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ON NAGUMO’S CONDITION

BY
THOMAS ROGERS(Y)

1. Background. The classical uniqueness theorem of Nagumo [1] for ordinary
differential equations is as follows.

THEOREM. If f(t, y) is continuous on 0<t<1, —oo<y< oo and if

1
)=/t < 7 e,

then there is at most one solution to the initial value problem y'=f(t, y), y(0)=0.

In this paper we attempt to establish uniqueness criteria when 1/t is replaced
by 1/¢2 in Nagumo’s theorem. Following the approach favoured by Hille [2, Ch.
1], we shall approach the problem from the standpoint of integral inequalities.

2. A uniqueness theorem. We require the following lemma.
LemmA. If (i) f(¢) is continuous and nonnegative in [0, 1],

‘1
/o< 5766
(iii) f(t) = o(e7'?), as t -0,
then f(t)=0.

Proof. Set F(t)=[} 1/s*f(s) ds. Differentiating and using (ii) we obtain for
t>0,
Py =10 ¢ FO

..-— t2 b

— <0,
d 1/t
;t(e F(1) <0,
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so that e'/* F(t) is nonincreasing. Choose ¢>0. Then from (iii), we have for small ¢,

i
eViF(t) = eV ‘f -1—2 f(s) ds
o s

t
&
S el/t < —(1/s)ds =e.
o s°

Therefore lim;_,,. €¥/*F(1)=0 and so ¢/!F(t)<0 for +>0. The result now follows
from (i) and the definition of F(t).

Suppose now that f (¢, y) is defined and continuous on 0<7<1, —oo<y< oo and
satisfies | £ (¢, x)—f (¢, )| <(1/¢%) |x—y|. Then if x and y solve x"=f (¢, x), x(0)=0,
we have

X0y < f sl 1%(5) = y(5)| ds.

From the lemma it follows that for that class of solutions of the initial value problem
for which differences of solutions x, y satisfy

x()—y(t) = o(eV?), ast—0
there is uniqueness.

THEOREM. Let f(t,y) be continuous on 0<t<1, —oo<y<co, and satisfy the
conditions

£t )~ (8 %)) < j— Ix—9l,

ft,y) =o0(e Y12, ast—0

uniformly for 0<y<9d, 6 >0 arbitrary. Then y'=f(t, y), y(0)=0 has at most one
solution.

Proof. If x, y satisfy the initial value problem, then from the first condition

O —y(0)] < f L x50 ds

Choose £>0. Then from the second condition, we have for small ¢,

Ix(O=30)1 < [[116 56D =G5, ¥oD ds

t
—(1/s) =2 3o _ o ,—(1/8)
<ele sT°ds = ge .
0
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From the remark preceding the theorem, x(¢)=y(¢) for all .

3. Examples. As an example of this result consider the following function.

)
, e S g
ft,y) = ti;_l_e-u/t), 0< y < te=10
e—(l/t), y _<_ 0

f(t, y) is continuous on 0<r<1, and it is easily checked to satisfy the growth con-
ditions of the theorem. The unique solution of y'=f(t, ), y(0)=0, is y(t)=te1/%.

The assumption f (¢, x)=0(e~/* t?) is necessary in the theorem, as the following
example shows. Each of y(f)=ce /!, 0<c<1 solves

0, y<0
, f(t ) _t-l;’ 0 S y S e—(l/t)
y =JjYy)=
e—(l/t)
, y > e‘(llt)_
I -

But for y>e=¢, f(t, y)et/it?=1.

Finally we remark that although the function y/t is admissible in the general
Kamke uniqueness theorem, so that Nagumo’s theorem is implied by Kamke’s
theorem, the function y/t2 is not admissible.
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