), (5.4) and (5.5) hold, the magnitudes of r4 and r5 should
be approximately equal to one.

Figure 14 shows the variations of r4 and r5 for all these cases. For the channel flows,
due to the limitation of the size of the computational domain for each case, we only show
the values of r4 and r5 below the core region. It can be observed that the magnitudes of
r4 of channel flows are close to unity for y/h < 0.5, as well as those of r5. For turbulent
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Figure 14. (a,b) Distributions of r4 for (a) channel flows and (b) turbulent boundary layers;
(c,d) distributions of r5 for (c) channel flows and (d) turbulent boundary layers.

boundary layers, the magnitudes of r4 and r5 for all cases are also close to unity below the
intermittent layer (y/δ < 0.8). We have checked that choosing λ�x based on γ 2(λx ; y) =
0.4 or γ 2(λx ; y) = 0.5 yields similar results. Hence, the following models describing the
u′ − T ′ relation in spectral space can be established: for a channel flow:

T ′
rms(λx ; y)

u′
rms(λx ; y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣∣∂ T̄

∂ ū

∣∣∣∣
√

(g(y) + 1)

(
1

Prt

)2

− g(y) for λx < 14y,∣∣∣∣∂ T̄

∂ ū

∣∣∣∣ for λx > 14y,

(5.8)

and for a compressible boundary layer

T ′
rms(λx ; y)

u′
rms(λx ; y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣∣∂ T̄

∂ ū

∣∣∣∣
√

2.1
(

1
Prt

)2

− 1.1 for λx < 4δ,∣∣∣∣∂ T̄

∂ ū

∣∣∣∣ for λx > 4δ.

(5.9)

The statistical validity of the HSRA in channel flows and boundary layers results from
the cumulative effects of these multi-scale eddies. We will further examine our models as
more data at different Mach numbers and Reynolds numbers are collected in the future.

It also bears reiterating that there are several factors that can affect the accuracy
of these formulas. Firstly, their establishments depend on the accuracy of the MGRA
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and the HSRA. Our previous study demonstrated that the MGRA is Reynolds-number
dependent and is more accurate for flows with high Reynolds numbers (Cheng & Fu
2024c), moreover, the accuracy of the HSRA is also attenuated in the core region of a
channel flow (Huang et al. 1995; Brun et al. 2008) and the intermittent layer of a boundary
layer (Zhang et al. 2018; Huang et al. 2022). Secondly, the modelling of u′2

l /u′2
nl for each

type of flow is only valid beyond the near-wall region, see figure 12; thirdly, actually, the
variations of εT and εT l with increasing λx at a given y in the outer region of each case
are continuous. As a consequence, (5.8) and (5.9) are only rough estimations.

One may ask: Can scale separation be performed along the spanwise length scale λz to
construct another generic spectral model, in addition to that related to λx ? In Appendix B,
we display the variations of γ 2(λz; y) for all the flows considered at several selected wall-
normal heights. Their distribution characteristics indicate that λz is not a good choice for
constructing a spectral model; see the related discussions in Appendix B.

5.4. A strategy for generating more reliable temperature fluctuations as the inlet
boundary condition for DNS/LES of compressible boundary layers

As mentioned in the introduction, one of the most common applications of the Reynolds
analogy models is to generate the instantaneous temperature fluctuations given known
streamwise velocity fluctuations and mean fields (ū and T̄ ). The generated fields can
be deployed for the construction of the inlet boundary condition for the DNS/LES of
compressible turbulent boundary layers. For example, Martin (2007) and Mo et al. (2023)
appealed to the SRA and the GSRA to achieve this for the simulations of the supersonic
boundary layers with adiabatic walls, respectively. It is worth mentioning that a physically
consistent inlet boundary condition is conducive to shortening the transition process from
the inflow to the fully developed turbulence downstream, which is commonly referred to
as the recovery distance.

In § 4.1.3, we are dedicated to appraising the state-of-the-art MSRA models for describ-
ing the instantaneous relationship between T ′ and u′. Our analyses indicate that using
a single formula to depict it is somewhat arbitrary. Instead, it is judicious to consider the
relations between T ′ > 0 and u′ < 0, and between T ′ < 0 and u′ > 0, separately. According
to the results displayed above, the following relationship is more suitable for generating
the instantaneous temperature fluctuation field for compressible boundary layers:

T ′
� =

⎧⎪⎪⎨
⎪⎪⎩

1
Prt

∂ T̄

∂ ū
u′ for u′ ≥ 0,

∂ T̄

∂ ū
u′ for u′ < 0.

(5.10)

Here, we use subscript ‘�’ to distinguish it from previously defined temperature
fluctuations from the MSRA family and the MGRA in § 4.1.3.

Under normal circumstances, the distribution of Prt is not known in advance. In light
of this, one can use the empirical formula given by Subbareddy & Candler (2012) for the
supersonic boundary layer, Prt = 1 − 0.25y/δ. Of course, a simpler and more commonly
used expression, Prt = 0.9, can also be adopted. Furthermore, for supersonic and hyper-
sonic boundary layers with distinct wall thermal conditions, ∂ T̄ /∂ ū < 0 is well established
beyond the log region (y/δ > 0.2), which suggests that the correspondence between T ′ and
u′ with different signs reported above is broadly true. In figure 15, we compare the ratio
of the root-mean-square values of T ′

� and T ′ obtained from DNS data. Apparently, (5.10)
with either introduced model of Prt is more accurate than the single-formula HSRA and
GSRA models, and the model Prt = 1 − 0.25y/δ works better. The superiority of the new
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Figure 15. The ratio between the root-mean-square values of T ′
� and T ′ for all cases of turbulent boundary

layer with different modellings of Prt , and the variations of r1 related to the HSRA and the GSRA are added
for comparison. The dashed lines in panels denote T ′

�,rms/T ′
rms = 1.

formula (5.10) for flows with adiabatic walls is more apparent. It is noted that the eddies
in the inner layer are regenerated rapidly, making it unnecessary to treat them with a high
degree of accuracy at the inlet (Spalart et al. 2006). Hence, for a turbulent boundary layer
with a diabatic wall, although T ′

� cannot exactly recover T ′ near the zone adjacent to the
extreme point of T̄ , which is located in the near-wall region, its accuracy in the outer region
(see figures 15b and 15d) can still help reduce the recovery distance. We will further assess
the accuracy of this method when sufficient data are available.

6. Concluding remarks
In the present study, we broadly investigate the relation between T ′ and u′ in compressible
channel flows and turbulent boundary layers with distinct wall thermal conditions and
Mach numbers, through assessing the state-of-the-art Reynolds analogy models from three
perspectives, specifically, in the statistical sense, in spectral space and via the distribution
characteristics of T ′. The key findings are summarised below.

(i) Among the MSRA family, the HSRA is the only model that works well for both these
two types of flows in the statistical sense. By contrast, the GSRA performs poorly in
channel flows, whereas the RSRA is the worst, performing poorly in any flow. The
accuracy of the GSRA depends on wall temperature and the geometry of the flow.
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Figure 16. Distributions of the error function εT with respect to (a) streamwise and (b) spanwise length scales
for the SRA. A turbulent boundary layer case with an adiabatic wall M20T100 is taken into consideration. The
value in each panel is expressed as a percentage count. The black and white dashed lines in panels are 15 %
and −15 % isolines, respectively.

(ii) In spectral space, the intensities of T ′ at small scales are discovered to be larger than
the predictions given by the MSRA family, whereas those at scales corresponding to
the energy-containing eddies and the large-scale motions are approximately equal to
and less than the predictions of the HSRA, respectively. The success of the HSRA is
the outcome of this combined effect. Furthermore, the MGRA accurately describes
the relationship between the large-scale T ′ and u′ that are dictated by the mean fields
and the energy-containing motions.

(iii) The scales of T ′
l and u′

l correspond to the scales of energy-containing eddies, and
their distribution characteristics exhibit significant similarities. Their relation can be
well described by the MGRA. The presence of small-scale fluctuations in T ′ and u′
obscures this similarity. It is also observed that there is no significant space phase
difference between T ′ and u′ at a given wall-normal position for each kind of flow.

(iv) In compressible turbulent boundary layers, the relationship between the intensities
of positive temperature and negative velocity fluctuations can be described by the
GSRA, whereas that between negative temperature and positive velocity fluctuations
is accurately depicted by the HSRA. This finding can be used to construct a more
accurate inlet temperature boundary condition for the DNS/LES of compressible
boundary layers.

(v) The streamwise length scale, rather than the spanwise length scale, is found to
be more suitable for characterising the scale characteristics of u′ − T ′ coupling
in spectral space. For channel flows and boundary layers, the scale boundaries
of the coupling resulting from the small-scale and energy-containing motions can
be represented by λx = 14y and λx = 4δ beyond the near-wall region, respectively.
Based on this, models describing the relations between T ′ and u′ in spectral space
for channel flows and boundary layers are developed.

The present study highlights the fact that the u′ − T ′ coupling at small scales is
beyond the predictive capabilities of existing models. Therefore, the next urgent issue to
address is the relationship between the velocity fluctuations at small scales and those at
scales corresponding to the energy-containing motions, as well as that of temperature
fluctuations. This will help in establishing a more accurate Reynolds analogy model.
On the other hand, as the Mach number increases, the compressibility effect plays an
increasingly important role in the turbulence dynamics. As a result, the temperature field
cannot be completely treated as a passive scalar. This may influence the accuracy of a
Reynolds analogy model, and requires further investigations in future studies.
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Figure 17. (a,c,e) Variations of γ 2(λz; y) for (a) a turbulent channel flow Ma15Re20K, (c) a boundary layer
with an adiabatic wall M20T100 and (e) a boundary layer with a cold wall M20T050 with λz scaled by the outer
scale at several selected wall-normal positions; (b,d, f ) variations of γ 2(λz; y) for (b) a turbulent channel flow
Ma15Re20K, (d) a boundary layer with an adiabatic wall M20T100 and ( f ) a boundary layer with a cold wall
M20T050 with λz scaled by the wall-normal heights at several selected wall-normal positions.
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Appendix A. Spectral error of the SRA for the case M20T100
As a sanity check, we also examine the spectral error of the original SRA, i.e. (1.2), in this
appendix for the case M20T100, as previous studies reported that the statistical version
of it is satisfied with the experiments and DNSs for flows over adiabatic walls. The error
function in spectral space (εT ) takes the form of

εT = RSuT − f0

f0
× 100 %. (A1)

As can be seen, the spectral diagrams are rather similar to those of the HSRA shown in
figures 4(a) and 4(b). It implies that for this kind of flow, the behaviour of the SRA and
the HSRA is rather similar in spectral space.

Appendix B. Variations of γ 2(λz; y) for different kinds of flows
We plot the variations of γ 2(λz; y) as functions of λz/h (λz/δ) and λz/y in figure 17.
As can be seen, all profiles of γ 2(λz; y) exhibit non-monotonic behaviour. For turbulent
channel flows, the profiles of γ 2(λz; y) at various wall-normal locations agree well with
each other for λz < 2y when plotted against λz/y. This is consistent with the streamwise
LCS. Even so, they do not match well for λz > 2y. On the other hand, for turbulent
boundary layers, normalising λz with neither outer scale nor wall-normal height can obtain
a fair collapse. This signifies that λz is not an appropriate scale parameter in characterising
the linear coupling between u′ and T ′ for these two types of canonical compressible wall
turbulence as a combination. It may be attributed to the fact that u′ − T ′ coupling is largely
mediated by the elongated velocity and temperature streaks in wall turbulence, which are
characterised by their streamwise length scales (Chen et al. 2023a; Cheng & Fu 2023).
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