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ON STEENROD'S PROBLEM FOR CYCLIC ^-GROUPS 

JAMES E. ARNOLD, JR. 

1. I n t r o d u c t i o n . Let G be a finite group and A a Z[G] module. 

Definition (1.1). A simply connected CW complex X is of type (A, n) if 
G operates on X cellularly, and Hi{X) = 0, i ^ n, Hn(X) ~ A as Z[G] 
modules. 

If A is a f.g. (finitely generated) Z[G] module, we consider the following 
problems: 

1. Is there a complex of type (A, n)? 
I I . Is there a finite complex of type (A, n)? 
The second question was posed by Steenrod, and considered by R. Swan 

in [5]. In [1] we used an invariant of Swan denoted Sw(^4) to obtain the 
following solution for G = Zp, the cyclic group of prime order p: 

T H E O R E M . Let A be a f.g. Z[ZP] module. There are complexes of type (A, n), 
n è 3, and there is a finite complex of type (A, n) if and only if S\v(A) = 0. 

In this paper we obtain a similar result for G a cyclic p-group. 

2. Preliminary definitions and lemmas. 

Definition (2.1). A Z[G] module M is a signed permutation module if M is 
free abelian with a set of generators permuted up to sign G. 

Let GQ(Z[G]) denote the Grothendieck group of f.g. Z[G] modules, and 5 the 
subgroup generated by the f.g. signed permutat ion modules. 

Definition (2.2). Given a f.g. Z[G] module A, Sw(A) is the class of A in the 
group G0(Z[G])/S. 

We will say tha t X is a G-complex if X is a CW complex and G operates 
effectively and cellularly on X. The cellular chain complex of X denoted C*(X) 
will then be a Z[G] chain complex, and Cn(X) = Hn(X

n, Xn~l) is a signed 
permutat ion module for all n ^ 0 (see [1]). If X is a finite C7-complex, 

EC-D'Sw^tx-)) = Et-D'SwtdCY)) = o. 
Thus a necessary condition for there to be a finite complex of type {A, n) is 
t ha t Sw (.4) = 0. 

The following two lemmas from [1] are useful in constructing G-complexes. 
We include the proofs for completeness. 
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L E M M A (2.3). Let X and Y be G-complexes where 
a) X = V « 6 A Sa

n with G permuting the n-spheres Sa
n freely and fixing the base 

point Xo; and 
b) Y is n — 1 connected with a 0-cell yo fixed by G. 

Then any Z[G] homomorphism h : Hn(X) —* Hn(Y) is realized by an equivariant 
cellular map f : X —> Y. 

Proof. Let XQ be the subcomplex of X consisting of one sphere from each 
orbit of w-spheres. L e t / o : (X0 , x0) —> ( F , 3>0) be a cellular map realizing the 
induced homomorphism 

ir»(Xo,*o) C irn(X,x0) = Hn(X) ^Hn(Y) = irn{Y,y,). 

/o is then extended to / : (X, x0) —» ( F , 3/0) by defining /g(x) = gfo(x) for all 
g G G, x f J o , 

LEMMA (2.4). Let X and Y be G complexes where 
a) dim (X) — n and G permutes the n-cells of X freely; and 
b) Y is n — 1 connected and G fixes a 0-cell y0 of F. 

Then any Z[G] homomorphism h : Hn(X) —> Hn(Y) which factors through a pro­
jective Z[G] module is realized by a G equivariant cellular map f : X —->• F. 

Proof. Let A = /fa where a: Hn{X) -> P , 0 : P —> # r e ( F ) and P is projective. 
Since P is weakly injective and Hn(X) is a Z-summand of Cn(X), a extends to 
Cn(X) = Hn{X/Xn~l). Let A' : H^X/X^1) -* Hn(Y) denote the correspond­
ing extension of A. By Lemma (2.3) there is a G-equivariant cellular map f: 

f 
X/Xn~l—± Y realizing hf, and the composite X—^X/Xn~1-^ Y realizes h. 

As in [1], the proof of the main theorem relies on the construction of com­
plexes satisfying the following: 

Definition (2.5). X is tractable of type (A, n) if X is an ^-dimensional G-
complex of type (A, n) so t h a t G permutes the n-cells of X freely and fixes a 
0-cell. 

Given G and an integer N ^ 2, we consider the following propert ies: 
P(N): For any Z-torsion free f.g. Z[G] module A, there is a G-complex X 

of type (A, N - k)(k è 0 fixed) such t h a t dim (X) = N, G fixes 
a 0-cell of X, and X is finite if Sw(A) = 0. 

P' (N) : For any Z-torsion free f.g. Z[G] module A, there is a G-complex X 
of type (A, N — k)(k ^ 0 fixed) as in P(TV), and so t h a t G permutes 
the iV-cells of X freely. 

Q(N): For any Z-torsion free f.g. Z[G] module A, there are t ractable com­
plexes of type (A, N) (finite if Sw(A) = 0) . 

R(N): For any f.g. Z[G] module A, there are complexes of type (A, n)n ^ 
N (finite complexes if Sw(^4) = 0) . 

L E M M A (2.6). P(N) =» Q(N + 1), P'(N) => Q(N), and Q(N) => R(N). 
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Proof. P(N) => Q(N + 1): Given k as in P(N), choose an exact sequence 
C* of the form 0 -> Z -> JV -> . . . -> F0 ' -> M -> 0 with F / f.g. free, and 
i f Z-torsion free. Such a sequence is determined for example, by part of a 
complete resolution for G (see [2]). If A is a f.g. Z-torsion free Z[G] module, 
then C* ® z A with g(x ® 30 = gx ® gy defines an exact sequence of the form 

0 -> A -> F* ^> F*_i -> . . A Fo ^> B -> 0 
with f\ f.g. free and 5 Z-torsion free. Since the F* are f.g. free Sw(B) = 
± S w ( 4 ) . 

Now let I b e a G-complex of type (B, N - k) as in P(N). If Sw(4) = 0, 
then Sw(i3) = 0 and X is finite. Let Xt be a wedge of N — k + i spheres 
(freely permuted by G) of type (Fu N — k + i). By Lemma (2.3), there is an 
equivariant cellular map /0 : X0 —» X realizing eo, and C/o (the mapping cone 
of /o) is of type (Kern (eo), N — k + 1). Iterating this argument with 

ft 
Xi —» C/i_! realizing e* : i7* —> Kern (et-i), we attach a finite number of cells 
to X and obtain a complex F of type (A, N + 1). Since the attached cells are 
freely permuted by G, F is tractable and wre have Q(N + 1). 

P'(N) => Q(N): Given ^4, we proceed as in the previous argument using 
an exact sequence 0 —> A —» 7^_i —» . . . —> T̂o —> -5 —» 0. Since the iV-cells of 
the complex X are permuted freely, wre obtain a tractable complex of type 
(A, N) as in Q(N). 

Q(N) => R(N): Let i b e a f.g. Z[G] module, and 0 -> 5 -^ F -> A -> 0 an 
exact sequence with T7 f.g. free. By Q(N) there is a tractable complex X of type 
(B, N) (finite if Sw(B) = -Sw(A) = 0). Let F be a wedge of TV-spheres of 
type (Fy N). By Lemma (2.4) there is a G-equivariant cellular m a p / : X —•> Y 
realizing a. Cf is then of type (A, N), and finite if Sw(>4) = 0. Complexes of 
type (A, n)n > N are obtained by suspension. 

3. Proof of the main theorem. Let Zpn denote the cyclic group of order 
pn (p prime) with generator t. Given a module M, we let Mk denote the direct 
sum of k copies of M. The main theorem relies on the following algebraic result 
whose proof we defer to § 4. 

THEOREM (3.1). Let A be a f.g. Z-torsion free Z[Zpn] module. There is an exact 
sequence of Z[Zpn] modules 

0->A ® P-+F ® Z[Zpn-i]
k -+ £ -> 0 

with the following properties: 
a) P is a f.g. projective Z[Zpn] module, and Fis f.g. free; 
b) B is a Z[Zpn-i] module (i.e. tvn~l • x = xfor allx G B); and 
c) if Sw (A) = 0, Pis free and Sw(B) = 0 in G0(Z[Zpn-i])/S. 

We now prove the main theorem modulo Theorem (3.1). 

THEOREM (3.2). Let A be a f.g. Z[Zpn] module. There are complexes of 
type (A, m)(m ^ n + 2), and finite complexes of type (A, m) if and only if 
Sw(A) = 0. 
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Proof. By Lemma (2.6) it is sufficient to show tha t Pf (n + 2) holds for 
Zvn. Specifically we prove t ha t for A a f.g. Z-torsion free Z[Zpn] module, there 
is an n + 2 dimensional complex of type (A, n + 1) (finite if Sw(^4) = 0) 
such t h a t Zvn permutes the n + 2 cells freely and fixes a 0-cell. We prove this 
by induction on n. 

n = 1: Let A be a f.g. Z-torsion free Z[ZP] module. Then A = M 0 Zs, 
and there is an exact sequence 

O - > F i 0 Zr ^F->M-*0 

with F and F± free (f.g. free if Sw(^4) = 0) . This follows as in Lemma (3.1) 
of [1] replacing the sequences 0 —> 3 —* 3^ —> Z —> 0 by the sequences con­
structed in (4.5) (this paper) . Let X i be a t ractable complex of type (Pi © Zr, 2), 
and Y a t ractable complex of type (F, 2) as constructed in [1]. By Lemma 
(2.4), there is a Zp equivar iant cellular map / realizing a, and Cf is of type 
(M, 2) with 3-cells freely permuted by Zv. Let X = Cf V X2 where X2 is 
t ractable of type (Z5, 2) . X is 3-dimensional of type (A, 2) and satisfies the 
requirements of P' (3). 

w — 1 ==> w: Given an f.g. Z-torsion free Z[Zpn] module A, let 

0 - > , 4 © P - + F © Z[Zpn-i]fc - ^ 5 - 4 0 

be the exact sequence in Theorem (3.1). By the inductive assumption there is 
an n + 1 dimensional Zvn-\ complex Y of type (B, n) with fixed 0-cell. If 
Sw(^4) = 0, Sw(-B) = 0 and we choose Y to be finite. Let X\ be a wedge of 
^-spheres permuted by Zvn of type (F © Z[Zpn-i]k, n). By Lemma (2.3) there 
is a Zpn equivar iant map fi : X\ —> Y realizing /3. Cf\ is then a Z^n complex of 
type (A ® P,n + I) and dimension n + 1 (finite if Sw(^4) = 0) . If Sw(^4) = 
0, P is free and we let X2 be a wedge of w + 1 spheres freely permuted by Zpn 
of type (P , w + 1). Otherwise, choose an exact sequence 

0 - > P - » F i - ^ F 2 - > 0 

with Pi and P2 free, and let X2 be the mapping cone of an equivar iant cellular 
map between t ractable complexes which realizes e. By Lemma (2.4), there is 
an equivar iant cellular map g : X2 —> Cf realizing the inclusion P —> A 0 P . 
Cg is then of type (A, n -\- 1) and satisfies the requirements of P'(n + 1). 

This completes the induction, and we have the main theorem modulo (3.1). 

4. The proof of Theorem (3.1). 

Definition (4.1). A commuta t ive diagram of rings and ring homomorphisms 

R %R, 

*2 \J\ 

Rt^R 
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is a fibered product diagram (or pullback diagram) if 

R ^ I (fi, r2)\rt G i?i, j i ( f i ) = j2(r2)} C Ri © £ 2 . 

As an example, if J and / are ideals in R, the following is a fibered product 
d iagram: 

R/I C\J-> R/I 

(4.2) I I 
R/J -+R/I + J 

Our main interest in fibered product diagrams is the following construction 
of projective modules due to Milnor (see [3]): Assume tha t we have a diagram 
as in (4.1) with a t least one of ji, j 2 onto. Then given Pt f.g. projective Rt 

modules i = 1, 2, and an isomorphism h: R ® Rl Pi —> R <S) 722 -P2, let P = 
{(£1, P2) e Pi © P 2 | a ( £ i ) = j8(£2)} where «(£2) = 1 ® £2, and /3(px) = 
A(l (g) £1). In short, P is the pullback in the following diagram: 

P -+ Px 

I r* 
# 2 

P is then a f.g. projective R module with (ri, r2) • (pi, pi) = (fi^i, ^2^2). 
Now consider the principal ideals I = {tvn~l - 1), / = (0P»(O) = l<t>p(fn~1)) 

in Z[Zpn] where <t>m(t) denotes the mth cyclotomic polynomial. Since I C\ J = 0, 
we have the fibered product diagram 

Z[Zpn] > Z[Zpn]/j 

(4.3) J J 
Z[Zpn]/I >Z[Zpn]/I + J. 

Identifying the rings in (4.3) we have the diagram 

Z[Zpn] > Z[£pn] 

(4.4) J J 
Z[Zpn-l] > Zp[Zpn-l] 

where $> is a primitive £w-th root of uni ty and Z[Çpn] is the pn-th cyclotomic 
integers. 

Note t ha t since Z[Çpn] is a Dedekind domain, every ideal is projective, and 
every f.g. Z-torsion free Z[Çpn] module is isomorphic to a direct sum of ideals. 
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If M = J / I © . . . 0 J/*, we let 

cl (M) = f i J / , € C(Z[J>]), 

the ideal class group of Z[Çpn]. Since 

A; 

cl(M) is trivial if and only if M is a free Z[Çpn] module. The following lemma is 
an application of Milnor's construction: 

LEMMA (4.5). Let M be a f.g. Z-torsion free Z[Çpn] module. There is an exact 
sequence 0 —> Z[Zpn-i]k —> P —> M -+ 0 where P is a f.g. projective Z[Zpn] module, 
and P is free if cl (M) = 1. 

Proof. Let M = s/x © . . . © s/k wheres/ 1 is an ideal in Z[£>] i = 1, . . . k. 

Zp[Zpn-i] ® M=J/I/I'S/I® . . . ®s/k/I-s/k 
Z[Çpn] 

where 1 is the ideal in Z[Çpn] corresponding to I. Given an ideal stf in Z[Çpn]} 

s/ o^ Se where Se is relatively prime to I, and 

se'/i-s/' c^s§il-Se = Se il r\Sê ~ {Se + l)/l 
= Z[ f ,n ] / î~Z p [Z ,n - l ] . 

Therefore 

Zp[Zpn-l] 0 M ~ Zp[Zpn-l]k ~ Zp[Zpn-l] (g) Z [ Z „ n - l ] * f 

W p w ] Z[ZPn-l] 

and we apply Milnor's construction to obtain the pullback diagram: 

P -* M 

Z[Zpn-l\ > Zp[Zpn-l\ 

P is a f.g. projective Z[Zpn\ module, and if cl (M) = 1, P is free. 
Now consider the exact sequence 

0 - ^ e r n (^) % P ^ M -> 0 

where i\(x) = (x, 0) and 7r2(x, y) = y. 

Kernty) = «„»(*) . Z[Z„»-i]* = M^1) ' Z[Zpn-i]* 

= P ' Z[Zpn-l]* ~ Z[Zpn-l]*. 
Therefore we have the sequence 

0 -> Z[Zpn-if -> P î | M -> 0. 

We now prove Theorem (3.1). 
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T H E O R E M (3.1). Let A be af.g. Z-torsionfree Z[Zpn] module. There is an exact 
sequence of Z[Zpn] modules 0 —> A © P —» F © Z[Zpn-i]

k —> J3 —» 0 with the 
following properties: 

a) P is a f.g. projective Z[Zpn] module, and F is f.g. free; 
b) B is a Z[Zpn-i] module; and 
c) ifSw(A) = 0, P is free and Sw(B) = 0 in G0(Z[Zpn-i])/S. 

Proof. Given A, let 0 —» A —» F\ —> C —» 0 be an exact sequence with F\ 
f.g. free and C Z-torsion free. Note t ha t Sw(^4) = 0<=>Sw(C) = 0. Let 
B = {x e C\(r~l - 1) 'X = 0 } . 5 i s a Z [ Z p » - i ] m o d u l e , a n d S w ( i 4 ) = Sw(C) 
= Sw(B) + Sw (C/B) since 0 -> B - » C -> C/B -> 0 is exact. C / 5 is Z-torsion 
free and is annihilated by / since <f>pn(t) • C C B. Therefore C/B is a projective 
Z[Çpn] module, and is free if and only if cl (C/B) = 1. From [4, § 13] it follows 
t ha t 

<p: Go(Z[Zpn])/S-> (G*(Z[Zpn-i])/S © C(Z[M) 

by Sw(C) —> (Sw(2$), cl (C/B)) defines an isomorphism. Thus Sw(^4) = 
0 «=» Sw(C) = 0 <=> S w ( 5 ) = 0 and cl ( C / 5 ) = 1. Let 0 -*Z[Zpn-i]* -> P' - * 
C/B —* 0 be the exact sequence of Lemma (4.5). P' is f.g. projective and is free 
if Sw(^4) = 0. Since P' is projective, there is a commutat ive diagram 

+ 0 

->0 

Now choose a surjection g: F2 —> B where F2 is a free Z[Zpn] module. The 
sequence 

(4.7) 0->K->F2®Pfl>C->0 

is exact where y(x, y) = g(x) — f(y), and K = {(x, y)\g(x) =f(y)}. Since 
the image of g is B, a n d / ( x ) £ B <=$ x (z Z[Zpn-i]k (by 4.6), 

K = {(x,y) Ç F2 © Z[Zpn-^\g(x) =f(y)}. 

Therefore the sequence 

(4.8) 0-^K-*Z[Zpn-*]*® P 2 - ^ £ - > 0 

is exact where e(x, y) = g(x) — f(y). NOWT since 0—> A —* Pi —> C —> 0 and 
0 -> K -> P' © F2 - » C -> 0 are exact, A ® P' ® F2c^ F± ® Kby Schanuel 's 
Lemma. Adding Fi to (4.8), and using this isomorphism, we obtain the exact 
sequence 

0 - » 4 © P -> F © Z[Zpn-if - » 5 -> 0 

where P = P ' © P 2 and F = F2 © Px . 

(4.6) 

-Z [Z„»- i ]* -

> B — 

- > P ' -

1/ 
-> C -

- • C / P 

11 

+ C/B-
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