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Summary

We consider using microsatellites for paternity checking and parent identification in different

population structures, and allowing for possible typing errors or mutations. Statistical rules derived

from the Bayesian and the sampling approaches are discussed in the case involving the choice of

the true father–mother pair among a finite set of possible parental pairs. General situations are

investigated by means of random simulations, in order to characterize the joint influences of the

number and polymorphism of typed loci, the population structure and size, and error rates.

Approximate expressions are provided that give the efficiency of a set of markers for identifying

the parents in various mating schemes. The importance of a non-zero value for the typing error

rate in the likelihood is highlighted.

Introduction

Polymorphic genetic markers have long been used in

cases where pedigree information must be ascertained,

as in animal breeding selection programmes, or in

human paternity analysis (Jamieson, 1965; Chastang,

1973; Hanset, 1975; Elston, 1986). When several

potential fathers are proposed for some offspring,

each one is checked for its genotype being compatible

with the genotypes of the offspring and the mother. A

set of loci is characterized by the probability of

exclusion, i.e. the probability that one random

individual cannot be the father of some proposed

individual whose maternal and own genotypes are

known. The calculation relies on the frequency of

genotypes that are impossible for the true father. The

sum of frequencies of all impossible genotypes is the

probability of exclusion. It depends only on the

frequencies of alleles, and relies on the hypothesis that

parents are taken at random in a population with

Hardy–Weinberg structure.

Another question is identifying the most probable

parents of some individual. Searching for the most

likely father happens in certain forensic situations, as

well as in animal breeding, e.g. identifying the sire

among a set of natural service bulls. Identifying

parents is a problem arising in wild-life surveys,

analysis of the genetic structure of populations, and in

* Corresponding author.

experimental quantitative genetics in fishes (fishes

from different sibships are reared together and cannot

be identified except through genetic analysis) and

trees (retrieving parent trees participating in open

pollination).

Large-scale parentage analyses can be divided into

three types : (i) identifying one parent when the other

is known, (ii) identifying one parent with no in-

formation about the other parent, (iii) identifying a

parental pair starting with no prior information. We

will restrict our analysis here to the first and last cases

when the potential parents belong to a finite set of

genotyped individuals. Case (ii) involving a parent in

an infinite population would need prior knowledge

about allele frequencies and a different statistical

setting. The potential parents and the offspring are

described at a number of unlinked loci, from which

data we derive statistical rules in order to identify the

parents of the offspring. We consider only single-locus

Mendelian systems, and focus on the class of highly

polymorphic co-dominantmarkers providedbymicro-

satellite repeats (Weber & May, 1989; Weber, 1990),

which are now available in many species. We assume

that genotyping errors may arise, due to the large

number of experiments. Mutations that may arise for

highly polymorphic markers will also be handled like

errors.

We first derive the likelihood of one offspring’s

phenotype, assuming that parental genotypes are

known without error, and then the probability that
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any pair of parents has given rise to this offspring. The

section is then devoted to the building of the statistical

tests needed to answer the question raised. Analysing

a simple case allows the main effects of locus

polymorphism and error rates to be outlined.

In the second part of the paper we consider various

population schemes encountered in animal and plant

breeding, and provide numerical results about the

actual powers of parent identification tests, according

to error rates, the number of loci and the distributions

of alleles per locus.

2. Genetic and statistical framework

(i) Genetic hypotheses

Let Π
l

be the phenotype of some offspring at one

locus l (1% l%L), and Π¯ (Π
"
,…,Π

l
,…,Π

L
) the

joint phenotypes at the L loci being considered. All

calculations are made conditionally on the genotypes

of parents taken from a set of potential parental pairs

indexed by k (1%k%N ). Any discrepancies between

observed phenotypes and expected genotypes of

offspring are referred to as ‘ typing errors ’ and

characterized by small numbers, such as the prob-

ability that allele (A
k
) is seen as (A

i
).

(a) Conditional probability of offspring phenotypes

At any locus, we first consider the probability of

offspring genotypes given the parent genotypes. Let

(A
k
A

l
) and (A

m
A

n
) be the genotypes of the two

parents. In the case of a homozygote genotype (A
i
A

i
)

of offspring, the conditional probability reads

Pr((A
i
A

i
) r (A

k
A

l
), (A

m
A

n
))

¯Pr((A
i
) r (A

k
A

l
)) Pr((A

i
) r (A

m
A

n
)),

where Pr((A
i
) r (A

k
A

l
)) is the probability that an

individual with genotype (A
k
A

l
) has transmitted an

allele (A
i
) to its offspring. To allow for error rates or

mutations, we write this transmission probability

T (i}kl ) as

T (i}kl)¯Pr((A
i
) r (A

k
A

l
))

¯ "

#
ε
ki
­"

#
ε
li
,

where ε
ki

is the probability that allele (A
k
) from a

parent yields an allele (A
i
) in some offspring: without

error or mutation, it is zero if i1k, or 1 if i¯k.

Allowing for errors, we consider that ε
ki

is small if

i1k, and nearly 1 if i¯k.

For a heterozygote phenotype [A
i
A

j
] of offspring,

wemust consider the two alternative ordered genotypes

(A
i
A

j
) and (A

j
A

i
) corresponding to the two possible

parental origins of alleles. The probability of phenotype

[A
i
A

j
] conditional on parents being (A

k
A

l
) and

(A
m

A
n
) then reads

Pr([A
i
A

j
] r (A

k
A

l
), (A

m
A

n
))

¯T (i}kl)T (j}mn)­T (j}kl)T (i}mn).

We describe error and mutation rates with a single

parameter, a mean overall rate ε of incorrect trans-

mission, so that

ε
kk

¯1®ε

and, for any i1k,

ε
ki

¯
ε

a®1
, (1)

where a is the number of alleles (i.e. assuming that

misinterpretation of alleles does not depend on allelic

types).

For a set of unlinked loci, the probability of

phenotypes Π in offspring, conditional on the geno-

types Gsd(k) of the kth parental pair, is

Pr(Π rGsd(k), ε)¯ 0
l=L

l="

Pr(Π
l
rGsd

l
(k), ε), (2)

where Pr(Π
l
rGsd

l
(k), ε) is calculated from previous

expressions.

Example 1. Suppose two loci are typed. The first is

triallelic and the second biallelic. Let the genotype of

the parental pair be (A
"
A

"
,A

#
A

$
) at locus 1 and

(B
"
B
#
,B

#
B
#
) at locus 2, while the phenotype of a given

offspring is [A
"
A

#
] at locus 1 and [B

"
B
"
] at locus 2.

The conditional probabilities of observed pheno-

types are, assuming that errors occur independently

for different gametes,

Pr([A
"
A

#
] r (A

"
A

"
), (A

#
A

$
), ε)

¯T (1}11)T (2}23)­T (2}11)T (1}23)

¯ (1®ε) ("
#
(1®ε)­"

#

ε

2
)­

ε

2

ε

2
,

Pr([B
"
B
"
] r (B

"
B
#
), (B

#
B
#
), ε)¯T (1}12)T (1}22)

¯ ("
#
(1®ε)­"

#
ε) ε. (3)

(b) Posterior probability of parental origins

Consider an individual with phenotype Π, and the

genotypes Gsd(k), k¯1,…,N, of N potential parental

pairs. Let θ be the unknown indicator vector of the

origin of the offspring among the finite set of these

possible parental pairs : its kth component is equal to

1 if and only if the offspring derives from the kth pair,

and the other components are 0. This parameter θ can

take a finite number of values among the N vectors t
h

(h¯1,…,N ), where t
h
¯ (0,…, 0, 1, 0,…, 0) has 0

components except the hth one equal to 1. With

these notations, the probability ρ
k

that the kth

pair has given birth to an offspring with phenotype

Π is, for a given ε and conditional on the Gsd(h) values

(h¯1,…,N ),

ρ
k
(ε)¯Pr(θ¯ t

k
rΠ,Gsd, ε)

¯
Pr(²θ¯ t

k
´,Π,Gsd, ε)

Pr(Π,Gsd, ε)
, (4)
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where Gsd stands for ²Gsd(h), h¯1,…,N ´. Writing the

numerator as

Pr(Π r ²θ¯ t
k
´,Gsd, ε)[Pr(²θ¯ t

k
´,Gsd, ε)

the first factor depends only on the genotypes Gsd(k)

of the kth pair, since the condition includes ²θ¯ t
k
´.

Hence, it is equal to the value given by (2). The second

factor can be factorized into

P
!
(θ¯ t

k
)P

!
(ε)P

!
(Gsd)

with prior probabilities (symbol ‘P
!
’) concerning the

distribution of error rates, of the events ²θ¯ t
k
´, and

of parents’ genotypes. Some information available

from population structure – such as distances between

trees in a problem of open pollination, or such as

breed structures – might be introduced here.

In (4) the denominator is the sumof terms analogous

to the numerator, so that we get

ρ
k
(ε)¯

Pr(Π rGsd(k), ε)P
!
(θ¯ t

k
)

3
h=N

h="

Pr(Π rGsd(h), ε)P
!
(θ¯ t

h
)

. (5)

(ii) Statistical analysis

Depending on the number and informativity of loci,

error rates, and the relationship structure among

parents, we have to evaluate the distribution of the ρ
k

indices.

(a) Bayesian approach

In the present genetic problem, the parameter of

prime interest is θ, and the set of ε
ki

values are

considered as nuisance parameters. Unless biological

or spatial features are known, simple vague prior

information on the probability of descent can be

translated as equal probabilities, while the distribution

of error rates is characterized only by its expectation

(assuming independence of causes that may yield

errors or mutations).

Given observations (parents’ genotypes Gsd, and the

phenotype Π of the offspring), the posterior dis-

tribution of the primary parameter θ is obtained after

integrating on ε, and is given by the following set of N

values (for k¯1,…,N ) :

ρ
k
¯Pr(θ¯ t

k
rΠ,Gsd)

£Pr(Π r ²θ¯ t
k
´,Gsd)P

!
(θ¯ t

k
).

This means that the posterior distribution of θ is

multinominal with parameters 1 and (ρ
"
,…, ρ

k
,…,

ρ
N
) equal to:

ρ
k
¯

Pr(Π rGsd(k))P
!
(θ¯ t

k
)

3
N

h="

Pr(Π rGsd(h))P
!
(θ¯ t

h
)

.

The difference compared with (5) is that the nuisance

parameter ε has been integrated out. In fact, under the

hypothesis that errors occur independently while

1·0

0·8

0·6
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0·2

0·0
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e

Fig. 1. Estimation of the parental pair by maximum
likelihood. Six possible parental pairs are considered, with
joint genotypes (the same at six independent loci) :
(AA,AA), (AA,AB), (AA,BB), (AB,AB), (AB,BB) and
(BB,BB), giving six curves ρ

k
, k¯1,…, 6, depending on

the error rate ε. The observed offspring phenotype is [AA]
at 5 loci and [AB] at 1 locus.

reading allelic types, this integral form is obtained

from (5) after substituting ε values by their prior

expectations.

Following Hoel & Peterson (1949; see Ferguson,

1967, p. 291) an optimal multiple decision rule consists

here in choosing k corresponding to the largest ρ
k
,

over 1,…,N.

(b) Sampling approach

Unknown parameters θ and ε can be estimated using

the maximum likelihood approach. Since the par-

ameter θ is discrete, the likelihood function ,(θ, ε)¯
Pr(Π rGsd, θ, ε) takes its maximum at a point (θW ¯ t

k
W ,

ε# ) corresponding to the greatest conditioned prob-

ability of phenotype Π (2) over k (k ` ²1,…,N ´) and ε

values. Numerically, this corresponds to the mode of

the joint posterior distribution of θ and ε in the

Bayesian theory when flat priors are chosen. Fig. 1

gives an illustration of the maximum likelihood

approach. For each genotypic state (k) of a parental

pair, it shows the likelihood ratio ρ
k

as a function of

ε. As soon as the error rate is not very small, the

likelihood of the first type (AA,AA) becomes the

largest one, suggesting that it should be preferred to

states (AA,AB) and (AB,AB) that are compatible

from the strict qualitative (Mendelian) point of view.

In other words, unless ε is very small, the corre-

sponding joint Mendelian transmission of alleles is

less probable than the occurrence of one error.

Assume that ε is fixed at some known value. If the

maximum likelihood estimator of θ is such that θW ¯ t
k
,

the null hypothesis H
!
: θ¯ t

k«, for some k«1k, can be

tested against the alternative H
"
:θ¯ t

k
.

The type I error α (the size of the test) is the

probability that the null hypothesis is wrongly rejected.
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Fig. 2. Power of the test for H
!
: θ¯ t

k
versus H

"
: θ¯ t

k«
with parent genotypes Gsd(k)¯ (A

"
A

"
,A

#
A

#
) and

Gsd(k«)¯ (A
"
A

"
,A

"
A

"
), at the 5% size, with varying allele

number per locus, number of loci L and typing error rate
ε (alleles with equal frequencies).

The power 1 – β, corresponding to a type II error β, is

the probability that the null hypothesis is correctly

rejected.

According to (2), one can calculate the probabilities

of any phenotype Π under both hypotheses H
!

and

H
"
, and then the distributions of the likelihood ratio

LR¯
Pr(Π rH

"
)

Pr(Π rH
!
)
¯

Pr(Π rGsd(k), ε)

Pr(Π rGsd(k«), ε)

under both hypotheses. The Neyman–Pearson lemma

allows one to build the most powerful test of given size

α. A critical value cα can be defined such that the

decision rule : ‘hypothesis H
!

is rejected if the LR

value is greater than cα ’, has maximal power for the

given size α. A procedure to calculate cα is given in the

Appendix, with an example of explicit derivations of

size and power.

Example 2. In order to illustrate the effect of alleles

number a and of loci number L on the performance of

the previous test procedure, we suppose that all the

parental pairs are totally inbred, so that any single

locus summarizes the whole genome. Moreover, allele

frequencies within each locus are assumed equal.

Without typing error, the test of

H
!
: θ¯ t

k« with Gsd(k«)¯ (A
"
A

"
,A

#
A

#
)

versus

H
"
: θ¯ t

k
with Gsd(k)¯ (A

"
A

"
,A

"
A

"
)

is best of size 0 and has power 1. In that case, one

locus is sufficient to decidewhether the given individual

is an offspring of the k«th pair or the kth pair.

When typing errors occur, the power falls dra-

matically, as illustrated in Fig. 2 for a size of 5%. The

phenomenon is amplified by the increase in typing

errors, by a small number of typed loci, and a small

number of alleles. Fig. 2 suggests that the biallelic

case is the worst, especially when typing errors are

numerous, even if several loci are considered. For a

constant typing effort (L fixed), multiallelic markers

(six alleles or more) provide a very significant

improvement.

3. Applications to general situations

(i) Simulations

The previous analysis indicates the respective roles of

allele number and loci number on the efficiency of

paternity retrieval. Although exact calculations are

complex (cf. Appendix), the dependence of the

frequency of correct decisions on markers’ informa-

tivity, number of loci and error rate can be outlined as

follows.

When comparing the correct hypothesis H
"

(the

true father is the kth one) against a wrong hypothesis

H
!
(testing the k«th father), a wrong decision is taken

if the likelihood of H
!

is larger than that of H
"
.

Roughly speaking, likelihood is large if offspring and

parent genotypes are compatible, and it is small if they

are not, because an error must be assumed to make

parenthood admissible so that the error rate ε must be

introduced as a factor in the likelihood. Allowing for

only one error in the case of a true relationship, two

situations may give rise to likelihoods taking similar

values under both hypotheses : if the false father is

compatible (probability equal to 1®Eg, where Eg is

the exclusion probability), or if the true father is

compatible, but for one locus (with probability equal

to LE
"
(1®E

"
)L−", where E

"
is the one-locus probability

of exclusion – assuming homogeneous and indepen-

dent loci). In the latter case, the likelihood for the

right father involves the factor ε if an error has

occurred for one allele transmission at the same locus,

an event of probability ε(1®ε)#L−". Hence, the order

of magnitude of the frequency of a wrong decision for

any pair (k,k«) of true and false fathers can be written

as

1®p
"
C (1®Eg)­LE

"
(1®E

"
)L−"(1®ε)#L−"ε

or

1®p
"
C (1®Eg) (1­Kε),

where p
"
stands for the frequency of a correct decision

involving one (k,k«) comparison, and where K depends

on Eg and on ε (only slightly for small values). When

the true father k is opposed to a finite set of s false

fathers, the frequency of joint correct decision is

p
s
¯ ps

"
since all the alternatives k«1k must be

rejected. For large Eg and small ε values, one can write

log 0 p
s

1®p
s

1C®log (s)®log (1®Eg)®Kε. (6)

Note that this relationship is only qualitative, and that

the linear dependence on ε is only asymptotic for small

values since K is also a function of ε and Eg. Although
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Fig. 3. The four population structures envisioned in the
simulations: (a) independent pairs, (b) hierarchical
scheme, (c) crossed scheme, (d ) paternity analysis. Each
scheme involves a number of male (squares) and female
(circles) parents and their matings (crosses). According to
the scheme, each individual can be mated to one or
several individuals of the other sex.

obtained in a simple case, these qualitative con-

siderations suggest combinations of parameters which

are likely to make quantitative predictions possible in

realistic cases, by means of simulations and statistical

analysis.

Simulations performed involve various population

structures and variations of parameters (number of

loci, allelic frequencies, error rates).

(a) Population structures

Four structures of population were considered (see

Fig. 3) :

(i) N independent pairs of s¯N unrelated sires

and d¯N unrelated dams. This could corre-

spond to some natural bird populations.

(ii) s sires are mated to d dams each, so the number

of parental pairs is N¯ s[d. This hierarchical

scheme is appropriate for animal designs in

swine or poultry.

(iii) s males are mated to d females in a crossed

scheme, leading to N¯ s[d parental pairs.

Fishes and trees are mated in this way.

(iv) s¯N potential fathers when the couple

(mother, child) is known, i.e. paternity testing

– a special case of the previous two schemes.

Simulations were run with variable numbers of

parents (from 5 to 1000).

(b) Typing error rates and decision rule

Several typing error rates from 0 to 10% were

considered in the simulations, in two instances. A first

value ε
T

is used to generate data with errors occurring

at this rate : at each transmission event from a parent

to the offspring, a random variable U is drawn in

[0,1] and compared with the error rate. If U is smaller

than the error rate, an allele name is drawn at random

and transmitted to the offspring. A second given error

rate ε
C

is used to build the likelihood and to make the

decision (the ε values included in (2)).

In each run, the most probable parental pair is

chosen according to the maximum likelihood ap-

proach using a fixed value for the error rate ε
C
. For

each set of parameter values, and for each run, the

most probable pair was checked against the true

parents. The criterion used is the frequency of good

and unique decisions: only cases involving no un-

certainty are considered to estimate the parental pair.

Cases with several pairs sharing the same likelihood

are recorded as erroneous decisions.

(c) Allele frequencies and polymorphism measures

Actual allele frequencies in populations are not equal

as we assumed in the analytical derivations. To

propose more realistic results, polymorphism was

generated at two levels : the number of loci and the

number of alleles per locus. This should allow the

present results to be used in a large variety of

situations, since available polymorphism in popula-

tions is not controllable.

Analytical results suggest that 5 loci with 5 alleles

per locus are minimal requirements, while 8 loci with 8

equiprobable alleles at each locus are very informative.

We therefore simulated random unequal allele

frequencies following a uniform distribution, in the

range of 5 to 8 alleles per locus, while the number of

loci was drawn at random between 5 and 8 (inclusive).

For each population structure and choice of error

rates, ten systems were drawn from this distribution,

and their polymorphism characterized by the global

probability of exclusion (Eg) : if E
l
is the probability of

exclusion attached to the lth locus, the global

probability of exclusion for a system of L loci is

Eg ¯1®0
l=L

l="

(1®E
l
).

E
l

is calculated after the expressions given by, e.g.

Hanset (1975) or Smouse & Chakraborty (1986), from

the first five moments µ
"

to µ
&

of the distribution of

allele frequencies, assuming Hardy–Weinberg geno-

type frequencies in the population:

E
l
¯1®2µ

#
­µ

$
­3(µ

#
µ
$
®µ

&
)®2(µ#

#
®µ

%
).

Global heterozygosity and global polymorphic

information content (PIC) were defined in the same

way as the global exclusion probability. They were

also considered as potential predictors of poly-

morphism in the present context, although they are

highly correlated (the complementary global exclusion

probability 1®Eg and the complementary global PIC

are linearly dependent on a logarithm scale, at fixed

number of loci (not shown)).
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Table 1. Coefficients of the linear predictor η (standard errors) for the generalized linear model with binomial

error and logit link

Independent
pairs

Hierarchical
scheme

Crossed
scheme

Paternity
search

Intercept 2±22 (0±11) 1±37 (0±09) 1±44 (0±05) 1±56 (0±05)
ε ®1±68 (1±24) 1±98 (0±87) 1±29 (0±25) ®1±82 (0±37)
log (1®Eg) ®1±17 (0±02) ®0±96 (0±01) ®0±97 (0±01) ®0±83 (0±01)
log s ®0±78 (0±03) ®0±56 (0±03) ®0±87 (0±02) ®0±96 (0±01)
log d — ®0±83 (0±02) ®0±89 (0±01) —
ε[log (1®Eg) 3±79 (0±24) 4±09 (0±04) 4±27 (0±04) 3±59 (0±05)
ε[log s ®0±99 (0±30) ®2±04 (0±36) — 1±92 (0±05)
ε[log d — 1±44 (0±23) 1±79 (0±04) —
log (1®Eg)[log s — ®0±05 (0±003) ®0±03 (0±003) ®0±01 (0±001)
log (1®Eg)[log d — 0±02 (0±002) — —
log s[log d — 0±02 (0±007) 0±11 (0±003) —
ε[log s[log d — 0±41 (0±10) — —

The response is the frequency of good and unique decisions. Mating schemes are independent pairs (the number of
observations is 115), hierarchical scheme (440 observations), crossed scheme (479 observations) and paternity search (200
observations). The variable ranges are: ε ` [0, 0±1], 1®Eg ` [8¬10−&, 5±7¬10−#], s ` [5, 100], d ` [5, 100] with s% d. The natural
logarithm is used.

(d) Program

For any set of polymorphic markers (number of loci,

and for each locus the number and frequencies of

alleles), the programme calculates the global poly-

morphism measures, generates N parental pairs’

genotypes according to the population scheme, draws

at random one pair and generates one offspring from

this pair (allowing for errors). For each drawing, the

N values ρ
h

(5) are calculated and sorted. The largest

one identifies the likeliest pair, which is compared

with the true one. The frequency of correct decisions

is then calculated over a large number of independent

runs.

(ii) Results

(a) Allowing for errors is necessary

Since data were generated according to various typing

error rates (ε
T
¯ 0, 1%, 5%, 10%) and likelihood

calculated using a single ε
C
, we first investigated the

effect of ε
C

on the efficiency of the decision rule by

comparing the results obtained from the same

simulated data. For a single value ε
T
, the frequencies

of correct final decisions were of the same order, no

matter whether the right typing error rate was used or

not for calculating likelihoods, as long as the zero

value (ε
C
¯ 0) is not used. For this purpose, the

Wilcoxon paired rank test was used to test the null

hypothesis of zero median difference, at the 1% level.

For example, in the crossed mating scheme, 120 runs

were done with a true error rate equal to ε
T
¯ 5%.

The Wilcoxon statistics are equal to ®9±4974 (P value

! 0±001) and ®0±4321 (P value¯ 0±67) comparing

the frequencies of correct decisions with ε
C
¯ 0 and

ε
C
¯ 5% on one hand, and ε

C
¯1% and ε

C
¯ 5% on

the other hand.

(b) Approximate expression of efficiency

The simulation program allows the probability of a

correct decision to be related to number of males,

females, level of polymorphism and the error rate

under the four population structures defined earlier. A

total of n¯10000 runs are done for any combined

values of the error rate ε
T
, the numbers of alleles at the

locus set, the number of males and females in a mating

scheme. In order to link the true probability p

(unknown) of correct decisions with the previous

covariates, a Generalized Linear Model (McCullagh

& Nelder, 1989) was used with binomial error and

logit link, using the Splus package (Becker et al.,

1988) :

logit (p)¯ log
p

1®p
¯ η, (7)

where η is a linear predictor involving the available

explanatory variables. The three measures of poly-

morphism were tested for their predictive value. The

global probability of exclusion gave the best fits in

terms of deviance, compared with the global PIC

value and the global heterozygosity. All analyses were

performed using log (1®Eg) as the measure of

markers’ informativity. Best predictors for the other

parameters were confirmed to be ε
T
, log s, and log d, as

suggested by (6). All data were generated using a

single ε
C

value set to 1%.

For each mating scheme, a saturated model with

interactions was fitted, and a strategy of backward

elimination of variables was applied, via χ# deviance

tests. Table 1 gives the final models. Observed

frequencies of correct decisions were compared with

fitted values pW ¯ logit−"(η# ) for each scheme, giving

satisfactory results. Residuals were verified to be

independent (not shown).
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4. Discussion and conclusion

We have shown how it is possible to cope with errors,

or mutations, in order to identify the parents of some

offspring among a finite set of individuals, from the

observations of genotypes at a number of loci. More

specifically, we showed that taking account of possible

errors is really necessary as soon as errors are expected

in large-scale surveys, and we provided practical rules

to choose markers, according to their polymorphic

informativity (measured by the global probability of

exclusion) and to some required efficiency (defined as

the probability of identifying the correct parental

pair).

Qualitatively, the most important result is that an

efficient decision rule is obtained as soon as a non-zero

error rate is allowed for, even if no precise data are

available concerning this rate. In fact, a rule based on

the hypothesis of no error (i.e. assuming ε
C
¯ 0) yields

quite high proportions of wrong decisions, even if true

errors occur at a low rate, and all the more as more

markers are used, i.e. in cases when a correct decision

can be made if a small error rate is allowed for. For

example in the search for the true parental pair among

50 independent ones, with a true error rate of 2% and

no error allowed in the likelihood calculation (i.e.

ε
C
¯ 0), the proportion of correct decisions is about

88% using a system of 5 loci with 5 alleles, and 83%

using a system of 8 markers with 5 alleles. Low rates

of correct decisions are mainly due to the fact that,

when allowing for no error, no decision can be made

as soon as no candidate parental pair is compatible

with offspring genotype. The frequency of this

situation increases with the exclusion probability and

with the error rate, hence with the number of loci, and

decreases with the number of candidates. Using a

small non-zero error rate in the likelihood calculation

(using ε
C

as low as 10−$) allows the proportion of

correct decisions to increase to nearly 100%, and it

can be seen in the same examples that using such a low

ε
C

value for likelihood calculations is not harmful if

there is no error in the typing process (ε
T
¯ 0) (Table

2).

Table 2. Proportion of correct decisions obtained

with �arious true error rates (ε
T
), supposed error

rates (ε
C
), numbers of parental pairs (N), and number

of loci (L), with 5 equiprobable alleles per locus

ε
T

ε
C

N L¯ 5 L¯ 8

0 0 10 0±998 1±00
50 0±989 1±00

0±001 10 0±998 1±00
50 0±989 1±00

0±02 0 10 0±889 0±818
50 0±884 0±826

0±001 10 0±996 0±999
50 0±973 0±999

The quantitative results obtained by fitting the

probabilities of a good decision to a statistical model,

allow one to answer practical questions in the fields of

applied genetics. For example, the effectiveness of two

sets of markers in the turbot and trout species are

quantified in Estoup et al. (1997) under different

mating schemes. Another question arising in fish

quantitative genetics is : given a typing error rate and

a certain number of males and females in a crossed

scheme, how can one choose a set of markers in order

to obtain an average rate of good parent–offspring

relationships equal to some value p
!
? The previous

fitted GLM can be used in this purpose, using relation

(7) and Table 1.

A simple numerical illustration in a search for

paternity follows: Assume a reliability of p
!
¯ 0±9 is

required, for identifying the father among s
!
¯10

possible fathers. Using a genotyping method with an

error level of 2% (ε
T!

¯ 0±02), the question is to

determine the required informativity Eg of the set of

loci to be used. From relation (7) and Table 1, we can

write down the following expression:

log
p
!

1®p
!

¯1±56®1±82 ε
T!

®0±96 log (s
!
)

­1±92 ε
T!

log (s
!
)

­[®0±83­3±59 ε
T!

®0±01 log (s
!
)] log (1®Eg).

Replacing known values p
!
, s

!
and ε

T!
by their

numerical values allows the required value of

informativity Eg to be derived: Eg D 0±972, which

needs for example 2 loci with 12 equiprobable alleles.

A confidence interval can be calculated using, for

example, the method of Carroll et al. (1988). However,

it is an approximation even if the covariables are

precisely known, so that this interval is to be

considered with care since only an estimate of the

typing error rate ε
T,!

can be used here. Nevertheless,

this problem of calibration can be roughly answered:

at the 5% level, Eg ` (0±948, 0±985).

A more general answer can be given with a plot as

in Fig. 4.

In the previous derivations, we assumed a simple

model for typing errors (1). A more realistic modelling

of errors for microsatellite markers should assume

that the rates of substitution between alleles depend

on their differences in repeat number, since alleles

corresponding to quite different repeat numbers are

less likely to be confounded, while there is higher

chance of confusion between alleles differing only by

one repeat. Moreover, mis-sizing of one allele could

tend to be associated with mis-sizing of the other

allele, meaning a non-independence of errors between

alleles within loci and individuals. Such indications

might be included in the calculations of likelihoods,

possibly with locus-dependent values. However,

efficiency of parent identification is better when error

rates are lower, so that our results can be considered
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Eg=1

Eg=0·999

Eg=0·995

Eg=0·99

Eg=0·98
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q̂

0·0 0·02 0·04 0·06 0·08 0·10
e

Fig. 4. Relationship between the probability of a correct
decision and rate of typing error, for five sets of markers
of differing exclusionary power, in a paternity analysis
with 10 potential sires. Fitted values are equal to pW ¯
logit−"η# ¯ exp η# }(1­exp η# ) where η# is the estimated linear
predictor (Table 1).

to be conservative if one considers the error rate used

as the highest error rate over all possible allelic

misinterpretations. Actual error rates are quite low.

Lathrop et al. (1983) estimated the overall pedigree

error and the overall laboratory error for a human

population of a South Pacific island. Errors on

father–child (or mother–child) relationships represent

4% (or 0), while the laboratory error rate was 1%. In

a large-scale pig experiment in which typing made use

of automated DNA analysers, selected markers

showed an overall error rate of 0±5–1% (D. Milan and

N. Woloszyn, personal communication). These low

error rates are minimal values, since they are estimated

from segregation analysis performed in situations for

which pedigree information is available. Although

small, such values lead to quite a high proportion of

individuals exhibiting incorrect multilocus genotypes,

and hence the requirement that errors be system-

atically taken into account: for example, setting ε
T

to

2% means that the frequency of individuals with

exact genotypes of L loci, equal to (1®ε
T
)#L, is only

about 82% for 5 loci, and 72% for 8 loci.

Another limitation of the model may be not taking

account of null alleles, if present. Non-amplification

of some microsatellite alleles occurs quite often and

may be important in the present situation without

family information. Then any phenotype [A
i
A

i
]

(denoted with two allele symbols as a homozygote)

may reflect either a true homozygote with two (A
i
)

alleles or the genotype (A
i
A

!
) with a null allele (A

!
). In

such cases, likelihoods involving parent or offspring

homozygote phenotypes should be modified. In

particular, non-compatible genotypes (implying an

error or a mutation in a co-dominant setting) may

become admissible. For example the conditional

probability of the second locus genotype in Example

1 (3), should allow for the possibility that the offspring

be of genotype (B
"
B
!
) and the second parent be of

genotype (B
#
B
!
). Calculation of likelihoods then needs

knowledge of allele frequencies : denoting by p
!
and p

#

the frequencies of alleles B
!

and B
#
, (3) would be

replaced by a value approximately equal to

1

2

p
!

p
#
­2p

!

instead of

"

#
ε.

Hence, taking account of such a situation in the

framework of our model requires that high error rates

are allowed for, up to the order of magnitude of a null

allele frequency. It should also be stressed that

exclusion probabilities should be computed in a

different way, since null alleles make them lower

(Chakravarti & Li, 1983). Adapting the calculation of

likelihood to the occurrence of null alleles is possible,

and some trials have indicated that it is a way to

recover high efficiency of paternity identification. This

may be useful when working with a specific set of data

for which the choice of markers is limited, with

evidence of a single null allele. However, the model

chosen here for handling null alleles is not general. We

consider a null allele as corresponding to a mutation

in the primer sequence, allowing no identifiable

amplification. Other circumstances may lead to a

complex pattern of dominance and recessivity, with

weak alleles being observable if associated with an

allele of quite different length, but not observable

when amplified together with a strong allele of nearly

equal length. It does not seem worth developing such

marker-dependent models for microsatellites, as for

special loci (e.g. blood group systems), since searching

for new primers or choosing another microsatellite

marker are relatively straightforward tasks.

It has been assumed that the parental genotypes are

known exactly. This should be the case in experimental

designs, where parental genotypes can be ascertained

from a sample of their progeny, but not necessarily

true in population surveys or wild-life studies. A

similar probability analysis can be carried out to

account for such errors. The difference is that the

whole progeny of a mistyped parent is expected to be

difficult to recognize as descending from one of the

proposed parental pairs, since one error must be

systematically assumed. To overcome the problem,

e.g. to identify the mistyped parent, it is necessary that

the likelihood for this parent be larger than the

likelihood for a random parent. The first one,

involving the estimated error rate ε
C

for one allele, is

of the order of

ε
C
("
#
)#L−"

while the second one is of the order of

(1®Eg) ("
#
)#L,
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where Eg is the global probability of exclusion.

Therefore, using an ε
C

value one order of magnitude

larger than (1®Eg) can account for one error among

parent genotypes; noting, however, that further errors

in offspring typing would probably lead to an

erroneous decision.

The main qualitative conclusion of this work is that

typing errors must be considered in the model, even if

they rarely occur. If typing errors are ignored, wrong

conclusions are often drawn concerning the detection

of the true parental pair. This situation can only be

avoided by taking a non-zero error rate into account

in the model. More multiallelic loci need to be typed

to overcome the lack of information due to typing

errors, and biallelic markers must be avoided. Typing

errors are also worth considering in other fields. In

linkage analysis, numerous markers are used to type

numerous individuals, and it is usual that typing

errors, when they occur, do perturb genetic mapping

(Simianer & Wild, 1995). Large-scale genotyping is

also undertaken in surveys of genetic diversity of

populations (Deka et al., 1995; van Zeveren et al.,

1995; Moazami-Goudarzi et al., 1997), and it might

be interesting to check the incidence of typing errors

on classifications and on estimations of genetic

distances.

Appendix. Explicit derivation of the size and power

of the Likelihood Ratio test

The distributions of the likelihood ratio

LR¯
P(Π rH

"
)

P(Π rH
!
)

can be written down explicitly, under both hypotheses,

H
!
: θ¯ t

k« and H
"
: θ¯ t

k
, according to (2). The

Neyman–Pearson lemma is applied, and allows one to

build the most powerful test of given size α. One

defines the test, φ, as :

φ(Π)¯

1

2

3

4

1 if
P(Π rH

"
)

P(Π rH
!
)
" cα

γ(Π) if
P(Π rH

"
)

P(Π rH
!
)
¯ cα

0 if
P(Π rH

"
)

P(Π rH
!
)
! cα,

where cα " 0, 0%γ(Π)%1.

Table A 1

Π 11 1y(y11, 2) yy(y11, 2) yz(y11, 2 ; z11, 2 ; y1 z) 12 2y(y11, 2) 22

H
!

ε
"
(1®ε) ε

"
(1®ε)­ε#

"
ε#
"

2ε#
"

(1®ε)#­ε#
"

ε
"
(1®ε)­ε#

"
ε
"
(1®ε)

H
"

(1®ε)# 2ε
"
(1®ε) ε#

"
2ε#

"
2ε

"
(1®ε) 2ε#

"
ε#
"

The first type error can be explicitly calculated:

α¯E
H

!

(φ)

¯P
H

!
0P(Π rH

"
)

P(Π rH
!
)
" cα1­γP

H
!
0P(Π rH

"
)

P(Π rH
!)

¯ cα1
¯3

Π

P(Π rH
!
) 9I (P(Π rH

"
)

P(Π rH
!
)
" cα*

­γI (P(Π rH
"
)

P(Π rH
!
)
¯ cα*: , (A 1)

where I(E ) is an indicator taking values 1 or 0

depending on the statement E being true or false, and

γ ` [0,1]. The power is

1®β¯E
H

"

(φ)

¯3
Π

P(Π rH
"
) 9I (P(Π rH

"
)

P(Π rH
!
)
" cα*

­γI (P(Π rH
"
)

P(Π rH
!
)
¯ cα*: . (A 2)

The values cα and γ are chosen with the following

procedure:

(i) if there exists c such that

P
H

!
0P(Π rH

"
)

P(Π rH
!
)
" c1¯α then cα ¯ c and γ¯ 0;

(ii) if there exists c such that

P
H

!
0P(Π rH

"
)

P(Π rH
!
)
" c1!α%P

H
!
0P(Π rH

"
)

P(Π rH
!
)
& c1

then cα ¯ c and

γ¯
α®P

H
!
0P(Π rH

"
)

P(Π rH
!
)
" cα1

P
H

!
0P(Π rH

"
)

P(Π rH
!
)
¯ cα1

.

Example. Explicit derivation of the size and power

are derived for the simple example assuming that

parental pairs derive from homozygous inbred lines.

The special case of one locus with a alleles is developed

here. Let ε
"

denote ε}(a®1). The hypotheses are :

H
!
: θ¯ t

k« with Gsd(k«)¯ (A
"
A

"
,A

#
A

#
) denoted

11, 22

H
"
: θ¯ t

k
with Gsd(k)¯ (A

"
A

"
,A

"
A

"
) denoted

11, 11

Table A 1 gives the probabilities that offspring x is of

phenotype Π under the null H
!
and the alternative H

"
.
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Let J (Π) be defined as

J (Π)¯ I (P(Π rH
"
)

P(Π rH
!
)
" c*­γI (P(Π rH

"
)

P(Π rH
!
)
¯ c* .

For example,

J (Π¯11)¯ I (1®ε

ε
"

" c*­γI (1®ε

ε
"

¯ c*.
Equation (8) leads to:

α¯ ε
"
(1®ε)J(Π¯11)­(a®2) ε

"
(1®ε­ε

"
)J(Π¯1y)

­(a®2) ε#
"
J (Π¯ yy)­(a®2) (a®3) ε#

"
J (Π¯ yz)

­((1®ε)#­ε#
"
) J (Π¯12)

­(a®2) ε
"
(1®ε­ε

"
) J (Π¯ 2y)

­ε
"
(1®ε) J (Π¯ 22)

and (9) to:

1®β¯ (1®ε)#J(Π¯11)­2(a®2) ε
"
(1®ε)J(Π¯1y)

­(a®2) ε#
"
J (Π¯ yy)

­(a®2) (a®3) ε
"
J (Π¯ yz)

­2ε
"
(1®ε) J (Π¯12)­2(a®2) ε#

"
J (Π¯ 2y)

­ε#
"
J (Π¯ 22).

The Bayesian test corresponds to c¯1.

When L loci are considered, all the combinations of

the possible phenotypes Π
"
,…,Π

l
,…,Π

L
have to be

written down. Only the first terms of the development

in ε can be explicitly calculated. Straightforward

numerical programming was used to construct Fig. 2.

Thanks are due to Rene! Guyomard, Arnaud Estoup and
Karim Gharbi for stimulating discussions and access to
actual data, and to Philippe Mulsant for reading the
manuscript.
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