
Canad. Math. Bull. Vol. 15 (4), 1972 

ON NAGUMO'S CONDITION 

BY 

THOMAS ROGERSC) 

1. Background. The classical uniqueness theorem of Nagumo [1] for ordinary 
differential equations is as follows. 

THEOREM. Iff(t,y) is continuous onOKtKl, — oo<j<oo and if 

\f(t,y)-f(t,x)\<l-\x-y\, 

then there is at most one solution to the initial value problem y'=f(t,y), j ( 0 )=0 . 

In this paper we attempt to establish uniqueness criteria when \\t is replaced 
by 1/r2 in Nagumo's theorem. Following the approach favoured by Hille [2, Ch. 
1], we shall approach the problem from the standpoint of integral inequalities. 

2. A uniqueness theorem. We require the following lemma. 

LEMMA. If(\) f(t) is continuous and nonnegative in [0, 1], 
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thenf(t)?=0. 

Proof. Set F(t)=p0ljs
2f(s)ds. Differentiating and using (ii) we obtain for 
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so that elft F(t) is nonincreasing. Choose e>0. Then from (iii), we have for small t9 

Jo s 

< W -9e-{1/s)ds = e. 
Jo s2 

Therefore l im^ 0 + evtF(t)=0 and so elftF(t)<0 for t>0. The result now follows 
from (i) and the definition of F(t). 

Suppose now that / ( / , y) is defined and continuous on 0 < / < l , — o o < j < oo and 
satisfies \f(t, x)-f(t,y)\<(ljt2) \x-y\. Then if x and y solve x'=f(t, x), x(0)=0, 
we have 

W0~X0l<fil^)-X^)l^. 
Jo s 

From the lemma it follows that for that class of solutions of the initial value problem 
for which differences of solutions x, y satisfy 

x(t)-y(t) = o(e-(1/t)), as t — 0 
there is uniqueness. 

THEOREM. Let f(t,y) be continuous on 0<t<\, — c o < j < c o , and satisfy the 
conditions 

\f(t,y)~f(t,x)\<±\x-y\, 

f(t, y) = o(e-{llt)r% a s * - > 0 

uniformly for 0<j<<5, <3>0 arbitrary. Then y'=f(t,y), j ( 0 ) = 0 has at most one 
solution. 

Proof. If x, y satisfy the initial value problem, then from the first condition 

WO-XOI^PilxW-Xs)!^-
Jo S 

Choose £>0. Then from the second condition, we have for small t, 

W0-X0I £ J [ W *(*))-/(*> X*))l ds 

<1efte-ah)s-2ds = ee-a/t). 
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From the remark preceding the theorem, x(t)=y(t) for all t. 

3. Examples. As an example of this result consider the following function. 

-(i/o 

KUy) = 

/ ( / , y) is continuous on 0<f<l , and it is easily checked to satisfy the growth con­
ditions of the theorem. The unique solution of y'=f(t,y)9 j(0)=0, is y(t) = te-vt. 

The assumption/(r, x) = o(e~1/t t~2) is necessary in the theorem, as the following 
example shows. Each of y(t)^ce~1/f, 0<c<l solves 

g , .,-

t 

j+e-(1/t\ 

e-™> 

(I/O 
5 y > te~{1/t) 

Q<y<,te-n,t) 

v < 0 

?~f(t,y) = 

y<0 

0<y< e~{1/t) 

y > e , - (1 /0 

But for y>e-lft,f(t,y)elltt2=l. 
Finally we remark that although the function y ft is admissible in the general 

Kamke uniqueness theorem, so that Nagumo's theorem is implied by Kamke's 
theorem, the function yjt2 is not admissible. 
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