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Abstract
High flavonoid consumption can improve vascular health. Exploring flavonoid–metabolome relationships in population-based settings is challenging, as: (i)
there are numerous confounders of the flavonoid–metabolome relationship; and (ii) the set of dependent metabolite variables are inter-related, highly vari-
able and multidimensional. The Metabolite Fingerprint Score has been developed as a means of approaching such data. This study aims to compare its
performance with that of more traditional methods, in identifying the metabolomic fingerprint of high and low flavonoid consumers. This study did not
aim to identify biomarkers of intake, but rather to explore how systemic metabolism differs in high and low flavonoid consumers. Using liquid chroma-
tography–tandem MS, 174 circulating plasma metabolites were profiled in 584 men and women who had complete flavonoid intake assessment.
Participants were randomised to one of two datasets: (a) training dataset, to determine the models for the discrimination variables (n 399); and (b) validation
dataset, to test the capacity of the variables to differentiate higher from lower total flavonoid consumers (n 185). The stepwise and full canonical variables
did not discriminate in the validation dataset. The Metabolite Fingerprint Score successfully identified a unique pattern of metabolites that discriminated
high from low flavonoid consumers in the validation dataset in a multivariate-adjusted setting, and provides insight into the relationship of flavonoids with
systemic lipid metabolism. Given increasing use of metabolomics data in dietary association studies, and the difficulty in validating findings using untargeted
metabolomics, this paper is of timely importance to the field of nutrition. However, further validation studies are required.
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Metabolomics is the study of the complement of metabolites
present in biological samples(1,2). Application of metabolomic
technology to targeted mechanistic investigations has eluci-
dated many mechanisms underlying metabolic and disease

pathways(3–6). With technological improvements, metabolomic
analyses of human samples have now extended to exploratory,
population-based, untargeted analyses, where the aim is to
identify new or novel biomarkers of disease. Such analyses
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are typically conducted in well-designed, nested case–control
and cohort studies(7,8).
With increasing availability of metabolome data in large

population-based studies with measures of habitual dietary
intake, focus has shifted towards identifying metabolic profiles
that are associated with different human exposures, such as
diet and lifestyle(9,10). Flavonoids are biologically active com-
pounds found in many different foods such as blueberries,
tea, wine and chocolate(11,12). Given the short half-life of the
parent flavonoid compounds(13,14), and their complex metab-
olism within the gastrointestinal tract(15–17), there are no vali-
dated and reliable biomarkers of total flavonoid intake.
Furthermore, although having demonstrated vascular benefits,
such as improved nitric oxide homeostasis and endothelial
function(18–20), the mechanisms underlying the biological
effects of flavonoids are complex and yet to be fully elucidated.
As such, flavonoids represent an ideal candidate for applica-
tion to untargeted exposure–metabolome analyses, where fla-
vonoid intake is the independent variable, and the
metabolites, the dependent variables, with the aim of identify-
ing how systemic metabolism differs in high and low flavonoid
consumers.
Unlike previous flavonoid–metabolome studies(21–24), this

project did not aim, nor did it have the capacity, to identify
biomarkers of flavonoid intake or measure acute effects of fla-
vonoid consumption. In fact, flavonoid compounds were not
identified in the analytic platforms used in this study. Instead
we aimed to describe the long-term metabolic profiles charac-
teristic of those with habitual high or low total flavonoid
intake. With this analysis comes the unique challenge of inte-
grating multiple confounding variables into models where
the dependent variables consist of many inter-related metabol-
ite concentrations. The non-independence of the dependent
metabolite variables makes the translation of results from
metabolome-wide association studies challenging. Canonical
discriminant analysis is a far more suitable modelling approach
for such studies as it is capable of reducing the dimensionality
of the rich dependent data matrix into a linear combination of
the metabolite variables that summarise the metabolite vari-
ation between different levels of flavonoid intake.
Although reducing the dimensionality of the data, full

canonical discriminant analysis incorporates information
from all the dependent metabolite variables. Therefore, this
analytical approach is not useful in identifying which metabo-
lites are most important in discriminating differing levels of
exposure in a population. By applying stepwise feature selec-
tion to canonical modelling we can identify the combination
of metabolites that best discriminate people with differing fla-
vonoid intake levels. However, the statistical properties of
stepwise regression often result in biased parameter estimates.
There is large measurement error in metabolomic assess-

ment, with peak area CV reaching as high as 25 %(25). As
such, metabolome data are better suited to ranking analyses
and for discriminating samples with very low and very high
metabolite concentrations. Conversely, due to the random
error and the large number of parameters innately present in
metabolomic datasets, metabolome data are less appropriate
for complex model development where each metabolite is

assigned a coefficient or weighting variable, such as canonical
discriminant analysis. As a result of this over-fitting, we
hypothesise that canonical variables created in one cohort
(a training cohort) will perform poorly, in terms of discrimin-
atory capacity, when applied to a validation cohort.
We instead put forth that a model based on identifying rela-

tive patterns of distinguishing metabolites, and collectively
summarising the groups of metabolites that are relatively
more or less abundant in individuals with different levels of
total flavonoid intake. We term this summary variable the
Metabolite Fingerprint Score, and we hypothesise that by iden-
tifying biological meaningful patterns that may be subtle, and
ignoring the ‘noise’ in the data, the Metabolite Fingerprint
Score developed in a training cohort will be able to differenti-
ate high from low flavonoid consumers in a validation cohort.
It is the aim of this study to compare the performance of
metabolome-wide association studies, full canonical variables,
step-wise canonical variables and the Metabolite Fingerprint
Score in identifying the metabolomic fingerprint of high and
low flavonoid consumers.

Methods

Participants

The Health Professionals Follow-Up Study (HPFS) was
initiated in 1986 when 51 529 US men 40–75 years working
in health professions completed a mailed biennial question-
naire(26). The Nurses’ Health Study (NHS) was established
in 1976 when 121 700 female nurses aged 30–55 years com-
pleted a mailed biennial questionnaire(27).
For this analysis we used data from a nested case–control

study exploring the plasma metabolite profile associated with
risk of pancreatic cancer(28): HPFS (n 237); NHS (n 370).
Participants were selected for this study if they had incident
pancreatic adenocarcinoma cases diagnosed after blood collec-
tion up to 2010 with available plasma and no prior history of
cancer. For each case, we randomly selected two controls,
matching on cohort, sex, year of birth, smoking status and
fasting status (<8 h, ≥8 h). To reduce the influence of subclin-
ical malignancy on plasma metabolite levels, we excluded cases
diagnosed within 2 years of blood collection.
The final analysis included 584 participants (192 cases and

392 controls), as they had complete dietary flavonoid intake
assessment in conjunction with plasma metabolic profiling,
at the same time point. The study was approved by the
Human Research Committee at Brigham and Women’s
Hospital (Boston, MA, USA), and all participants provided
consent. For the study design, see Fig. 1.

Dietary intake assessment

In 1994 and 1990, the HPFS and NHS participants, respect-
ively, completed a validated FFQ to determine habitual
intake of foods and beverages over the preceding year. In
particular, participants reported how often, on average,
they consumed each food of a standard portion size.
Based on the FFQ responses, as well as a comprehensive

2

journals.cambridge.org/jns
ht

tp
s:

//
do

i.o
rg

/1
0.

10
17

/jn
s.

20
17

.2
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jns.2017.27


flavonoid food composition database, habitual daily total
flavonoid intake was estimated using standard methods(29).
Specifically, intake was computed by multiplying the fre-
quency of consumption for a particular portion size by
the flavonoid content in that particular food item and
then summing the product across all food items. Total fla-
vonoid intake was derived by summing up the five major
flavonoid subclasses evaluated in the current analysis: flavo-
nols; flavones; flavanones; flavan-3-ols (including both
monomers and polymers); and anthocyanins. Isoflavones
were not included in this analysis as they are almost exclu-
sively associated with soya intake, with daily intakes less
than 3 mg/d in this population of US adults.

Plasma samples

Blood samples in EDTA tubes were collected in the HPFS
from 1993 to 1995, and in heparin tubes for the women
in the NHS from 1989 to 1990. Blood samples were col-
lected by participants, mailed overnight on cold packs,
and then spun to collect and store plasma (delayed
processing)(30,31).

Metabolite profiling

Plasma metabolites were measured as peak areas by a liquid
chromatography–MS metabolomics platform directed by
C. B. C. at the Broad Institute of the Massachusetts Institute
of Technology and Harvard University (Cambridge, MA,
USA). Metabolite profiling methods were developed using ref-
erence standards of metabolites to determine chromatographic
retention times, MS multiple reaction monitoring transitions,
declustering potentials and collision energies(7). We evaluated
plasma from ten volunteers with plasma collected simultan-
eously in heparin and EDTA tubes. For the branched-chain
amino acids, Spearman correlation coefficients between hep-
arin and EDTA samples were 0·85 for isoleucine, 0·88 for leu-
cine and 0·95 for valine.

In prior pilot work(25), we determined that thirty-two meta-
bolites had poor reproducibility in samples with delayed pro-
cessing, so these metabolites were excluded as they could
not be reliably measured in two of the participating cohorts.
In the present study, three heparin plasma pools (fifty-seven
total quality control (QC) samples) and three EDTA plasma
pools (128 total QC samples) were randomly interspersed
among participant samples as blinded QC samples.
This study included only identified peaks generated from

each untargeted platform. We calculated mean CV for each
metabolite across QC plasma pools and set an a priori thresh-
old of ≤25 % for satisfactory reproducibility. Based on this
criterion, twenty-two metabolites with mean CV > 25 %
were excluded from our analyses. Five metabolites had
undetectable levels for >10 % of participants and were also
excluded (Supplementary Appendix S1). For other metabolites
with ≤10 % undetectable, zero values were recoded to the
minimum peak area value for each individual metabolite. A
total of 174 metabolites passed QC and were included in
the analysis (Supplementary Appendix S2).

Statistical analysis

Prior to analysis all metabolite peak areas were normalised by
means of log transformation. Flavonoid intake was divided
into tertiles, and metabolites were normalised (mean: 0, stand-
ard deviation: ±1) in both the HPFS and NHS cohorts. All
data were then merged and participants were randomised
to either the training dataset or the validation dataset in a
2 to 1 fashion. To ensure all metabolites have the opportunity
to contribute equally to the canonical models, the values were
also normalised after randomisation into the training and val-
idation datasets. All analyses were performed with the SAS 9.2
statistical package (SAS Institute, Inc.).
The multivariate-adjusted models included case/control sta-

tus, cohort, quintiles of energy intake, smoking status, age at
blood collection, the Alternative Healthy Eating Index
(minus alcohol) score and alcohol consumption.

Fig. 1. Study design.
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Metabolome-wide association study

We conducted both unadjusted and multivariate-adjusted
Spearman correlations between flavonoid intake and each of
the 174 metabolites, in individual models. Using a Bonferroni
correction for multiple hypothesis testing(32), only those meta-
bolites with P≤ 0·0003 (0·05/174) were considered to be stat-
istically significantly associated with total flavonoid intake.

Development of discriminatory variables in the
training dataset

The stepwise canonical variable was computed from the
canonical coefficients of a stepwise canonical correlation ana-
lysis. The independent variable was high (highest tertile) or low
(lowest tertile) of flavonoid consumption (moderate flavonoid
consumers were excluded from this analysis) and the depend-
ent variable matrix consisted of all 174 metabolites. The sig-
nificance level for adding variables in the forward selection
mode, or removing them in the backward elimination mode,
was 0·15. No metabolites were forced into the model.
In a full canonical discriminant analysis, the full canonical

variable was computed from the canonical coefficients from
the principal components analysis eigenvector encapsulating
the greatest degree of discrimination. As such, all 174 meta-
bolites contribute to the computation of the full canonical
variable. The Metabolite Fingerprint Score is calculated as
follows:

Metabolite Fingerprint Score =
∑10

i=1 hi
10

−
∑10

i=1 li
10

(1)

where h is the peak area of metabolites with the highest
canonical discriminant coefficient, and l is the peak area of
metabolites with the lowest canonical discriminant coeffi-
cient. Variables included in the Flavonoid Metabolite
Fingerprint Score computation are shown in Table 1.
As outlined in Equation 1, the Metabolite Fingerprint Score

incorporated the ten metabolites with the largest negative and
positive canonical discriminant coefficients, identified by the
full canonical discriminant analysis (described above). To
explore the influence that fasting status and dietary fat intake
have on the discriminatory capacity of the Metabolite
Fingerprint Score, we repeated the multivariate-adjusted
ANCOVA model, with additional adjustment for fasting status
as well as intakes of trans-fat, cholesterol, saturated fat, mono-
unsaturated fat and polyunsaturated fat. Model 1 excluded the
Alternate Health Eating Index, and model 2 included the
Alternate Health Eating Index. An additional sensitivity ana-
lysis was conducted to explore the relationship of fasting status
and dietary fat intake with the Metabolite Fingerprint Score,
via unadjusted and multivariate-adjusted (partial) Spearman
correlation and ANCOVA models.

Evaluating the performance of the discriminatory variables in
the validation cohort

Using the models developed in the training dataset, the three
discriminatory variables (stepwise canonical variable, full

canonical variable, and Metabolite Fingerprint Score) were
computed in the validation dataset participants. We then per-
formed separate unadjusted and multivariate-adjusted
ANCOVA for each discriminatory variable, with tertiles of fla-
vonoid intake as the independent variable.

Results

Cohort characteristics

The characteristics of the study population are presented in
Table 2. The mean daily flavonoid intake was 344 (SD 310)
mg/d, with high total flavonoid consumers having an over
5-fold greater mean total flavonoid intake than low total fla-
vonoid consumers. Moderate and high total flavonoid consu-
mers were less likely to have a history of smoking, and
moderate consumers were older at the time of blood draw.
Following random dichotomisation of the whole cohort,
the test and validation cohorts were well matched in terms
of total flavonoid intake, as well as other baseline
characteristics.

Metabolome-wide association study in the whole cohort

Using the significance cut-off of P ≤ 0·0003, in unadjusted
analysis, the only metabolite significantly associated with fla-
vonoid intake was cotinine; a metabolite of nicotine and a
biomarker of tobacco smoke exposure(33) (Spearman correl-
ation coefficient −0·153; P = 0·0002). However, this relation-
ship did not remain in the partial Spearman rank analysis
which controlled for the variables in the multivariate models
(Fig. 2).
We then repeated the partial Spearman rank analysis, with

cigarette smoking as the independent variable, and con-
trolled for flavonoid intake as well as the multivariate vari-
ables, and observed a strong positive association of
cigarette smoking with cotinine concentration (P < 0·0001).
This result highlights the importance of confounders in
exposure–metabolome association studies, and, by observing
the established causal association between cigarette exposure

Table 1. Variables included in the Flavonoid Metabolite Fingerprint Score

computation

Metabolites with the highest

canonical coefficients

Metabolites with the lowest

canonical coefficients

h1 = Lysophosphatidylcholine

C18 : 0

l1 = Lysophosphatidylethanolamine

C22 : 6

h2 = TAG C54 : 6 l2 = Diacylglycerol C34 : 2

h3 = TAG C50 : 4 l3 = TAG C50 : 0

h4 = Sphingomyelin C18 : 1 l4 = TAG C54 : 4

h5 = Diacylglycerol C36 : 2 l5 = Lysophosphatidylcholine

C20 : 3

h6 = Phosphatidylcholine C34 : 4 l6 = Sphingomyelin C18 : 0

h7 = TAG C54 : 1 l7 = TAG C48 : 2

h8 = TAG C56 : 7 l8 = TAG C52 : 1

h9 = TAG C48 : 1 l9 = TAG C52 : 6

h10 = TAG C50 : 1 l10 = Lysophosphatidylcholine

C14 : 0
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Table 2. Cohort characteristics stratified by level of flavonoid consumption

(Mean values and standard deviations; numbers and percentages)

Low intake (n 183) Moderate intake (n 214) High intake (n 187)

Mean SD n % Mean SD n % Mean SD n %

Flavonoid intake (mg/d) 130 38 – – 253 44 – – 659 379 – –

Pancreatic cancer cases – – 57 31 – – 70 33 – – 65 35

Age at blood draw (years) 62 8 – – 63 7 – – 62 7 – –

Males – – 73 40 – – 77 36 – – 71 38

Smoking status

Never – – 52 28 – – 96 45 – – 84 45

Previous – – 90 49 – – 98 46 – – 90 48

Current – – 41 22 – – 20 9 – – 13 7

Energy intake

kJ/d 7828 2443 – – 8381 2536 – – 7607 2050 – –

kcal/d 1871 584 – – 2003 606 – – 1818 490 – –

AHEI (index score) 51 10 – – 56 11 – – 56 11 – –

AHEI, Alternative Healthy Eating Index.

Fig. 2. Multivariate-adjusted metabolome-wide association study of flavonoid intake and the twenty metabolites to which it is most strongly associated. -----,

Bonferroni-corrected level of significance required, after accounting for 174 multiple comparisons. Multivariate-adjusted model includes case/control status, cohort,

quintiles of energy intake, smoking status, age at blood collection, the Alternative Healthy Eating Index (minus alcohol) score and alcohol consumption.
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and cotinine concentrations, it validates our capacity to
observe biologically meaningful exposure–metabolome asso-
ciations in this cohort.
In the flavonoid–metabolome partial Spearman correlation

analysis, no metabolites were significantly associated with fla-
vonoid intake (Fig. 2).

Development of discriminatory variables in the training
dataset

The training dataset was used to compute three discriminatory
variables: (1) stepwise canonical variable; (2) full canonical
variable; and (3) Metabolite Fingerprint Score.

Computing the stepwise canonical variable

`The forwards–backwards stepwise canonical analysis
entered twenty-eight metabolites into the model, four of
which were removed. The final model included the follow-
ing metabolites: cotinine; 4-pyridoxate; thiamine; indoxylsul-
fate; isocitrate; β-hydoxybutyrate; aconitate; putrescine;
sorbitol; glutamate; dimethylglycine; hydroxyphenylacetate;
aminoisobutyric acid; quinolinate; sphingomyelin C16 : 0;
TAG C48 : 1; TAG C56 : 2; TAG C54 : 8; TAG C50 :
4; TAG C50 : 0; cholesteryl ester C18 : 3; cholesteryl
ester C20 : 5; phosphatidylcholine C32 : 2; diacylglycerol
C34 : 2.
In the training dataset, the stepwise canonical variable was

able to distinguish moderate and high flavonoid consumers
from low flavonoid consumers (Table 3).

Computing the full canonical variable

The greatest degree of discrimination between low and
high flavonoid consumers was observed along eigenvector
1 of the full canonical discriminant analysis, and therefore,
full canonical variable 1 was used for all subsequent
analyses.
In the training dataset, the full canonical variable was able to

distinguish moderate and high flavonoid consumers from low
flavonoid consumers (Table 3).

Computing the Metabolite Fingerprint Score

The Metabolite Fingerprint Score was computed using the
results of the full canonical model to dictate which metabolites
are included in the computation (Equation 1). The ten ‘high’
and ten ‘low’ metabolites contributing to the Metabolite
Fingerprint Score computation were all lipid metabolites.
There were six TAG metabolites in the ‘high’ group, and
five in the ‘low’ group. The other metabolite groups contribut-
ing to both the ‘high’ and ‘low’ metabolite groups were sphin-
gomyelins, diacylglycerols and lysophosphatidylcholines.
Phosphatidylcholine was unique to the ‘high’ metabolite
group, and lysophosphatidylethanolamine was unique to the
‘low’ metabolite group.

In the training dataset, the Metabolite Fingerprint Score was
able to distinguish high flavonoid consumers from low flavon-
oid consumers (P < 0·05) (Fig. 3).

Assessing the performance of the discriminatory variables in
the validation dataset

After developing the three discriminatory variables in the train-
ing dataset, we then sought to test their performance in the
validation dataset. We were also interested in exploring the
effect of multivariate adjustment on the capacity of the dis-
criminatory variables to discriminate high from low flavonoid
consumers.
There was no difference in the value of the stepwise

canonical variable when comparing high flavonoid consu-
mers with low flavonoid consumers, in either unadjusted
or multivariate-adjusted models. Similarly, no discrimin-
ation was provided by the full canonical variable in
either unadjusted or multivariate-adjusted models
(Table 4).
Conversely, when compared with low flavonoid consumers,

the value of the Metabolite Fingerprint Score was higher in
high flavonoid consumers. This discriminant capacity was evi-
dent in both unadjusted and multivariate-adjusted models
(P < 0·05) (Fig. 4).

Exploring the lipid nature of the Metabolite Fingerprint Score

As can be seen in Equation 1, the Metabolite Fingerprint
Score is largely comprised of lipid metabolites, predomin-
antly TAG, which appear on both the high and the low
metabolite lists. To explore the potential role of dietary fat
intake in contributing to this pattern, we repeated the
validation analysis, adjusting for the variables in the
multivariate-adjusted model (excluding Alternate Health
Eating Index), with additional adjustment for intakes of
trans-fat, cholesterol, saturated fat, monounsaturated fat
and polyunsaturated fat. This did not influence the signifi-
cance or strength of discrimination (multivariate adjusted
least squared means of low and high consumers: −0·09
(SEM 0·04) and +0·01 (SEM 0·04), respectively; P = 0·0185).
Furthermore, none of the dietary fats contributed signifi-
cantly to the model (P > 0·05). Results were similar for the
models which also included the Alternate Healthy Eating
Index. Furthermore, discrimination capacity was not altered
when fasting status was included in the multivariate-adjusted
dietary fat model (multivariate adjusted least squared means
of low and high consumers: −0·09 (SEM 0·04) and +0·01
(SEM 0·04), respectively; P = 0·0161).
We then sought to explore the independent association

of dietary fat intake with the Metabolite Fingerprint Score.
None of the dietary fats, nor fasting status, was correlated
with the Metabolite Fingerprint Score in either unadjusted
or partial (multivariate-adjusted) Spearman correlation
models (multivariate-adjusted ANCOVA, P > 0·05).
Furthermore, for each dietary fat, the Metabolite
Fingerprint Score did not discriminate high from low
consumers. This was also the case for fasting status,
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where the Metabolite Fingerprint Score was not significantly
different in participants who did and did not fast
(multivariate-adjusted ANCOVA, P > 0·05).

Exploring the Metabolite Fingerprint Score performance in the
validation dataset

As theMetabolite Fingerprint Score is conceptually and statistic-
ally the dependent variable in these analyses, we are not con-
cerned with whether resultant models explain the Metabolic
Fingerprint Score, but rather whether the Metabolic
Fingerprint Score is different in high and low flavonoid consu-
mers, in the context of a multivariate setting. As such, to deter-
mine if the score consisting of ten high and ten low metabolites
provides the greatest discrimination of high and low flavonoid
consumers, we compared the F statistic assigned to the flavon-
oid consumption variable (high v. low intake) in a
multivariate-adjusted ANCOVA. This was done for
Metabolite Fingerprint Scores comprised of between five and
fifteen metabolites, with the null hypothesis that in a
multivariate-adjusted setting, the mean Metabolic Fingerprint
Score of high and low flavonoid consumers would be the same.
The value of the F statistic ranged from 1·51 for the

Metabolite Fingerprint Score computed from five high and

five low metabolites, to 0·07 for the Metabolite Fingerprint
Score computed from fifteen high and fifteen low metabolites.
With an F statistic of 4·75, well above the critical threshold of
3·9, the Metabolite Fingerprint Score computed from ten high
and ten lowmetabolites had the greatest discriminatory capacity.

Discussion

Using models created in a training dataset, when applied to a
separate validation dataset containing different participants,
the Metabolite Fingerprint Score was able to distinguish high
from low flavonoid consumers, even after taking into account
potential confounders of the flavonoid–metabolome relation-
ship. Conversely, both the stepwise canonical variable and
the full canonical variable did not distinguish high from low
flavonoid consumers in the validation dataset. In addition,
the multivariate-adjusted metabolome-wide association study
failed to identify any significant metabolites.
The unadjusted metabolome-wide association study iden-

tified a significant, inverse, association between flavonoid
intake and cotinine, a biomarker for cigarette smoking(33).
This spurious association manifested because of a strong
positive association between cigarette smoking and cotinine
peak area, and a strong inverse association between

Table 3. ANCOVA of flavonoid discrimination variables by flavonoid intake group in the training dataset

(Least squared mean values with their standard errors)

Low intake (n 123) Moderate intake (n 147) High intake (n 129)

Least squared mean SEM Least squared mean SEM Least squared mean SEM

Stepwise canonical variable†

Unadjusted −0·77 0·10 −0·03* 0·09 0·77* 0·10
Multivariate-adjusted‡ −0·88 0·13 −0·17* 0·14 0·57* 0·15

Full canonical variable†

Unadjusted −1·86 0·18 0·25* 0·17 1·50* 0·18
Multivariate-adjusted‡ −1·76 0·24 0·21* 0·25 1·53* 0·26

* Significantly different from low consumers (P < 0·05).
†Canonical value.

‡Multivariate-adjusted model includes case/control status, cohort, quintiles of energy intake, smoking status, age at blood collection, the Alternative Healthy Eating Index (minus

alcohol) score and alcohol consumption.

Fig. 3. ANCOVA of the Metabolite Fingerprint Score by flavonoid intake group in the training dataset. Results are least squared mean values, with their standard

errors represented by horizontal bars. * Significantly different from low consumers (P < 0·05). The multivariate-adjusted model includes case/control status, cohort,

quintiles of energy intake, smoking status, age at blood collection, the Alternative Healthy Eating Index (minus alcohol) score and alcohol consumption. Low intake,

n 123; moderate intake, n 147; high intake, n 129.
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flavonoid intake and smoking status. This association disap-
peared following multivariate-adjustment, which included
adjusting for smoking status, thus highlighting the import-
ance of multivariate adjustment in diet–metabolome studies.
Consistent with our hypothesis, the multivariate-adjusted
metabolome-wide association study failed to identify any
metabolites that were significantly associated with flavonoid
consumption. As such, we pursued a pattern-based
approach to analysing the data.
The Metabolite Fingerprint Score incorporated a set of ten

‘high’ metabolites that were in higher concentrations in high
flavonoid consumers, and lower concentrations in low flavon-
oid consumers. An additional set of ten different metabolites
were also incorporated into the Metabolite Fingerprint Score
computation. These ‘low’ metabolites represented those that
were in lower concentrations in high flavonoid consumers,
and higher concentrations in low flavonoid consumers. This
pattern consisting of ten ‘high’ and ten ‘low’ metabolites was
found to provide the greatest degree of differentiation in the
validation dataset.
This study utilised data from both lipid-soluble and polar

metabolomic platforms. The stepwise and full canonical vari-
ables incorporated both lipid-soluble and polar metabolites,
many of which included metabolites with large CV.

Conversely, the Metabolite Fingerprint Score included only
lipid metabolites that had a low degree of random measure-
ment error (mean CV of metabolites included in the
Metabolite Fingerprint Score: 9·6 %). If metabolites, or their
pattern, are biologically related to flavonoid intake, these asso-
ciations are more likely to be picked up in metabolites which
can be assessed with a high degree of precision. As such,
the preferential incorporation of low CV metabolites into the
score was not by design, but rather because of the properties
of the Metabolite Fingerprint Score itself.
Due to the dominance of lipid metabolites in the Metabolite

Fingerprint Score, we thoroughly explored the role of dietary
fat intake in influencing observed results. The inclusion of fast-
ing status as well as intakes of cholesterol, trans-fat, saturated
fat, unsaturated fat and polyunsaturated fat into the
multivariate-adjusted model did not influence the discrimin-
atory capacity of the Metabolite Fingerprint Score.
Furthermore, there was no independent association of fasting
status or any the dietary fats with the Metabolite Fingerprint
Score. This is not surprising given the equal contribution of
lipids to both the ‘high’, and the ‘low’, metabolite groups.
These results suggest that dietary fat intake is not driving the
observed results, and that the composition of the Metabolite
Fingerprint Score may instead be reflecting the underlying

Table 4. ANCOVA of stepwise canonical variable and full canonical variable by flavonoid intake group in the validation dataset*

(Least squared mean values with their standard errors)

Low intake (n 60) Moderate intake (n 67) High intake (n 58)

Least squared mean SEM Least squared mean SEM Least squared mean SEM

Stepwise canonical variable†

Unadjusted −0·12 0·19 0·02 0·18 0·10 0·20
Multivariate-adjusted‡ −0·51 0·26 −0·51 0·30 −0·56 0·30

Full canonical variable†

Unadjusted 0·30 0·49 −0·09 0·47 −0·21 0·50
Multivariate-adjusted‡ −1·11 0·67 −1·34 0·78 −1·54 0·80

* No values were significantly different from low consumers (P < 0·05).
†Canonical value.

‡Multivariate-adjusted model includes case/control status, cohort, quintiles of energy intake, smoking status, age at blood collection, the Alternative Healthy Eating Index (minus

alcohol) score and alcohol consumption.

Fig. 4. ANCOVA of the Metabolite Fingerprint Score by flavonoid intake group in the validation dataset. Results are least squared mean values, with their standard

errors represented by horizontal bars. * Significantly different from low consumers (P < 0·05). The multivariate-adjusted model includes case/control status, cohort,

quintiles of energy intake, smoking status, age at blood collection, the Alternative Healthy Eating Index (minus alcohol) score and alcohol consumption. Low intake,

n 60; moderate intake, n 67; high intake, n 58.
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differences in fatty acid metabolism amongst high and low fla-
vonoid consumers. It is important to note that the lipid metab-
olite profile provides information on how lipids are
metabolised and created systemically, which is quite distinct
from the clinical relationship of flavonoids with total choles-
terol, LDL-cholesterol, HDL-cholesterol and total TAG.
Although there is a great degree of heterogeneity across stud-
ies, there is evidence to suggest possible effects of specific fla-
vonoid compounds on some clinical lipid measurements(34).
Further studies are warranted to fully elucidate the effect
that flavonoids have on systemic lipid metabolism.
While it is beyond the scope of this paper to relate the lipid

metabolite compounds to potential bioactivity, and the bio-
logical interpretation of results arising from lipid metabolomics
platforms can be challenging, there are numerous reasons why
one might expect the Metabolite Fingerprint Score to be pre-
dominated by lipids. It is hypothesised that due to humans’
capacity for fatty acid storage(35), lipid-soluble metabolites
may be a better indicator of long-term alterations in metabol-
ism, such as those explored in this study, when compared with
the polar metabolites which often have a high systemic turn-
over rate. However, the most likely explanation comes from
the nature of the metabolome data themselves. With a mean
CV of 11·6 % for the lipid-soluble metabolites, and 19·4 %
for the polar metabolites, our capacity to reproducibly assess
metabolites was much greater for lipid-soluble metabolites in
comparison with their water-soluble counterparts.
The Metabolite Fingerprint Score has identified a pattern of

two sets of ten metabolites that, in relation to the metabolome
as a whole, were in higher and lower concentrations in high fla-
vonoid consumers, when compared with their low flavonoid-
consuming counterparts. Furthermore, in a separate validation
dataset, we were able to confirm that this pattern of metabo-
lites characterised high from low flavonoid consumers, in indi-
viduals distinct from those upon which the score was created.
This internal validation of the Metabolite Fingerprint Score is
an important first step in understanding the global metabolic
pathways affected by high flavonoid consumption. However,
unlike polar metabolites which are well described in many
common metabolic pathway analysis tools and databases, the
role of fatty acids in systemic metabolism is less well charac-
terised. As such, the results of population-based studies such
as these are most useful in identifying candidate compounds
which can then be further scrutinised in clinical trial settings,
as well as by the use of more targeted spectroscopic methods,
such as NMR, where the precise fatty acid structure can be
scrutinised, and biological significance of this pattern can be
unravelled.
Previous diet–plasma metabolome studies, using various

study designs, have identified diet–metabolome relationships
using a variety of analytical methods; ranging from correlation
analysis to cluster analysis(36,37). However, it remains uncertain
which is the optimal statistical method to apply to diet–meta-
bolome analyses. Despite all three discrimination variables dis-
criminating high from low flavonoid consumers in the dataset
in which the models were developed, only the Metabolite
Fingerprint Score discriminated high from low flavonoid con-
sumers in the validation dataset. By weighting all included

metabolites equally, and incorporating only directionality into
the model, the Metabolite Fingerprint Score was able to
avoid carrying forward artifacts, or unintended patterns,
from the training dataset.
In conclusion, the Metabolite Fingerprint Score was the

most valid means of identifying a pattern of inter-related meta-
bolites that differentiated high from low flavonoid consumers,
in a multivariate setting. However, to confirm the superior per-
formance of the Metabolite Fingerprint Score, further valid-
ation studies using external cohorts, different exposures, and
different metabolomics platforms are required. The compos-
ition of the Metabolite Fingerprint Score provides insight
into how systemic lipid metabolism differs across high and
low flavonoid consumers.

Supplementary material

The supplementary material for this article can be found at
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