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Abstract

The Haefliger–Thurston conjecture predicts that Haefliger’s classifying space for Cr-
foliations of codimension n whose normal bundles are trivial is 2n-connected. In this
paper, we confirm this conjecture for piecewise linear (PL) foliations of codimension 2.
Using this, we use a version of the Mather–Thurston theorem for PL homeomorphisms
due to the author to derive new homological properties for PL surface homeomorphisms.
In particular, we answer the question of Epstein in dimension 2 and prove the simplicity
of the identity component of PL surface homeomorphisms.

1. Introduction

Haefliger defined the notion of Cr-Haefliger structures on manifolds which are more flexible than
Cr-foliations to be able to construct a classifying space BΓrn for them [Hae71, Bot72]. This space
is the classifying space of the étale groupoid Γn of germs of local Cr-diffeomorphisms of Rn.
For r > 0, there is a map

ν : BΓrn → BGLn(R)
which classifies the normal bundle to the Cr-Haefliger structures and the homotopy fiber of ν is
denoted by BΓrn.

The work of Haefliger [Hae71] and Thurston’s h-principle theorems [Thu74b, Thu76] say
that if the normal bundle of a Cr-Haefliger structure γ on a manifold M can be embedded into
the tangent bundle TM , then there is a genuine foliation in the homotopy class of γ. Hence,
in principle, the classification of foliations on M is translated into the homotopy type of the
mysterious space BΓrn. Haefliger proved that BΓrn is n-connected and Thurston proved [Thu74a]
that the identity component of the smooth diffeomorphism group of any compact manifold is a
simple group and used it to show that BΓ∞

n is (n+ 1)-connected; shortly after, Mather [Mat74,
§ 7] proved the same statement for BΓrn for all regularities r except r = n+ 1.

The theory of differentiable cohomology for groupoids developed by Haefliger made him
speculate that BΓrn might be 2n-connected, and Thurston also stated [Thu74a] this range of
connectivity for BΓrn as a conjecture.
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PL homeomorphisms of surfaces and codimension 2 PL foliations

Conjecture 1.1 (Haefliger–Thurston). The space BΓrn is 2n-connected.

A geometric consequence of this conjecture [Thu74b, Thu76] is that any subbundle of the
tangent bundle of a smooth M whose dimension is at most (dim(M) + 1)/2 is Cr-integrable
up to homotopy, that is, one can change it up to homotopy to become the tangent field of
a Cr-foliation on M . As a consequence of Mather’s acyclicity result [Mat71] and McDuff’s
theorem [McD80], we know that BΓ0

n is contractible, and it is a consequence of the remark-
able theorem of Tsuboi [Tsu89] that BΓ1

n is also contractible. But for regularity r > 1, because
of the existence and nontriviality of Godbillon–Vey invariants, it is known that BΓrn is not
(2n+ 1)-connected.

In this paper, we consider the piecewise linear (PL) category instead and we prove the
analog of this conjecture for PL foliations of codimension 2. To formulate the conjecture in this
category, we shall first define BΓPL

n . Let ΓPL
n be the étale groupoid of germs of local orientation-

preserving PL homeomorphisms of Rn. The classifying space BΓPL
n classifies codimension n PL

Haefliger structures that are co-oriented up to concordance [Hae71, § 2]. Another perspective is
that it classifies foliated PL microbundles of dimension n [Hae70, p. 188, Proposition] or [Tsu09,
§ 4]. On the other hand, the Kuiper–Lashof theorem implies that oriented PL microbundles of
dimension n are classified by BPL+(Rn), where PL+(Rn) is the realization of the simplicial
group of orientation-preserving PL homeomorphisms of Rn [KL66]. So forgetting the germ of the
foliation near the zero section of microbundles induces a map

ν : BΓPL
n → BPL+(Rn).

This map classifies the normal microbundle of the PL Haefliger structures. Let BΓPL
n be the

homotopy fiber of the above map ν. Haefliger’s argument [Hae71, § 6] implies that BΓPL
n is

(n− 1)-connected. He proved in [Hae70, Theorem 3] that Phillips’ submersion theorem in the
smooth category implies that BΓrn is n-connected for r > 0. Given that Phillips’ submersion
theorem also holds in the PL category [HP64], one could argue similarly to the smooth case to

show that BΓPL
n is in fact n-connected. The analog of the Haefliger–Thurston conjecture in the

PL category is that the classifying space BΓPL
n is 2n-connected. Unlike the smooth case, it is

not even known whether BΓPL
n is (n+ 1)-connected for all n. Our main theorem is about the

connectivity of this space for n = 2.

Theorem 1.2. The space BΓPL
2 is 4-connected.

As a consequence of this theorem, we prove new homological properties of PL surface
homeomorphisms.

1.1 Applications
Let M be a compact connected PL n-manifold possibly with nonempty boundary. Let
PL(M, rel ∂) be the group of PL homeomorphisms of M which agree with the identity on an open
neighborhood of the boundary and let PL0(M, rel ∂) be the identity component of PL(M, rel ∂).
Epstein [Eps70, Theorem 3.1] considered the abstract group G = PLδ0(M, rel ∂) and showed that
the commutator subgroup [G,G] is a simple group. Hence, to prove that G is simple, it is enough
to show that it is perfect. He then proved that PL([0, 1], rel ∂) and PL0(S1) are perfect by observ-
ing that in dimension 1, PL homeomorphisms are generated by certain ‘typical elements’ and
those typical elements can be easily written as commutators. To generalize his argument to
higher dimensions, he suggested the following approach [Eps70, p. 173].
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Definition 1.3. Let B be a ball in Rn. It is PL homeomorphic to Sn−2 � [0, 1], the join of
Sn−2 with [0, 1]. Note that for PL manifolds M and N , a PL homeomorphism of N extends
naturally to a PL homeomorphism of the join M �N . A glide homeomorphism of the ball
B is a PL homeomorphism that is induced by the extension of a compactly supported PL
homeomorphism of (0, 1) to a PL homeomorphism of Sn−2 � [0, 1]. For a PL n-manifold M , a
glide homeomorphism h : M →M is the extension by the identity of a glide homeomorphism
supported in a PL embedded ball B ↪→M .

Question (Epstein). Is PLδ0(M, rel ∂) generated by glide homeomorphisms?

The affirmative answer to this question implies that PLδ0(M, rel ∂) is simple, and conversely,
since the group generated by glide homeomorphisms is a normal subgroup of PLδ0(M, rel ∂), if
the group PLδ0(M, rel ∂) is simple, it is generated by glide homeomorphisms.

Theorem 1.4. Let Σ be an oriented compact surface possibly with a boundary. Then the group
PLδ0(Σ, rel ∂) is simple.

The simplicity of PLδ0(M, rel ∂) in all dimensions is still open. We use Theorem 1.2 and
the version of the Mather–Thurston theorem that the author proved in [Nar23, § 5] for PL
homeomorphisms to prove the perfectness of this group in dimension 2, and as a consequence,
we answer affirmatively Epstein’s question in dimension 2.

Note that this line of argument is the opposite of Thurston’s point of view in the smooth cat-
egory where he first proved the perfectness of the identity component of smooth diffeomorphism
groups to improve the connectivity of the space BΓ∞

n . Our argument gives a homotopy-
theoretic proof of the perfectness of PLδ0(M, rel ∂) for a compact surface M . It would be still
interesting to find a direct algebraic proof and study the commutator length of PL surface
homeomorphisms.

Recall that the perfectness of a group is equivalent to the vanishing of its first group homology.
We in fact determine the group homology of PL surface homeomorphisms up to degree 2. By
Hauptvermutung in dimension 2, any two PL structures on a surface Σ are PL homeomorphic
[Moi77, Chapter 8]. Hence, the homotopy type of PL(Σ, rel ∂) does not depend on the choice
of the PL structure on the surface Σ. Moreover, we have the weak equivalence PL(Σ, rel ∂) �
Homeo(Σ, rel ∂) [BH81, p. 8].

Theorem 1.5. Let Σ be a compact orientable surface. Then the natural map

BPLδ0(Σ, rel ∂) → BPL0(Σ, rel ∂)

induces an isomorphism on H∗(−; Z) for ∗ ≤ 2 and surjection on ∗ = 3.

Since BPL0(Σ, rel ∂) is simply connected, this theorem implies that PLδ0(Σ, rel ∂) is a perfect
group. Therefore, Theorem 1.5 proves the perfectness of PL homeomorphisms of surfaces without
following Epstein’s strategy through glide homeomorphisms. On the other hand, by Epstein
[Eps70, Theorem 3.1], the perfectness for the group PLδ0(Σ, rel ∂) implies that it is also simple.
Given that the group generated by glides is a normal subgroup, we can also answer Epstein’s
question about glide homeomorphisms.

In fact, the homotopy type of the topological group PL0(Σ, rel ∂) is completely determined,
so the second group homology of PLδ0(Σ, rel ∂) can also be determined.

Our second application is about the invariants of flat surface bundles with transverse PL
structures. We first show that the powers of the universal Euler class are all nontrivial in
H∗(BΓPL

2 ; Z) and we use it to prove the following result.
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Theorem 1.6. Let Σ be a compact orientable surface. Then the map

H∗(BPL(Σ, rel ∂); Q) → H∗(BPLδ(Σ, rel ∂); Q)

induces an injection when ∗ ≤ (2g(Σ) − 2)/3 where g(Σ) is the genus of the surface Σ.

As a consequence of the Madsen–Weiss theorem [MW07], H∗(BPL(Σ, rel ∂); Q) is isomorphic
to the polynomial ring Q[κ1, κ2, . . . ] in the stable range, ∗ ≤ (2g(Σ) − 2)/3. Here κi are certain
characteristic classes of surface bundles known as ith Miller–Morita–Mumford (MMM) classes
whose degree is 2i.

Corollary 1.7. The κi are all nontrivial in H∗(BPLδ(Σ, rel ∂); Q) as long as i ≤ (2g(Σ) − 2)/6.

This is in contrast to the case of smooth diffeomorphisms. It is known by the Bott van-
ishing theorem [Mor87, Theorem 8.1] that κi vanishes in H∗(BDiffδ(Σ, rel ∂); Q) for all i > 2,
and Kotschick and Morita [KM05] proved that κ1 is nontrivial in H2(BDiffδ(Σ, rel ∂); Q) as
long as g(Σ) ≥ 3. However, it is still open [KM05] whether κ2 is nontrivial in H4(BDiffδ(Σ,
rel ∂); Q).

2. The curious case of PL foliations

In this section, we are mainly concerned with codimension 2 PL foliations that are co-oriented
(i.e., their normal bundles are oriented). The Haefliger classifying space for these structures BΓPL

2

is the (fat) geometric realization of the nerve of the étale groupoid ΓPL
2 whose space of objects

is R2 with the usual topology and the space of morphisms are germs of orientation-preserving
PL homeomorphisms of R2 with the sheaf topology [Mat11, § 1]. The main inputs to prove
Theorem 1.2 are Greenberg’s inductive model for the classifying space PL foliations [Gre92] and
Suslin’s work [Sus91] on low-degree K-groups of real numbers. And then we use our variant of the
Mather–Thurston theorem [Nar23] for PL homeomorphisms to relate the connectivity of BΓPL

2

to the homology of PL surface homeomorphisms.
We first recall Greenberg’s recursive construction for such classifying spaces [Gre92,

Theorem 3.2(c)] in the case that we are interested in.

2.1 Greenberg’s construction and the connectivity of BΓPL
2

Let A be the subgroup of GL+
2 (R) consisting of matrices of the form

M =
[
a b
0 d

]
where a and d are positive reals. Let ε : A→ R+ be the homomorphism ε(M) = a. Let RA be
the following homotopy pushout:

(2.1)

where the pi are induced by the projection to the ith factor and A×R+ A is the fiber products of

A over R+ using the map ε. Let G̃L+
2 (R) be the universal cover of GL+

2 (R). Note that the inclusion

of A into GL+
2 (R) lifts to the universal cover G̃L+

2 (R). Let the map α : BAδ → RA be induced by
the diagonal embedding A→ A×R+ A and then composing with B(A×R+ A)δ → RA. We let X

2687

https://doi.org/10.1112/S0010437X24007498 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X24007498


S. Nariman

be the homotopy pushout of the following diagram:

(2.2)

Finally, let LX be the space of continuous free loops in X and let LX//S1 be the homotopy
quotient of the circle action on LX. We define rX to be the homotopy pushout

(2.3)

where ev : LX → X is the evaluation of the loops at their base point and j is the inclusion of the
fiber in the Borel fibration LX → LX//S1 → BS1. Greenberg’s theorem [Gre92, Theorem 3.2(c)]
says that rX � BΓPL

2 .1 Recall that BΓPL
2 is the homotopy fiber of the map

ν : BΓPL
2 → BPL+(R2) � BS1,

and it was already known as we mentioned in the introduction that BΓPL
2 is at least 2-connected.

So to prove Theorem 1.2, it is enough to show that the map ν induces a homology isomorphism
up to and including degree 4. To do this, we shall calculate the homology of rX using the
Mayer–Vietoris sequence for the homotopy pushout square (2.3). But we first need to prove the
following key lemma about the homotopy type of X.

Theorem 2.4. The space X is 2-connected.

The fact that X is simply connected was already observed by Greenberg [Gre92, Proof of
Corollary 2.6]. This can also be seen using Van Kampen’s theorem to compute the fundamen-
tal group. The map Bε : BAδ → BR+,δ induces a map h : RA → BR+,δ. Using Van Kampen’s
theorem, one can easily see that h induces an isomorphism π1(RA)

∼=−→ R+. So π1(X) is isomor-

phic to the quotient of G̃L+
2 (R)δ by the smallest normal subgroup generated by the image of

ker(ε). A priori, ker(ε) lies in GL+
2 (R)δ and it is easy to see that it normally generates the entire

group GL+
2 (R)δ. Therefore, its lift also normally generates G̃L+

2 (R)δ. Hence, π1(X) is trivial.
One can use the Milnor–Friedlander conjecture for solvable Lie groups which was already

proved in Milnor’s original paper [Mil83] on this topic and Suslin’s stability theorem [Sus84] to
show that π2(X) ⊗ Fp = 0 for all prime p. But to prove the integral result that π2(X) = 0 we
need to work a bit harder.

Remark 2.5. To see that π2(X) ⊗ Fp = 0, by the Hurewicz theorem, it is enough to show that
the group H2(X; Fp) vanishes for all prime p. We shall first observe that RA is an Fp-acyclic
space, that is, H∗(RA; Fp) = 0 for all ∗ > 0. We have the short exact sequence of groups

Aff+(R)δ → Aδ → R+.

1 He also explains his statement in his introduction but the statement in the introduction is missing a diagram
and only describes the space X instead of rX.
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Therefore, the group Aδ is solvable. Similarly, (A×R+ A)δ is solvable. On the other hand, as
topological groups, both A and A×R+ A are contractible. Hence, by Milnor’s theorem [Mil83,
Lemma 3], the groups A and A×R+ A are Fp-acyclic for all prime p, and by applying the
Mayer–Vietoris sequence to the pushout (2.1) we deduce that RA is also Fp-acyclic for all prime
p. Now using the Mayer–Vietoris sequence with Fp coefficients for the pushout (2.2), it is enough

to show that H2(BG̃L+
2 (R)δ; Fp) = 0. Recall that we know by Suslin’s theorem [Sus84] that in

general the map

BGL+
n (R)δ → BGL+

n (R)

induces an isomorphism on H∗(−; Fp) for ∗ ≤ n. On the other hand, we have a short exact
sequence

Z → G̃L+
2 (R)δ → GL+

2 (R)δ.

Therefore, by a spectral sequence argument, we deduce that the map

BG̃L+
2 (R)δ → BG̃L+

2 (R)

induces an isomorphism on H∗(−; Fp) for ∗ ≤ 2. But G̃L+
2 (R) is contractible which implies that

H2(BG̃L+
2 (R)δ; Fp) = 0.

To prove Theorem 2.4, we need some preliminary lemmas to do the calculations integrally.

Lemma 2.6. Let D be the subgroup of diagonal matrices in A. Let ι : D ↪→ A be the inclusion
map of the subgroup of diagonal matrices. The map ι has a left inverse r : A→ D,

r

([
a b
0 d

])
=

[
a 0
0 d

]
.

The maps ι̃ and r̃,

BDδ ι̃−→ BAδ r̃−→ BDδ,

induce homology isomorphisms.

Proof. There is a trick that apparently goes back to Quillen over rational coefficients [dLHM83,
Lemma 4] and to Nesterenko and Suslin [NS90, Theorem 1.11] over integer coefficients that the
map BGL+

n (R)δ → BAff+(Rn)δ, which also has a left inverse, induces a homology isomorphism.
Taking n = 1, we have a map between fibrations

(2.7)

where the top horizontal maps induce homology isomorphisms and the bottom maps are the
identity. Therefore, by the comparison of Serre spectral sequences, ι̃ and r̃ also induce homology
isomorphisms. �
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Let Y be the homotopy pushout of the diagram

(2.8)

Given that we have the inclusionD ι−→ A and its left inverse r, we have a natural map θ : Y → RA.

Lemma 2.9. The map θ : Y → RA admits a left inverse and it induces a homology isomorphism.
The space Y is homotopy equivalent to BR+,δ × (BR+,δ � BR+,δ) → RA where � means the join
of topological spaces.

Proof. The inclusion D
ι−→ A induces a map of homotopy pushout diagrams from (2.8) to (2.1)

and the left inverse r induces a map of diagrams from (2.1) to (2.8) which gives the left inverse to
θ. Since the maps between corresponding terms induce homology isomorphisms by Lemma 2.6,
the Mayer–Vietoris sequence implies that θ induces a homology isomorphism.

To see that Y is homotopy equivalent to BR+,δ × (BR+,δ � BR+,δ), note that D is isomorphic
to R+ × R+. So Y is homotopy equivalent to the homotopy pushout of

(2.10)

where p1,i is the projection to the first and the ith factor. Therefore, Y is homotopy equivalent
to BR+,δ × (BR+,δ � BR+,δ). �

Recall that the map α : BAδ → RA is defined to be the composition of the diagonal embedding
BAδ → B(A×R+ A)δ and B(A×R+ A)δ → RA. Similarly, we obtain a map β : BDδ → Y . So we
have a commutative diagram

(2.11)

where the vertical maps induce homology isomorphisms. Note that the join BR+,δ � BR+,δ is 2-
connected and there is an isomorphism from H∗(BR+,δ; Z) to

∧∗R+ which is an exterior product
of R+ over Z. By considering the commutative diagram

(2.12)
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and using Künneth’s formula, it is easy to determine the kernel of the map β∗ in low homological
degrees. So we record the following corollary about kerα∗ in low homological degrees where

α∗ : H∗(BAδ; Z) → H∗(RA; Z).

Corollary 2.13. Let t : R+ → A be the map t(a) =
[

1 0
0 a

]
and let s : R+ → A be the map

s(a) =
[
a 0
0 1

]
.

(1) The map ι : R+ × R+ ∼= D → A induces a split surjection∧2R+ ⊕ (R+ ⊗ R+) ⊕ ∧2R+ ∼= H2(BDδ; Z)
∼=−→ H2(BAδ; Z) → H2(RA; Z) ∼= ∧2R+,

which maps the first summand
∧

2R+ isomorphically to H2(RA; Z). So kerα2 is isomorphic
to (R+ ⊗ R+) ⊕ ∧

2R+.
(2) The map t induces an isomorphism R+ ∼= H1(BR+,δ; Z) → kerα1 and an injective map∧

2R+ ∼= H2(BR+,δ; Z) → kerα2 which is an isomorphism to the
∧

2R+ summand of kerα2

in the identification in item (1) above.
(3) The composition∧2R+ ∼= H2(BR+,δ; Z) s2−→ H2(BAδ; Z) → H2(RA; Z) ∼= ∧2R+,

where the first map is induced by s, is an isomorphism.

We also need part of Suslin’s calculation [Sus91, Theorem 2.1] and [Wei13, Chapter 6, § 5,
Proof of Theorem 5.7] of H2(BGL2(R)δ; Z) to determine the image of

H2(BAδ; Z) → H2(BG̃L+
2 (R)δ; Z).

To find H2(BG̃L+
2 (R)δ; Z), first note that there is an isomorphism f : SL2(R) × R+

∼=−→ GL+
2 (R)

where

f(A, a) =
[
a 0
0 a

]
·A.

This isomorphism can be lifted to give an isomorphism f̃ : S̃L2(R) × R+
∼=−→ G̃L+

2 (R). On the
other hand, the groups SL2(R)δ and S̃L2(R)δ are perfect and it is known [PS83, pp. 190–191]
that H2(BS̃L2(R)δ; Z) ∼= K2(R), and we have a short exact sequence

0 → H2(BS̃L2(R)δ; Z) → H2(BSL2(R)δ; Z) → Z → 0.

Therefore, the Künneth formula implies that we have the isomorphism H2(BG̃L+
2 (R)δ; Z) ∼=

K2(R) ⊕ ∧
2R+ where K2(R) summand comes from the image of H2(BS̃L2(R)δ; Z) →

H2(BG̃L+
2 (R)δ; Z). Also the map

u : H2(BG̃L+
2 (R)δ; Z) → H2(BGL+

2 (R)δ; Z)

is split injective with a co-kernel which is isomorphic to Z.
The map R+ × R+ ∼= D → A→ GL+

2 (R) induces the map∧2R+ ⊕ (R+ ⊗ R+) ⊕ ∧2R+ ∼= H2(BR+,δ × BR+,δ; Z) → H2(BGL+
2 (R)δ; Z).

Let σ be the involution of diagonal entries of D ∼= R+ × R+. The spectral sequence in the proof
of [Wei13, Chapter 6, Theorem 5.7] implies that this map factors through the co-invariants

H2(BR+,δ × BR+,δ; Z)σ.
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The group H2(BR+,δ × BR+,δ; Z)σ is isomorphic to
∧

2R+ ⊕ ∧̃2
R+, where

∧̃2
R+ denotes the

quotient of the group R+ ⊗ R+ by the subgroup generated by all a⊗ b+ b⊗ a. The proof of
[Wei13, Chapter 6, Theorem 5.7] also implies that the restriction of the map∧2R+ ⊕ ∧̃2

R+ → H2(BGL+
2 (R)δ; Z)

on the summand
∧

2R+ is injective and maps
∧̃2

R+ surjectively to the summand K2(R) in
H2(BGL+

2 (R)δ; Z). So we summarize what we need from Suslin’s calculation in the following
lemma.

Lemma 2.14. The map

R+ ⊗ R+ → H2(BR+,δ × BR+,δ; Z) → H2(BGL+
2 (R)δ; Z)

surjects to the image of K2(R) ∼= H2(BS̃L2(R)δ; Z) → H2(BGL+
2 (R)δ; Z).

Proof of Theorem 2.4. Since X is simply connected, to prove that it is 2-connected, we need
to show that H2(X; Z) = 0. The homotopy pushout in diagram (2.2) gives the Mayer–Vietoris
sequence

(2.15)

First, we observe that i1 is an isomorphism. From Corollary 2.13, we know that the kernel of the
map

α1 : H1(BAδ; Z) → H1(RA; Z)

is given by the image of H1(BAff+(R)δ; Z) → H1(BAδ; Z). So to prove that i1 is an isomorphism,
it is enough to show the composition

BAff+(R)δ → BAδ → BG̃L+
2 (R)δ

induces an isomorphism on the first homology. On the other hand, using the isomorphism
f : SL2(R) × R+

∼=−→ GL+
2 (R), we know that

H1(BAff+(R)δ; Z) → H1(BGL+
2 (R)δ; Z)

is an isomorphism. Hence, to prove that i1 is an isomorphism, it is enough to show that

H1(BG̃L+
2 (R)δ; Z) → H1(BGL+

2 (R)δ; Z)

is an isomorphism. The Serre spectral sequence for the fibration

S1 → BG̃L+
2 (R)δ → BGL+

2 (R)δ (2.16)

gives the long exact sequence

(2.17)
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The map e is the Euler class for flat GL+
2 (R)-bundles over surfaces. By Milnor’s theorem [Mil58,

Theorem 2], the Euler number of flat GL+
2 (R)-bundles over a surface of genus g can take any

value between −g + 1 and g − 1. So by varying g, we conclude that e is surjective (it is in fact
split surjective). Therefore, the map v is an isomorphism.

So to prove that H2(X; Z) = 0, it is enough to show that

i2 : H2(BAδ; Z) → H2(RA; Z) ⊕H2(BG̃L+
2 (R)δ; Z) (2.18)

is a surjection. In Corollary 2.13, we determined the kernel of the split surjective map

α2 : H2(BAδ; Z) → H2(RA; Z).

Hence, it is enough to show that ker(α2) → H2(BG̃L+
2 (R)δ; Z) is surjective.

Recall that
u : H2(BG̃L+

2 (R)δ; Z) → H2(BGL+
2 (R)δ; Z)

is split injective where Im(u) ∼= K2(R) ⊕ ∧
2R+ and by the above discussion the co-kernel is

isomorphic to Z via the map e in the long exact sequence (2.17). So we need to show that
ker(α2) ∼= (R+ ⊗ R+) ⊕ ∧

2R+ maps surjectively to the summand Im(p).
Recall from Corollary 2.13 that the map t : R+ → A given by t(a) =

[
1 0
0 a

]
induces a map on

the second homology groups ∧2R+ → ker(α2),

which is isomorphic to the summand
∧

2R+ in ker(α2) in Corollary 2.13. On other hand, under
the isomorphism f : SL2(R) × R+

∼=−→ GL+
2 (R), the matrix t(a) comes from (Id,

√
a). Given that

the square root is an isomorphism of R+, we obtain that the composition of maps

H2(BR+,δ; Z) t∗−→ H2(BAδ; Z) → H2(BGL+
2 (R)δ; Z) ∼= H2(BSL2(R)δ; Z) ⊕ ∧2R+

is injective and isomorphic to the summand
∧

2R+. Hence, to finish the proof of surjectivity of

(R+ ⊗ R+) ⊕ ∧2R+ ∼= ker(α2) → Im(p) ∼= K2(R) ⊕ ∧2R+,

it is enough to prove that the summand R+ ⊗ R+ in ker(α2) maps surjectively to K2(R). Recall
that the summand R+ ⊗ R+ in Corollary 2.13 is induced by embedding of diagonal matrices and
using the Kenneth formula

R+ ⊗ R+ → H2(BR+,δ × BR+,δ; Z) → H2(BAδ; Z).

So from Lemma 2.14, it follows that the summand R+ ⊗ R+ in ker(α2) maps surjectively to
K2(R). �

Recall that we have natural maps ν : BΓPL
2 → BPL+(R2) and ζ : BPL+(R2) �−→

BHomeo+(R2) � BS1. So they induce a map

ψ : rX → BHomeo+(R2).

We think of the map ψ as the map that classifies the normal bundle to codimension 2 PL Haefliger
structures as R2-bundles. Therefore, to prove Theorem 1.2 which says that BΓPL

2 is 4-connected,
it is enough to prove the following result.

Theorem 2.19. The map ψ induces an isomorphism on H∗(−; Z) for ∗ ≤ 4.

We need another preliminary lemma. In Greenberg’s homotopy pushout diagram (2.3), there
is a map q : LX//S1 → rX and also there is a natural map p : LX//S1 → BS1 that classifies the
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universal circle bundle over the homotopy quotient LX//S1. Since the map S1 ↪→ Homeo0(S1) is
a homotopy equivalence, we shall consider the following equivalent models for these maps:

q : LX//Homeo0(S1) → rX � BΓPL
2 ,

p : LX//Homeo0(S1) → BHomeo0(S1).

There is also the composition Homeo0(S1) → Homeo0(D2) → Homeo+(R2) where the first map
is the Alexander cone construction and the second map is the restriction to the identity. This
inclusion induces a weak homotopy equivalence

ι : BHomeo0(S1) �−→ BHomeo+(R2).

Lemma 2.20. The maps ι ◦ p and ψ ◦ q induce the same map on homology.

Proof. This is already implicit in Greenberg’s paper [Gre92], but for the convenience of the reader
we shall first recall the relevant object for this proof. As in Greenberg’s paper [Gre92, p. 188],
let P0 be the group of germs of orientation-preserving PL homeomorphisms of R2 that fix the
origin. Ghys and Sergiescu [GS87, § 2] and Greenberg [Gre92, Theorem 2.25 and Corollary 2.26]
proved a general version of the Mather–Thurston homology isomorphism theorem for certain
groupoids on the circle. As a result, there is a map

f : BP0 → LX//Homeo0(S1)

that induces a homology isomorphism. To prove the lemma, we use Greenberg’s description of
the Ghys–Sergiescu theorem to show that the two maps

ι ◦ p ◦ f : BP0 → BHomeo+(R2),

ψ ◦ q ◦ f : BP0 → BHomeo+(R2)

induce isomorphic R2-bundles over BP0.
By Greenberg’s description [Gre92, § 2.22], the composition q ◦ f : BP0 → BΓPL

2 is induced by
the inclusion of P0 as the group of germs into the groupoid ΓPL

2 . One can canonically extend each
germ in P0 to a PL homeomorphism of R2. So there is a natural action of P0 on R2. Therefore,
the map ψ ◦ q ◦ f ,

BP0 −→ BΓPL
2

ν−→ BPL+(R2) −→ BHomeo+(R2),

classifies the R2-bundle on BP0 induced by the action of P0 on R2.
On the other hand, P0 acts on rays out of the origin. So P0 also maps into PP(S1) the

group of orientation-preserving piecewise projective homeomorphisms of S1. In particular, it is
a subgroup of orientation-preserving homeomorphisms of the circle. The map p ◦ f ,

BP0 → BHomeo0(S1),

classifies the natural circle bundle over BP0 induced by the action of P0 on S1. Therefore, the
map ι ◦ p ◦ f classifies the Euclidean R2-bundle induced by the natural action of P0 on R2. �

Let ev : LX → X be the map induced by evaluating loops at the base point 1 of the unit
circle in the complex plane. The circle action η : S1 × LX → LX sends the pair (s, γ(t)) where
γ(t) is a free loop in X to the loop γ(st). The map η induces the map

Δ∗ : H∗(LX; Z) → H∗+1(LX; Z).

For each positive integer k, let hk : πk(ΩX) → Hk+1(X; Z) be the map that sends the homotopy
class of f : Sk → ΩX to F∗([S1 × Sk]), where F : S1 × Sk → X is the map induced by the adjoint
of f (it is the adjoint of f composed with swapping S1 and Sk factors).
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Lemma 2.21. We have a commutative diagram

where the map H is the Hurewicz map and the map G is induced by the inclusion ΩX → LX.

Proof. Let f : Sk → ΩX be an element in πk(ΩX) and let f̃ be G ◦H(f) ∈ Hk(LX; Z). Then
Δk(f̃) is defined to be the map

Δk(f̃) : S1 × Sk → LX

which sends the pair (s, x) to the action of s on the loop f(x)(t) which is f(x)(st). The evaluation
map evaluates this loop at t = 1 which gives the same map as the adjoint F : S1 × Sk → X.
Hence, we have evk ◦ Δk(f̃) = hk(f). �
Corollary 2.22. Let X be a 2-connected space.

• The map Δ2 is injective and Δ2(H2(LX; Z)) maps isomorphically to H3(X; Z) via the
evaluation map ev.

• Δ3(H3(LX; Z)) maps surjectively to H4(X; Z) via the evaluation map ev.

Proof. Since X is 2-connected, the Hurewicz map π3(X) → H3(X; Z) is an isomorphism and also
π4(X) → H4(X; Z) is surjective. On the other hand, LX is also simply connected, therefore we
have the isomorphisms

π2(ΩX)
∼=−→ H2(ΩX; Z)

∼=−→ H2(LX; Z),

where ΩX is the based loop space on X. Also, note that the map

h2 : π2(ΩX) → H3(X; Z)

is an isomorphism. From Lemma 2.21, we know that ev2 ◦ Δ2 : π2(ΩX) → H3(X; Z) is the same
map as h2, which proves the first statement.

Since ΩX is simply connected, the Hurewicz map

π3(ΩX) → H3(ΩX; Z)

is surjective. So to prove the second statement, it is enough to show that the composition

π3(ΩX)
∼=−→ H3(ΩX; Z) → H3(LX; Z) Δ3−−→ H4(LX; Z) ev−→ H4(X; Z) (2.23)

is surjective. But again by Lemma 2.21 the above composition is the same as the natural map

h3 : π3(ΩX) → H4(X; Z)

that sends the homotopy class of f : S3 → ΩX to F∗([S1 × S3]), where F : S1 × S3 → X is the
map induced by the adjoint of f . Now since X is 2-connected, the map h3 is surjective. Therefore,
the composition (2.23) is also surjective. �

Proof of Theorem 2.19. Recall from the introduction that the space BΓPL
2 , which is weakly

equivalent to the homotopy fiber of the map

ψ : rX → BHomeo+(R2),
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Figure 1. The second page of the Serre spectral sequence for the fibration LX → LX//S1 →
BS1.

is known to be at least 2-connected. So the map ψ induces isomorphisms on H∗(−; Z) for ∗ ≤ 2.
Hence, we need to show two things; one is that H3(rX; Z) = 0 and the other is that

ψ4 : H4(rX; Z) → H4(BHomeo+(R2); Z) ∼= Z

is an isomorphism. First, note that the Mayer–Vietoris sequence for the pushout (2.3) gives

Hi(LX) → Hi(X) ⊕Hi(LX//S1) → Hi(rX) → Hi−1(LX) → Hi−1(X) ⊕Hi−1(LX//S1).

To compute H∗(rX; Z) for ∗ ≤ 4, we use that X is 2-connected and the fact that fibrations

ΩX → LX
ev−→ X,

LX → LX//S1 p−→ BS1
(2.24)

have sections. The first fibration has a section by considering constant loops and the second fibra-
tion has a section because the action of S1 has fixed points, that is, the constant loops. Therefore,
H∗(LX) ev∗−−→ H∗(X) is surjective and so isH∗(LX//S1) → H∗(BS1), and since they have sections,
H∗(X) and H∗(BS1) split off as summands from H∗(LX) and H∗(LX//S1), respectively.

From the Serre spectral sequence for the fibration (2.24), we see that H2(LX; Z) →
H2(LX//S1; Z) is injective. So to show that H3(rX; Z) = 0, it is enough to prove that

H3(LX) → H3(X) ⊕H3(LX//S1) (2.25)

is surjective.
Note that the differentials of the spectral sequence out of the terms isomorphic to Zs in the

0th row are trivial because of the existence of the section for the map p in fibration (2.24). And
it is standard that the differentials

d2 : Hi(LX) → Hi+1(LX)

are the same as the map Δi in Corollary 2.22 [BO99, Proposition 3.3].
From the first part of Corollary 2.22, we know that the map d2 in

H2(LX; Z) d2−→ H3(LX; Z) ev∗−−→ H3(X; Z)

is injective and the natural map ev∗ : d2(H2(LX; Z)) → H3(X; Z) is an isomorphism. Given that
d2(H2(LX; Z)) is the kernel of the surjection H3(LX) � H3(LX//S1), the map (2.25) is in fact
an isomorphism. So we have H3(rX; Z) = 0.
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Now since the map (2.25) is an isomorphism, to show that ψ induces an isomorphism on
H4(−; Z) it is enough to show that the co-kernel of the map

H4(LX; Z) → H4(X; Z) ⊕H4(LX//S1; Z) (2.26)

is the Z summand in H4(LX//S1; Z) coming from the 0th row in the Serre spectral sequence.
This is because, in that case, the composition

BS1 → LX//S1 → rX,

where the first map is the section of p, induces an isomorphism on H4(−; Z); and Lemma 2.20
implies that the composition

BS1 → LX//S1 → rX
ψ−→ BHomeo+(R2)

induces a homology isomorphism.
To do this, from the second part of Corollary 2.22, we know that, in

H3(LX; Z) d2−→ H4(LX; Z) ev∗−−→ H4(X; Z),

d2(H3(LX; Z)) surjects to H4(X; Z) via ev∗. Since H4(LX//S1; Z) is isomorphic to Z ⊕
H4(LX; Z)/d2(H3(LX; Z)), the co-kernel of the map

H4(LX; Z) → H4(X; Z) ⊕H4(LX//S1; Z)

is the Z summand in H4(LX//S1; Z). Hence, ψ induces an isomorphism on H4(−; Z). �
Question 2.27. Is there a ‘discrete’ Godbillon–Vey class similar to the case codimension 1 PL
foliations in [GS87], to give a nontrivial map H5(BΓPL

2 ; Z) → R?

2.2 Homology of PL surface homeomorphisms made discrete
To relate the group homology of PL surface homeomorphisms to the homotopy type of BΓPL

2 ,
we first recall a version of the Mather–Thurston theorem that the author proved [Nar23, § 5].
Let M be an n-dimensional PL manifold possibly with a nonempty boundary. The topological
group PL(M, rel ∂) is the realization of the simplicial group S•PL(M, rel ∂) whose k-simplices
are given by the set of PL homeomorphisms of Δk ×M that commute with the projection
to the first factor and whose supports are away from the boundary of M . We have the map
PL(M, rel ∂)δ → PL(M, rel ∂) given by the inclusion of 0-simplices. This map induces the map
between classifying spaces

BPL(M, rel ∂)δ → BPL(M, rel ∂),

whose homotopy fiber is denoted by BPL(M, rel ∂). This homotopy fiber can also be described
as the realization of the semi-simplicial set S•(BPL(M, rel ∂)) whose k-simplices are given by
the set of codimension n foliations on Δk ×M that are transverse to the fibers of the projection
Δk ×M → Δk and the holonomies are compactly supported PL homeomorphisms of the fiber
M . Note that S•PL(M, rel ∂) acts levelwise on the simplices S•(BPL(M, rel ∂)). Hence, we have
an action of PL(M, rel ∂) on BPL(M, rel ∂).

On the other hand, the space BPL(M, rel ∂) is related to the classifying space of the groupoid
ΓPL
n as follows. Recall that forgetting the germ of the foliation of foliated microbundles induces

the map
ν : BΓPL

n → BPL(Rn)

between classifying spaces. Let τM : M → BPL(Rn) be a map that classifies the tangent
microbundle of M . Let Sect∂(τ∗M (ν)) be the space of sections of the pullback bundle τ∗M (ν)
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over M that are supported away from the boundary. The support of a section is measured
with respect to a fixed base section. By the obstruction theory and the fact that the fiber of
the bundle τ∗M (ν) over M is at least n-connected, the space of sections is connected. So dif-
ferent choices of a base section do not change the homotopy type of the compactly supported
sections.

We recall from [Nar17, § 1.2.2] how PL(M, rel ∂) acts on Sect∂(τ∗M (ν)). The PL tangent
microbundle of the PL manifold M is the microbundle

M
Δ−→M ×M

pr1−−→M.

A germ of PL foliation c on Δp ×M ×M at Δp × diagM which is transverse to the fiber of the
projection id× pr1 : Δp ×M ×M → Δp ×M is said to be horizontal at x ∈M if there exists a
neighborhood U around x such that the restriction of the foliation c to Δp × U × U is induced
by the projection Δp × U × U → U on the last factor. By the support of c we mean the set of
x ∈M where c is not horizontal.

Now we define the semi-simplicial set S•(Sectc(τ∗M (ν))) whose p-simplices are given as the set
of germs of PL foliations on Δp ×M ×M at Δp × diagM which are transverse to the fiber of the
projection id× pr1 : Δp ×M ×M → Δp ×M and have compact support. The realization of this
semi-simplicial set gives a model for the compactly supported sections Sectc(τ∗M (ν)). Similarly
to the previous case, there is an obvious action of S•(PL(M, rel ∂)) on S•(Sectc(τ∗M (ν))).

In this model, there is a natural map [Nar17, § 1.2.2]

BPL(M, rel ∂) → Sect∂(τ∗M (ν)) (2.28)

that is PL(M, rel ∂)-equivariant, and we showed that it induces a homology isomorphism
[Nar23].2 Therefore, the induced map between the homotopy quotients of the actions of
PL(M, rel ∂) on both sides also induces a homology isomorphism. Hence, BPLδ(M, rel ∂) is
homology isomorphic to Sect∂(τ∗M (ν))//PL(M, rel ∂).

Proof of Theorem 1.5. Let Σ be an oriented closed surface possibly with nonempty boundary.
To show that the map

BPLδ0(Σ, rel ∂) → BPL0(Σ, rel ∂)

induces an isomorphism on H∗(−; Z) for ∗ ≤ 2 and a surjection on H3(−; Z), it is enough to
show that H∗(BPL(Σ, rel ∂); Z) vanishes for ∗ ≤ 2. By the Mather–Thurston theorem described
above, these groups are isomorphic to H∗(Sect∂(τ∗Σ(ν)); Z). Hence, it is enough to show that
Sect∂(τ∗Σ(ν)) is 2-connected. Note that, in general, if the fiber of a fibration π : E →Mn is k-
connected, elementary obstruction theory argument implies that the space of section of π is
(k − n)-connected. Now recall that the homotopy fiber of the fibration τ∗Σ(ν) → Σ is BΓPL

2 which
is 4-connected by Theorem 1.2. Therefore, the space Sect∂(τ∗Σ(ν)) is 2-connected. �
Remark 2.29. Calegari and Rolfsen proved in particular the local indicability of PL homeo-
morphisms [CR15, Theorem 3.3.1] of manifolds relative to the nonempty boundary. As a
consequence of their local indicability result, one deduces that no finitely generated subgroup
of PLδc,0(Σ) is a simple group. However, our theorem shows that the ambient group PLδc,0(Σ) is
simple, which is similar to Thurston’s stability for C1-diffeomorphisms groups [Thu74c].

Remark 2.30. We know that PL0(Σ, rel ∂) � Diff0(Σ, rel ∂) [BH81, p. 8]. Given that the homo-
topy type of Diff0(Σ, rel ∂) is completely known for all surfaces [EE69], we could also compute

2 Gael Meigniez also told the author that his method in [Mei21] can be used to prove the PL version of the
Mather–Thurston theorem.
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the second group homology of PLδ0(Σ, rel ∂) with Fp coefficients. For example, if Σ is a hyperbolic
surface, we obtain that H2(BPLδ0(Σ, rel ∂); Z) is trivial.

In this dimension, it is known [BH81, p. 8] that PL+(R2) � SO(2). Therefore, H∗(BPL+(R2);
Q) is generated by the Euler class e ∈ H2(BPL+(R2); Q). A consequence of our computation with
Greenberg’s model is the following nonvanishing result.

Theorem 2.31. The classes ν∗(ek) ∈ H2k(BΓPL
2 ; Q) are nontrivial for all k.

This is in contrast to the smooth case. Since in the smooth case we also have the Euler
class ν∗(e) ∈ H2(BΓ2; Q) and as a consequence of the Bott vanishing theorem ν∗(e4) vanishes in
H8(BΓ2; Q). However, as we will see in the PL case, all the powers ν∗(ek) are nontrivial. Instead
of the identity component, if we consider the entire group PLδ(Σ, rel ∂), using Theorem 2.31 and
the method in [Nar17, Theorem 0.4], we can prove the following nonvanishing result in the stable
range.

Theorem 2.32. Let Σ be a compact orientable surface. Then the map

H∗(BPL(Σ, rel ∂); Q) → H∗(BPLδ(Σ, rel ∂); Q)

induces an injection when ∗ ≤ (2g(Σ) − 2)/3 where g(Σ) is the genus of the surface Σ.

As a consequence of the Madsen–Weiss theorem [MW07], H∗(BPL(Σ, rel ∂); Q) is isomorphic
to the polynomial ring Q[κ1, κ2, . . . ] in the stable range, ∗ ≤ (2g(Σ) − 2)/3. Here the κi are
certain characteristic classes of surface bundles known as ith MMM classes whose degree is
2i. This is also in contrast to the case of smooth diffeomorphisms. In particular, we have the
following nonvanishing result.

Corollary 2.33. The κi are all nontrivial in H∗(BPLδ(Σ, rel ∂); Q) as long as i ≤ (2g(Σ) −
2)/6.

Since the proof of Theorem 2.32 uses some background from [Nar17, §§ 1 and 2], we shall
first explain how to adapt these techniques to the case of PL homeomorphisms of surfaces. The
proofs in [Nar17] are formulated for diffeomorphism groups of surfaces, but since, in dimension 2,
the diffeomorphism group of a surface has the same homotopy type as the PL homeomorphism
group, we can use the results of [Nar17] as follows.

In dimension 2, we know [BH81, p. 8] that φ : BGL+
2 (R) → BPL+

2 (R) and η : BPL+
2 (R) →

BTop+
2 are weak homotopy equivalences where Top+

2 is the group of orientation-preserving
homeomorphisms of R2. Let ρ be a homotopy inverse to η. We shall consider the tangential
structures

ν : BΓPL
2 → BPL+(R2),

νs : φ∗(ν) → BGL+
2 (R),

νt : ρ∗(ν) → BTop+
2 ,

where φ∗(ν) and ρ∗(ν) are the pullbacks of the fibration induced by ν with the homotopy
fiber BΓPL

2 . Hence, these fibrations are all fiber homotopy equivalent. Let τ sΣ, τ
p
Σ and τ tΣ be

the map classifying the tangent (micro)bundles in the smooth, PL and topological category.
respectively.

Given the above homotopy equivalences, the space of sections Sect∂((τ sΣ)∗(νs)),
Sect∂((τ

p
Σ)∗(ν)) and Sect∂((τ tΣ)∗(νt)) are also all homotopy equivalent. Now since we have
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Diff(Σ, rel ∂) � Homeo(Σ, rel ∂) � PL(Σ, rel ∂) [BH81, p. 8], we get a zigzag of weak homotopy
equivalences

But as we explained, the analog of the Mather–Thurston theorem for PL homeomorphisms, the
equivariance of the homology equivalence (2.28) implies that

|S•(Sectc((τ
p
Σ)∗(ν)))|//|S•(PL(Σ, rel ∂))|

is homology isomorphic to BPLδ(Σ, rel ∂). Given the above zigzag, we have the following lemma.

Lemma 2.34. The classifying space BPLδ(Σ, rel ∂) is homology isomorphic to |S•(Sectc((τ sΣ)∗|
(νs)))|//|S•(Diff(Σ, rel ∂))|.

On the other hand, there is a natural map [Nar17, (1.12)] from

|S•(Sectc((τ sΣ)∗(νs)))|//|S•(Diff(Σ, rel ∂))|
to the moduli space Mνs

(Σ) of tangential νs-structures on Σ defined in [Nar17, § 1.2.3]. The space
Mνs

(Σ) has been very well studied, and we used the techniques of [RW16, GMTW09, GRW10]
in [Nar17] to show that it exhibits homological stability. As we shall recall in the following proof,
its stable homology is described in terms of the Madsen–Tillman spectrum of the corresponding
tangential structure.

Proof of Theorems 2.31 and 2.32. The key point in Lemma 2.20 is that Greenberg’s model for
BΓPL

2 allows us, up to homotopy, to find a section for the map

ν : BΓPL
2 → BS1.

Recall that a null-homotopic map X → BS1 and the natural map LX//S1 → BS1 induce a map
rX → BS1. But a section to the map LX//S1 → BS1 induces a section for rX → BS1. Therefore,
ν∗(ek) ∈ H2k(BΓPL

2 ; Q) are nontrivial for all k.
Now let γ be the tautological 2-plane bundle over BS1 and let MTνs be the Thom spectrum

of the virtual bundle (νs)∗(−γ). And let Ω∞
0 MTνs be the base point component of the infinite

loop space associated with this Thom spectrum. Then exactly the same method as in [Nar17,
Theorem 0.4] goes through to show that there is a map

BPL(Σ, rel ∂)δ → Ω∞
0 MTνs,

which is homology isomorphism up to degrees ∗ ≤ (2g(Σ) − 2)/3. Hence, we obtain

H∗(BPL(Σ, rel ∂)δ; Q) ∼= Sym∗(H∗>2(BΓPL
2 ; Q)[−2])

in degrees ∗ ≤ (2g(Σ) − 2)/3 where the right-hand side is the polynomial ring with the gen-
erators in the graded vector space H∗>2(BΓPL

2 ; Q) which is shifted by degree 2. Since by the
Madsen–Weiss theorem H∗(BPL(Σ, rel ∂); Q) is isomorphic to Sym∗(H∗>2(BS1; Q)[−2]) in the
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same stable range and we know that

H∗(BS1; Q) → H∗(BΓPL
2 ; Q)

is injective, then so is

H∗(BPL(Σ, rel ∂); Q) → H∗(BPL(Σ, rel ∂)δ; Q)

in stable range. �
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