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1. Introduction

In this paper we shall discuss the boundary value problem consisting of
the nonlinear ordinary differential equation of the second order,

(1.1) ey" + F(t,y,y',E) = 0 O ^ i ^ l

and the boundary conditions

(1.2) 2/(0) = «(«), y(l)=P(e).

The precise conditions on F, a, /? are listed in section 4. Here it will be
sufficient to say that e is a small positive parameter, F and /? are continuous
functions of e at e = 0; we are interested in the behaviour of the solution
y = y(t, e) as e -> 0 + ; and we envisage circumstances under which y(t, s)
approaches a limit non-uniformly, the non-uniformity occurring at t = 0.
The boundary value problem consisting of (1.1) and (1.2) will be referred
to as the problem Pe.

In some respects Pe may be regarded as a simple mathematical model of
boundary layer phenomena, and accordingly this problem has received
some attention. It is not at all easy to formulate conditions under which the
existence of a solution can be guaranteed. Coddington and Levinson [1]
gave a very simple example of a differential equation, viz.

(1.3) ey" + y' + y'3 = 0,

for which the problem PE will in general fail to possess a solution for small e.
This failure is generally attributed to the circumstance that F in (1.3) is
strongly non-linear in y'. Accordingly, both Coddington and Levinson [1]
and Wasow [2] consider differential equations of the form (1.1) in which F
is a linear function of y'. One of the more interesting results of the discussion
to be given below is the replacement of the linearity condition by the condi-
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tion that e^d^F/dy'2 be bounded. Differential equations (1.1) in which F
is a nonlinear function of y' were investigated also by Bris: the assumptions
made in section 4 are in some respects more restrictive, and in other respects
less restrictive than those made by Bris [3].

If y(t, s) -> u(t) as e ->• 0 + , 0 < t 5S 1, one will expect that u is a solution
of the differential equation of the first order

(1.4) F(t,u,u',0) = 0 O^t^l.

Since we envisage circumstances under which the non-uniformity occurs at
t = 0, it will be expected that

(1.5) u(l)=P(0).

but there need be no relation between <x(0) and w(0). The boundary value
problem consisting of (1.4) and (1.5) will be referred to as the problem Po;
and it will be one of the basic assumptions that this problem possesses a
solution u.

Under appropriate conditions it will then be established that there exists
a fc0 > 0, independent of e, so that whenever |a(e) — w(0)| < /j,0, and (3(e) =
/S(0) + O(e), the problem Pe possesses a unique solution y = y(t, e) for all
sufficiently small positive e. Furthermore, this solution is of the form

(1.6) y = u + v + w,

where v(t) and v'(t) are O(e), and w(t) and ew'(t) are O(exp — ^(t)je), uni-
formly for 0 g; t £J 1, as e ->- 0 + . Here <j>(t) is the non-negative increasing
function defined in (4.1)= Clearly, u -\- v is a uniform approximation to y
on 0 < 8 ̂  t <: 1 f or each positive 6, to O(en) for any «; whiles is the bound-
ary layer correction and is negligible except in the immediate neighbour-
hood of t — 0.

Our approach is modelled on that of Wasow in that we first construct a
solution y* = u + v of (1.1) which satisfies y*(l) = /3(e) and is uniformly
close to u, and then construct the "boundary layer correction" w. v is con-
structed by "linearizing" the differential equation (1.1) "around u", and w
is constructed by linearization around y*. We differ from Wasow in the
technique employed for carrying out these steps. While Wasow employs
power series (asymptotic expansions combined with integral equations in the
case of v, and convergent power series in the case of w), all our constructions
are based directly on integral equation methods. (In the case of w the possi-
bility of such a construction was conjectured, but not used, by Wasow.)
As might be expected, a systematic use of integral equation methods leads
to a relaxation of differentiability and analyticity conditions. Rather more
surprisingly, it also leads to the relaxation of the condition that F be a
linear function of y'.
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2. The linear equation

Since (1.1) will be considered as a nonlinear perturbation of a suitable
linear approximation, it is desirable to investigate first linear differential
equations of the form (1.1). Accordingly, we shall discuss solutions of the
differential equation

(2.1) sV" + p{t, e)V + q{t, e)V = 0 0 ^ t ^ 1.

Order symbols, such as 0(e), o(l), refer to s -> 0 + and are understood to
hold uniformly for 0 ^ ( g l .

The discussion of (2.1) will be carried out under the following ASSUMPTIONS :
p(t, e) = <f>'(t) + sp^t, e), <f> is twice continuously differentiable for 0 rg t jg 1;
<£(0) = 0, (f>'(t) > 0; px and q are continuous functions of t, and are 0(1).
We also set

. . . ,
= Pii*. e) 777V = h 777^> (t) e <j> (t)

The behaviour of the solutions of (2.1) as e -> 0 + is essentially known
from the asymptotic theory of linear differential equations containing a
parameter. Nevertheless, we hall give the derivation of the appropriate
results here since a systematic application of integral equation methods
enables us to obtain these results under the very slight differentiability
assumptions formulated above. For the same reason we shall obtain some-
what more detailed results than are required in the sequel.

Throughout the discussion of the linear equation the following abbrevia-
tions will be used:

(2'2) F = f^F'+ 'V
9' W

It is easy to verify that any solution of the integro-differential equation

(2.3) V{t) = 1 + J1 (1 - e°ir-»)V(x)dx - Jo* (l-ee<T'*>)f (T)ir

satisfies (2.1). Furthermore, it follows from (2.3) and

(2.4) V'{t) = - ^ f '^c- ' if {x)dx
£ Jo

that V satisfies the integral equation
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V(t) = tp'{t)
(2.5)

If we denote the right hand side of (2.5) by 7 \P , and regard Tx as a trans-
formation of the space of continuous functions of t, 0 5S t 5S 1, it turns out
that Tx is in general (i.e., without further restrictions on y>') not a contraction
mapping, and the integral equation V = T1V cannot be solved by successive
approximations. We shall decompose 7\ as T2 + T3 in such a manner that
1 — T2 possesses an inverse, and (1 — T2)~

1T3 — T is a contraction
mapping. We then re-write V = 7 \ F in the form (1 — T2)V = TZV or
V = TV, and construct the solution of the latter equation by successive
approximations.

We write (2.5) in the form

0 ] [V'(t) - pa{t, e)] fce°™

This is equivalent to

_ ^ [e+w Cv(r)dr} = e
dt J t •

and upon integration,

or

V(t) = V(t) + ip'(

Substituting the definition of V we finally arrive after some simplification
at the integral equation

(2.6) V(t) = TV{t),

where T is the functional transformation defined by

TV(t) = y,'(t)

(2.7) + [v

F o r a c o n t i n u o u s func t ion /(<) we define ||/|| = m a x [\f(t)\ : 0 ^ t ^. I],
a n d w e also choose b o u n d s A i so t h a t for 0 g s, ( ^ 1 we h a v e
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l f (O|- 1 ^i . lv ' (<)-*i (< .«) l^i ,
|V'(O!«*<•>-*<" ̂  A3, A, = ^ ( 4 , + A3 + A2A3).

Then

(2.8)

and using this estimate in (2.7), we have for two functions /x and /2,

(2.9)

We are now ready to solve the integral equation (2.6) by successive
approximations, setting V_x(t) — 0 and F n = TVn_x for n — 0, 1, 2, • • •.

from (2.7) so that | |F0 - V_j\\ ^ As and from (2.9) we have \\Vn - Vn_J\ ^
^3(e^4)n by induction. It follows that 2£Lo[Fn(0 — ^«-i(03 converges
uniformly provided that ê 44 < 1. This series defines a function V(t) that
satisfies the integral equation (2.6), and hence (2.5), since term by term
integration in (2.7) is justified by uniform convergence. Our estimates also
show that ||J? — Fo| | ^ eA^A^l — eAJ-1, so that

(2.10) V(t) = v'(<)«*<«-*<'> + O(e)

for the solution of (2.5). Moreover, the solution of (2.6), and hence also the
solution of (2.5) and that of the integro-differential equation (2.3), is unique.

3. The results obtained in the preceding section lead directly to some state-
ments on solutions of the differential equation (2.1). To begin with, (2.1)
possesses a unique solution V± for which

(3 1) V'l{0) = °' Fl(1) = *' Vl{t) = *a)~*W + °(e)>

V[{t) = -v'(<)«#a)-*(«)[i _«-»<*»/«] + o(l).

Indeed, Fx is the solution of (2.3) and satisfies the boundary conditions
given in (3.1). Also,

by (2.10), the integrals involving ee in (2.3) are O(e) by (2.8), and the esti-
mate for V1 follows. From (2.4) and (2.10), with (2.8),
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F;(0 = - — Ce9«<*>y>'(T)e*™-+^dT + 0{e)£ Jo

f' ^
Jo e

0(e)

(T)
dx,

and the last integral is o(l) by a well-known result on Laplace integrals
since the function in the square brackets approaches zero, uniformly for
O g < ^ l , ast-»-<.

Next, we set 7(0 = e~+w/eW{l — 0 in (2.1) and find that W satisfies
the differential equation

eW" + (2f - p)W +(q- 4'PJW = 0

which has the same form as (2.1). Thus we obtain a solution, W1, for which
statements analogous to (3.1) hold, and correspondingly, there exists a
unique solution Vz of (2.1) for which

(3.2)

where

(3.3)

v,{t) — ex(O-(*(t)/e)_|_

e

x{t) = v(t) -

Vx and V2 are clearly linearly independent and may be used to construct
other solutions. Thus

is that (unique) solution of (2.1) satisfying

(3.4) 7,(0 =

Furthermore,

satisfies
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dK
K(s, s) = 0, e — (s, s) = 1

01

(3.6) <f>'{s)K{t, s) = _e*«)-x<«>+*M) [1 + O(e)] + «*<•)-*<«> + 0(s)

f (s) ^ (*, s) = ^ <̂«>-xM-«(M> [1+0(e)] - v,'(O**M-*'> + o(l).

Let 7\ and T3 be the functional transformations of C[0, 1] defined by

TJ(t) = [A - j*K(l, s)f(s)ds~] V1(t) + JJ/f (<f s)f(s)ds

T3f(t) = [(* + j*K(O, s)f(s)ds] V3(t) - f*K(t, s)f(s)ds.

TJ and T3f are those solutions of the inhomogeneous differential equation

(3.8) ev" + pv' + qv = f

satisfying the boundary conditions ( r^ ' fO) = 0, 7\/(l) = A; Taf(O) = fi,
T3f(l) = 0. It can be deduced from (3.1), (3.4) and (3.6) that there exist
constants A5 and A6 independent of e and such that for sufficiently small s,

(3.9) Iir^-Ty.n,
(3.10) IÎ 'T.A—T-,/,11. UedH'iT^-TJJU ^

It will be sufficient to indicate the proof of (3.10).

and the last integral is 0(1) by (3.6). Similarly,

e*^'V,(t) f*K{0, s)f(s)ds =

by (3.4) and (3.6), and hence

The result for the derivative follows similarly from

#(0, s)/(s)is] F;(0 - J ' ^ (t, s)f(s)ds.

4. The results

Let us now return to the non-linear differential equation (1.1) and formu-
late our assumptions. Partial derivatives will be indicated by subscripts,
thus Fv = dF/dy; and order symbols like O(e) or 0(1) will be understood to
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hold as e -> 0 +» uniformly in all other variables.
The solution of P o will be denoted by u, and for this solution we define

<j> b y

(4.1)

For d > 0 we also introduce Ds, that set of quadruplets (t, y, y', e) for
which

0 ^ t ^ 1, \y - u(t)\ < 6, \y' - u'{t)\ < d (l + j , 0 < e < e0.

ASSUMPTIONS.

(A) The problem Po consisting of (1.4) and (1.5) possesses a solution u
which is twice continuously differentiate for 0 5S t £i 1.

(B) For some d~> 0, F is defined in Dg and possesses there partial derivativ-
es of the first and second orders with respect to y and y'. Also, F and these
partial derivatives are continuous functions of t, y, y' {for fixed e).

(C) F{t,u{t),u'(t),e)=O(e); q{t, s) = Fv{t, u(t), u'(t), e) = 0(1); Fv,
(t, u(t), u'(t), 0) is positive and continuously differentiable for O^t^l,
Fy,(t, u(t), u'{t), e) = p(t, e) = </>'{t) + ep^t, e), where <j> is defined in (4.1),
px is a continuous function of t, and p^t, e) = 0(1); Fvv(t, y, y', e) = 0(1),
F«{t, y, y', e) = 0(1), Fy,y,{t, y, y', e) = O(e).

(D) 0(e) - /S(0) = O(s).
(E) Fy(t, y , y ' , e) = 0 ( 1 ) , Fy,(t, y , y',e)^B>0 in Dt.
It follows from these assumptions that <f>, p, q as defined in (C) satisfy the

conditions imposed on these functions in section 2.

THEOREM. Under assumptions (A) to (D) there exists a positive fi0 indepen-
dent of e so that whenever s is sufficiently small and \x(s) — u(0)\ < fi0,
the problem Pe possesses a solution y in Ds. This solution is of the form
y = u + v + w, where u is the solution of Po, v(t) and v'(t) are 0(e), and
w(t) and ew'(t) are 0(exp — <f>(t)le). Under the additional assumption (E),
y is the only solution of Pe in Dt.

5. The functions G and G*

Let

G(t, z, z', e) = - F(t, u{t) + z, u'(t) + z', e) - eu"

+ Fy(t, u{t), u'{t), e)z + Fv,{t, u(t), u'(t), e)z',

where
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(5.2) \z\<d,\z'\<d(l + -<
\ e

Clearly,

(5.3) G(t, 0, 0, e) = 0(e)

by assumptions (A) and (C). We wish to show that

,_ . , \G{t,zx,z'x,e) ~G(t,z2,z'2,e)\
(5.4) ,

g= Acr^.Zjj,^,^),
where k is a constant, independent of t, e and the zu z\, while <;(%, z2, z'x, z'z)
is the largest of the two quantities

\zx — z2\ max (1^1, \z2\, \z'x\, \z'2\)
and

By the mean value theorem,

G(t, zltz'1,e) — G{t,z2,z'2,e)
= F{t, u(t) + z2, u'{t) + z2, e) - F{t, u(t) + zx, u'(t) + z'x,e)
+ Fy(t, u(t), u'{t), e){zx - z2) + Fy,(t, u(t), u'(t), s)(z'x - z2)
= [Fy(t, u{t) + z, u'(t) + I', e) - Fy(t, u{t), u'{t), e)] (z2 - zx)
+ [Fy,(t, u(t) -f-2, u'(t) -\-z"', e) — Fy,(t, u(t), u'(t), e)](z'2 — z'x),

where z = \zx+ (1— X)z2, z' = Xz'x + (1 — X)z'2 for some A, 0 5S I ̂  1.
We apply the mean value theorem once more to each of the square brackets
and obtain

G(t,zx,z'x,e) — G(t,z2, z'2,s)
. Zy 2 [5* 5* J \ ~p g' (9 y I

+ Fyv'Z(Z2 — Zl) + Fv'v'Z'(Z2 — Zl)-

Here Fvv, • • •, Fy,y, are evaluated at certain intermediate points (different
in the first two terms from those in the last two). Since these intermediate
points are all in Ds, assumption (C) shows that there is a constant k so that
4|i7

vv| ^ k, 4|.FVV/| 5S k, 4 |F v V | ^ ks. Since also \z\ ̂  max (1^1, |22|) and
\z'\ ̂  max (\z'x\, \z'2\), this proves (5.4).

Next, let y* = y* (t) = y* (t, e) be a continuously differentiable function
of t for 0 ̂  t^ 1 and such that (t, y*(t), y*(t), e) is in Gtl2. Set

G*{t,z,z',e) = F{t,y*{t),jf'{t),e)
(5.5) -F(t,y*(t)+z,y*'(t)+z',e)

+ Fy(t, y*(t), y*'(t), e)z + F'y{t, y*(t), y*'(t), e)z'
for
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(5.6) W<J> | 2 l<

Then

(5.7) G*(t,0, O,e) = O

and

( 5 8 ) \G*(t,z1,z'1,e)-G*(t,z2,z'2,e)\
^ka(z1,z2,z'1,z'a)

as before.
Assume furthermore that

(5.9) y*(t)=u(t)+O(e), y* (t) = u' (t) + 0 (e)

and set

(5 10) r { i ' S) = Fv'{-t> y*'{t)t y*'{t)> £ ) = *'{t) + Bp*{t> B)

{ ' ; q*(t,e) = Fv(t,y*(t),y*'(t),e).
Then p* — p and q* — q are continuous functions of t, p*(t, E) — p(t, s)
= Fyv,(y*(t)-u(t)) + Fv.y,(y*'(t)-u'(t)) = 0(e), and similarly for
q* — q (l?vv, etc. are intermediate values of the partial derivatives), and it
follows that p* and q* satisfy the conditions imposed on p and q in section 2,
with <f>' defined in (4.1).

6. The construction of v

We now set

(6.1) y* = u + v

and subject y* to the differential equation (1.1) and the boundary conditions
y*'(Q) = w'(0), y*{l) = /?(e). The differential equation for v may be written
as

(6.2) ev" + p(t, e)v' + q(t, s)v = G{t, v, v', e),

where p, q, G are defined in assumption (C) and (5.1). We also have the
boundary conditions

(6.3) t/(0) = 0, w(l) = A =/?(*) - 0(0)

for v. With the definition (3.7) of 7\ , v must then be a solution of the integro-
differential equation v = 7\G in which we take A = /3(e) — /3(0).

The integro-differential equation v = 7\G can be solved by successive
approximations. Set v^t) = 0, and vn = T1Gn_1 for n = 0, 1, 2, • • •,
where
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(6.4) Gn(t) = G(t, vn(t), v'n(t), e) n = - 1, 0, 1, 2, • • •

By (5.3), G_x{t) = G(t, 0, 0, e) = O(e), and it follows from (3.9) that
vo(t) == T1G_1(<) and v'0(t) are O(e). Suppose

\vo(t)\,\v'o(t)\^Ae

for some A, set 2AAsk = B, where A5 and & are the constants appearing in
(3.9) and (5.4), and assume

/ d 1 \
(6.5) 0 < e < min ^—, — , £oj = «x.

We wish to prove by induction that

-

Now, clearly (6.6) holds for-» = 0. Suppose that it holds for n = 0, 1, • • •,
k and prove that it holds also for n = k -\- 1. Since 2A e < 6,
{t, u(t) + vn(t), u'(t) + v'n(t), e) is in Z), for » = k - 1, *, and we
may form Gk_1, G*. Moreover, by (5.4) and the induction assumption,
\Gk(t) - GM(OI ^ 2^*e ^e(B£)*,andby (3.9) |«i+1(0 - vt(t)\ ^ | | r x ( G , -
Gt-1)| | ^ 2^4 5̂A!e. ^e(Be)* = ^e(Be)*+1, with the same estimate for
lv*+iW ~ v*(0l» s o tha* t n e second line of (6.6) holds also for n = k + 1-
Finally,

IW)I ^ 2 Iw.W - "n-iWi ^ 2^(56)" < 2Ae

since 5e < 1/2, and the same estimate holds for v'k+i(t).
It follows from (6.6) that

(6.7) v(t) = | [Un(0 - v^it)] = lim w,(0

defines a continuously differentiable function v.

lim G,(<) = G(<,v(0,v'(0,e)
t-.oo

uniformly for 0 ^ t ^ 1 by continuity of G in v, v' and uniform convergence
of vt to v and of i>£ to v'. Again by uniform convergence, TtGk -> TXG,
so that v satisfies the integro-differential equation v = TXG and hence also
the differential equation (6.2) and the boundary conditions (6.3).

With this v, y* = « + v is a solution of the differential equation (1.1)
that satisfies the second boundary condition (1.2). It follows from (6.6)
that the graph of this solution is not only in Dt but in the narrower region
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7. The construction of w

Let

(7.1) 0 < e < m i n ( — , — , eoj = s2,

and let y* be that solution of (1.1) constructed in section 6. By the remark
made at the end of section 6, the graph of this solution is in Dl/2.

Writing the solution of Pe in the form

(7.2) y = y* + w,

and using the notations (5.5) and (5.10), we may write the differential
equation for w in the form

(7.3) ew" + p*(t, e)w' + q*(t, e)w = G*(t, w, w', e),

while the boundary conditions for w read

(7.4) w (0) = oc(e) — «(0) — »(0) = fi, say; w(l) = 0.

Since y* satisfies (5.9), p* and q* satisfy the conditions imposed on p and q
in section 4. Also p* (t, 0) = <f>'(t). We shall denote by V* the function corre-
sponding to V3 when p and q are replaced by p* and q*, and by T* the opera-
tor corresponding to T3. From (3.4) we conclude the existence of a constant
A* such that

(7.5) |«*M'eFj(/)|,«|«*WeFj'(*)| ^ * .

The constant corresponding to A6 in (3.10) will be denoted by A*, and
2A*A*k = B*.

Any solution of the integro-differential equation w = T*G* satisfies
(7.3) and {7.4), and it will be shown that under a certain restriction on fi,
such a solution can be constructed by successive approximations, setting
w_x{t) = 0 and, in a notation similar to (6.4),

t.i for » = 0, 1

It follows from (5.7), (3.7) and (7.5) that

If we now assume that

then the appraisals
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( 7 6 ) e^e\wn(t)\,ee^'e\w'n(t)\^2A*\fi\

can be proved by induction. The proof parallels that of (6.6), except that
(5.8) and (3.10) are used in place of (5.4) and (3.9).

(7.7) w(t) = lim wk(t) = | [wn(t) - w^t)]
Jfc->oo n=0

defines a differentiate function w that satisfies the integro-differential
equation w = T*G*, and hence also the differential equation (7.3) and the
boundary conditions (7.4).

By (7.6) and (7.7),

\w(t)\,e\w'(t)\<- • • • • ' - ' " 8

so that the graph oiy = y* + w — u + v + w lies in Dit and y satisfies
the differential equation (1.1) and the boundary conditions (1.2).

Now let fix = 2fiQ, and assume that

(7.8) 0 < e < m i n ( e 2 , ^ = «„ |a(e) - «

Since \v(t)\ ^ 2Ae < /x0 in this case, we have 1̂1 = |a(e) — «(0) — v(0) \
< 2fi0 = fxx so that the result established above is valid, y is a solution of Pe,
and the assertions of the theorem of section 4 are proved as far as the
existence of the solution and the appraisals of v and w are concerned.

8. Uniqueness of the solution

We now make the further assumption

(8.1) \Fy(t,y,y',e)\^A, Fy,(t, V, y', «) ^ B > 0

in Dt and wish to prove that in this case Pe possesses at most one solu-
tion in Dt.

Let us denote by y = y(t, e, y) that solution of the differential equation
(1.1) satisfying the initial conditions

(8.2) y(o) = a(e) , y'(0)=y.

Here y may depend on e, and we must have

to ensure that (t, y(t), y'(t), e) is in Dt at least for sufficiently small t. It
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follows from the basic theorems on the continuation of solutions of differen-
tial equations and on their dependence on initial conditions, that as long as
the solution y(t, e, y) remains in Dit it is unique and is a differentiate
function of y. Moreover,

Sy(t, e, y)
Z

satisfies the "variational equation"

(8.3) ez" + f{t)z' + g(t)z = 0

in which

f(t) = Fv,(t, y(t), y'{t), e), g(t) = F,(t, y(t), y'(t),«.).

In addition, z satisfies the initial conditions

(8.4) *(0) = 0, *'(0) = 1.

We shall prove that under our conditions,

(8.5) z{t) > 0 for 0 < t ^ 1

provided that e is sufficiently small.
To prove (8.5), we use Priifer's transformation, introducing polar coordi-

nates (r, 0) in the phase plane, and setting

z = r sin 6, ez' = r cos 0.
Differentiating

ez' sin 0 — z cos 0 = 0

with respect to t, and using (8.3), we obtain

(8.6) ed' = (/ sin 0 + cos 0) cos 0 + eg sin2 0.
For sufficiently small e there exist 6t and 02 such that 0 < 0X < n/2 < 02

< n and, from (8.6), 0' > 0 when 0 ^ 0 ^ 01( while 0' < 0 when 0 = 02.
The solution z of (8.3) starts at r = e, 0 = 0. As long as the graph of the
solution in the phase plane is in the sector 0 5S 0 ^ 01( we have 0' > 0, and
once the solution enters the sector 0X £S 0 <S 02, it cannot leave it. Thus,
0 < & < n for 0 < t ^ 1, and (8.5) follows.

We have now proved that

%(W^>0

8y

for sufficiently small e, so that y{\, e, y) is a strictly increasing function of y
in this case. It follows that for sufficiently small e there is at most one value
of y = y(e) such that y(l, e, y{e)) = /3(e), and this completes the proof of
uniqueness.
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