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A NOTE ON MINIMAL USCO MAPS

ANDREI VERONA AND MARIA ELENA VERONA

ABSTRACT. We prove that the composition of a minimal usco map, defined on a
Baire space, with a lower semicontinuous function is single valued and usco at each
point of a dense G5 subset of its domain. This extends earlier results of Kenderov and
Fitzpatrick. As a first consequence, we prove that a Banach space, with the property
that there exists a strictly convex, weak* lower semicontinuous function on its dual, is
a weak Asplund space. As a second consequence, we present a short proof of the fact
that a Banach space with separable dual is an Asplund space.

Throughout this paper we shall consider only Hausdorff topological spaces. Let A
and Z be two such spaces. Recall that a multivalued map F:A — 27 is called upper
semicontinuous at a € A if for any open set U C Z such that F(a) C U, the set F~!(U) =
{x € A : F(x) C U} is a neighborhood of a in A; if in addition F(a) is nonempty and
compact, then Fis called usco at a. F is called usco on Ag C A if itis usco ateach a € Ay.
The following lemma gives a useful necessary and sufficient condition for a multivalued
map to be usco at a point of its domain. Its proof is straightforward and we omit it.

LEMMA 1. Let F: A — 27 be a multivalued map and a € A. The following assertions
are equivalent:
(i) Fisusco ata;
(ii) If (aq) is a net in A converging to a and (z,) is a net in Z such that z, € F(ay) for
every «, then the set consisting of all cluster points of the net (z4) is nonempty
and is contained in F(a).

If Z is a topological vector space, the multivalued map F: A — 27 is called convex if
F(a) is a convex subset of Z for every a € A.
Recall that the graph of a multivalued map F: A — 27 is the set

G(F)={(a,2) €A XZ:z€ F(a)}.

A usco (resp. convex usco) map is called minimal if its graph does not properly contain
the graph of any other usco (resp. convex usco) with the same domain and co-domain.

We shall now recall some known, useful facts concerning usco maps. Details and
proofs can be found in [3], [4], or [7]; some of them follow easily from the above lemma.
Let F:A — 2% and H: A — 2%,

(1) If Fis usco, then its graph is a closed subset of A x Z.

(2) If Fisusco and G(H) is closed and contained in G(F), then H is usco.
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(3) Let Z be a topological vector space satisfying the following property:
(*) the closed, convex hull of every compact, convex subset of Z is compact.

Define co F:A — 27 as follows: (co F)(a) is the closed convex hull of F(a). Then, if
F is usco, CO F is a convex usco map, which is minimal convex if F' is minimal ([4],
Corollary 2.3 and Proposition 2.5; see also [7], Lemma 7.12).

(4) Assume that F is usco (resp. convex usco and Z satisfies (x)) and let Ay be a
dense subset of A. Let F|Ag: A9 — 27 be the restriction of F and F°: A — 27 be
the multivalued map whose graph is the closure in A X Z of the graph of F|Ay. If
F is minimal (resp. minimal convex), then F® = F (resp. co F = F) and F |Ag is
a minimal (resp. minimal convex) usco map on Ag (see [3], Theorem 4.7).

THEOREM 2. Assume that A is a Baire space and let F: A — 27 be a minimal (convex)
usco map. Let also f: Z — R be a (convex) lower semicontinuous function. Then there
exists a dense Gs subset Ay of A such thatf o F:A — 2R, (fo Fy(a) = f (F(a)), is single
valued and usco at each point of Ao.

PROOF. Step 1. Define : A — R by
Y¥(a) = min{f(z): z € Fa)}.

The definition is correct since F(a) is compact and f is lower semicontinuous. We shall
prove that ¢ is lower semicontinuous on A. To this end, let (a, ) be a netin A converging
to a. For every « choose zo, € F(aq) such that ¥ (a,) = f(z). Since F is usco, the
set consisting of the cluster points of the net (z,) is nonempty and contained in F(a); let
z € F(a) be such a point. Since f is lower semicontinuous, we have

liminf 1 (aq) = liminff(zy) > f(2) > ¥ (a),

which proves our assertion.
Step IL Define a (convex) multivalued map Fy: A — 27 by

Fo(a) = {z € F(a) : f(2) = ¥ (a)}.

Clearly Fj is compact (and convex) valued. We shall prove next that Fj is upper semicon-
tinuous at each point at which 1 is continuous. To this end, let a € A be such a point and
consider a net (a,) in A converging to a and a net (zo ) in Z such that z, € Fy(a,). Since
Fo(ax) C F(ay) and F is usco, the set of all cluster points of the net (z,) is nonempty
and contained in F(a). Let z be such a point. Using the continuity of ¢ at @ and the lower
semicontinuity of f, we have

¥(a) = limy(aq) = liminff(za) > f(2) 2 Y(a).

It follows that f(z) = 1 (a) and therefore z € Fy(a). By Lemma 1, we can conclude that
Fy is upper semicontinuous at a.
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Step I1I. Since 9 is defined on a Baire space and is lower semicontinuous, there exists
a dense Gj subset Ag of A such that ¢ is continuous at each point of Ag. Thus Fy is usco
at each point of Ag. Since G(Fy|A¢) C G(F|Aop) and F|Ay is a minimal (convex) map
(see (4) above), it follows that F|Ag = Fy|Ao. This proves that f o F is single valued at
each point of A.

Step IV. It remains to show that H = f o F is upper semicontinuous at each point of
Ag. Leta € Ap,t = ¢¥(a) and € > 0. Since 1) is continuous at a, there exists an open
neighborhood U of a such that ¥ (U) C (t —€/2,t+€/2).Let C = f~((—o0,t+€/2]);
it is a closed (convex) subset of Z. Clearly F(Ap N U) C C and, by the minimality of
F, it follows that F(U) C C (see e.g. [3], Proposition 4.5 and [4], Proposition 4.1). This
implies that H(U) C (—o0,t + €). On the other hand, since F is usco and f is lower
semicontinuous, there exists an open neighborhood V of a such that H(V) C (t — €, 00).
Clearly HUN V) C (t — €,t + €) and this proves that H is upper semicontinuous at a.

REMARK 3. (i) The first assertion of the previous theorem can be reformulated as
follows: F(a) is contained in a level set of f for every a € Ag. In particular, if F: X — 2%
is a (maximal) monotone operator (for example, the subdifferential map of a continuous
convex function on X) and if f is the norm on the dual X* of a Banach space X, we reobtain
a well known result of Kenderov [6]. (Recall that in this situation F is automatically
norm-to-weak™ usco and the norm on X* is weak™* lower semicontinuous.) The extensions
of Kenderov’s result proved in [9] and [10] are also particular cases of the previous
theorem.

(ii) The second assertion of the theorem can be reformulated as follows: ifa € Ag, z €
F(a), (aq) is a net in A converging to a, and (z4 ) is a net in Z such that z, € F(a,), then
the net (f (Za )) converges to f(z). In the particular case when F is a (maximal) monotone
operator on the Banach space X and f is the dual norm on X*, we reobtain a result of
Fitzpatrick [S].

(iii) It is obvious that a convex set contained in a level set of a strictly convex function
must be a singleton. As a consequence of the above theorem (as reformulated in (i)) we
obtain:

COROLLARY 4. Let A be a Baire space and Z be a topological vector space (resp.
a topological vector space satisfying (x)) such that there exists a strictly convex, lower
semicontinuous function f:Z — R. Let also F:A — 2% be a minimal convex (resp.
minimal) usco map. Then there exists a dense Gs subset of A on which F is single valued.

It is well known (see [1]) that a Banach space X, which can be equivalently renormed
such that the dual norm s strictly convex, is a weak Asplund space (i.e., every continuous,
convex function defined on an open, convex subset of X is Gateaux differentiable at each
point of some G5 subset of its domain); more generally, such a space is in Stegall’s class
C (i.e., any minimal weak* usco map defined on a Baire space with values in 2X" is single
valued on a dense G subset of its domain; see [8] for properties of this class and [2] or
[9] for a proof of this assertion). As an immediate consequence of Corollary 4 we have
the following generalization of these results.
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THEOREM 5. Let X be a Banach space and assume that there exists a weak* lower
semicontinuous, strictly convex function f: X* — R. Then X is is in Stegall’s class C. In
particular, it is a weak Asplund space.

As a second application of Theorem 2, we shall give next a short proof for another
result of Asplund [1]. Recall first that a Banach space X is called an Asplund space if
every continuous, convex function defined on an open, convex subset of X is Fréchet
differentiable on a dense G subset of its domain.

THEOREM 6. Let X be a Banach space such that its dual X* is (norm) separable.
Then X is an Asplund space.

PROOF. Let Cbe an open, convex subset of X and ¢: C — R be a continuous, convex
function. Then the subdifferential map d¢: C — 2X" is a minimal convex weak* usco map
(see [7], Theorem 3.25 and Theorem 7.9). Our assertion is now a direct consequence of
the following lemma and Proposition2.8 in [7].

LEMMA 7. Let A be a Baire space, X be a Banach space with separable dual and
F:A — 2% be a minimal ( convex) weak* usco map. Then there exists a dense Gy subset
D of A such that F is single valued and norm usco at each point of D.

PROOF. Let (x}) be a dense sequence in X*. For every k define fi: X* — Rby fi(x*) =
||x* —x¢||- Then f; is weak* lower semicontinuous and by Theorem 2 there exists a dense
G; subset A of A such that f; o F: A — 2R is single valued and usco at each point of Ay.
Let a € D = N Ay and assume that x* and y* are different elements in F(a). Then there
exists x; such that ||x* — x| # ||y* —x;||. Since this contradicts the fact that f; o F is
single valued at a, it follows that F must be single valued at a.

It remains to prove that F is norm usco at each a € D. To this end let (ay) be a net
in A converging to a € D. Let y}, € F(a,) and let F(a) = {y*}. Take any ¢ > 0 and
choose x} such that fy(y*) = ||y* — x;|| < €/ 3. Since fx o F is usco at a, there exists o,
such that

fil0%) < il +e/3< 2e/3if a > a..

Thus
[ya =Yl Sy =%l + e — %Il = 0D + 0 <€, if o > e,

which proves that (y},) norm converges to y*. Lemma 1 implies that F is norm usco at a.
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