
INVARIANT SUBSPACES ON RIEMANN SURFACES 

MICHAEL VOICHICK 

1. Introduction. In this paper we generalize to Riemann surfaces a theorem 
of Helson and Lowdenslager in (2) describing the closed subspaces of 
L2({ |s| = 1}) that are invariant under multiplication by eie. 

Let R be a region on a Riemann surface with boundary T consisting of a 
finite number of disjoint simple closed analytic curves such that R \J T is com­
pact and R lies on one side of T. Let d\x be the harmonic measure on V with 
respect to a fixed point to on R. We shall consider the closed subspaces of 
L2(T, dix) that are invariant under multiplication by functions in A (R) = {F\F 
continuous on R, analytic on R}. 

For some subspaces it is convenient to consider corresponding spaces on the 
disk K = {z | \z\ < 1} that arise by a universal covering map T: K —> R. The 
map T can be extended to a (relatively) open subset of C = {z \ \z\ — 1} 
which is of full Lebesgue measure; furthermore, if F G LP(T), then 

FoTe L*(C,d6)i 

cf. (8, Lemma 6.1). The set ILP = {F o T \ F G LP(T)} is a closed subspace 
of LP(C), and for V a closed subspace of L2(T), VT = {Fo T | F G V) is a 
closed subspace of IL2. For certain invariant subspaces V it is more convenient 
to describe VT rather than V. 

Let Q = {q} be the group of fractional linear transformations of K onto K 
such that Toq=T and let {gi, . . . , qn\ be generators of Q. For 
a = (ai, . . . , aw), an w-tuple of unimodular constants, let 

7 a Z/ = {/ e L*(C) \foqj = ajf;j = 1,2 n} 

and 

IaH* = {/G £P(C) \foqj = ajf'J = 1,2, . . . , « } , 1 < £ < » , 

where HP(C) is the class of boundary functions of the Hardy functions 7P on iT. 
Note that 7 1 / = 70 L

p for a ; = 1 ; j = 1, . . . , ». 

THEOREM 1. If V is a closed invariant subspace of L2(T), then either 
(1) V = xs^ 2 (L) , where %s is the characteristic function of a measurable set 

Son T;or 
(2) there is 3> G Ia Lœ,for some a, with | $| = 1 a.e. on C such that 

VT= $[I-aH
2(C)]; à = (ai, ...,0*). 
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M. Hasumi (1) and F. Forelli independently have proved results equivalent 
to Theorem 1 by methods different from ours. D. Sarason (6; 7) proved a 
result equivalent to Theorem 1 for R an annulus. Theorem 1 is an extension of 
results in (8) where the closed invariant subspaces of the Hardy class, II2 (R), 
on R are described. 

2. For the remainder of this paper we assume that F is a closed invariant 
subspace of L2(T) which is not of the form xs L2(T). In this section we obtain 
information about V which will be applied to VT in §3. 

For 1 < p < oo, HP(R) is the class of functions F analytic on R such that 
\F\P has a harmonic majorant. Hœ(R) is the class of bounded analytic functions 
on R. For F G HP(R), 1 < p < » , F has non-tangential boundary values 
F*(t) a.e. on V and F* G LP(V) and \og\F*\ G L^T) if F pë 0. These facts are 
known and follow easily from corresponding results on the disk; cf. (8, p. 496). 
We shall use Hp (T) to denote the space of boundary functions of the functions 
in HP(R) and C(T) to denote the space of continuous complex-valued functions 
on T. 

Let co be a non-vanishing analytic differential on R and co* be the restriction 
of co to T. The following theorem is due to Royden (5; 8) and is a generalization 
of the well-known theorem by F. and M. Riesz about measures on C. 

(2.1) THEOREM. If v is a measure on V such that jr F dv = 0 for all F G A (R), 
then dp = Hco* for some H G H1 (T). 

Note that the measures dy. and co* are mutually absolutely continuous; 
indeed, P = a)*/d/ji is bounded away from 0 and °o . 

(2.2) LEMMA. If F £ L^T), F & 0, and fT FWdu = 0 for all W Ç A (R), 
then log \F\ £ L^T). 

Proof By Theorem (2.1) F du = Hdœ*, for some H Ç IP(T). Thus F = HP, 
which implies that log \F\ = log \H\ + log |P | G L^T). 

(2.3) LEMMA. For F G F, let S (F) = \t G r | F(t) = 0}. Then y (S (F)) = 0, 
ifF&O. 

Proof. Let 5 = S (F). Suppose y (S) > 0. Let V(F) be the smallest closed 
invariant subspace of L2(T) that contains F. Suppose G JL V(F). Then 
jrWFGdfx = 0 for all W G A(R). It follows from Lemma (2.2) that FG = 0 
a.e. since »(S) > 0 implies that log \FG\ $ L^T). Hence G G xsL2(T). It 
follows that V(F)± = Xs£2(L) and thus V(F) = XsL2(T) where S = T - S. 
Now for H G F, H = ^ + Gi, where Fi G F(F) and d G F(/<> H F. 
Now Gi G F and Gi = 0 a.e. on S. Then for Si = 5(Gi), it follows that 
F(Gi) = x~SlL

2(T). Hence for IF G C(T), IFiJ = IFFi + Wd G F. That is, 
V is invariant under multiplication by G(T), which implies that F = xs-X2(r) 
for some set S2, contradicting our assumption. 
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(2.4) LEMMA. If F e Vand F ^ 0, then log \F\ G Ll(T). 

Proof. Choose G _1_ F, G & 0. Then JT WFG d» = 0 for ail IF G 4 (R) and 
by Lemmas (2.2) and (2.3) 

log \F\ + log \G\ =\og\FG\ GL*(r ) , 

which implies that log |F\ G Ll(Y). 

(2.5) LEMMA. //* F and G £ V, then F/G is the quotient of two functions in 
IP(T). 

Proof Consider Q ± V, Q & 0. Then 

JWFQ du = JWGQ dfx = 0 for all W G A (R). 

Thus there are functions Hly H2 G H1^) such that FQ du = Hi co* and 
GQdfi = H2 œ*. Then F/G = Hi/H2. 

In §3 we shall need the fact that for each a = (ai, . . . , an) there is a function 
ha G Ia Hœ such that l/ha G /« #°°- This is a consequence of the known result 
that for 7i, . . . , yn, a homology basis for R, there is an analytic differential 
a on R with periods Log dj on y^j = 1, . . . , n; cf. (4, p. 198). Then for 

ff(0=exp(j"«), 
ha = H o T is the desired function. 

3. We now consider VT = \F o T | F G F}. For / = ^ o T G F r , ^ ^ 0, 
we have log \f | G Ll(C) since log |F| G ^ ( F ) . Let / i be the outer function 
such that | / i | = | / | a.e. on C (3, p. 62) and let f0 = f/fi. Since / G £ 2 ( 0 
and log | / | G iX1, it follows that / i G / a ^ 2 for some a and thus f0 G /« £°°-
We now fix g G VT. Then g0 G /& £°° for some £. By Lemma (2.5), fofi/go gi 
is the quotient of two functions in IH1 and it follows easily tha t / 0 / i /go hb is 
of the form (<l>/\f/)h where <t> and \// are inner functions and h is an outer function. 
Let VT = {f/gohb\fe VT). Note that V = j / o ^ l / G VT) is a closed 
invariant subspace of L2(T). For / G F r , / = (<t>f/$f)fi where <t>f and \j/f are 
inner functions and / i is the outer function with | / i | = | / |a.e. on C. 

For a and f$ inner functions, we say that a divides £ if /3/a is an inner function. 
It is well known that any collection of inner functions has a greatest common 
divisor (3, p. 85). In particular, for each / G VT, we can take <f>f and \pf 

to be relatively prime. Then <j>f and \pf are modulus invariant (i.e., \<j>f o q\ = |<£r| 
and \\f/j o q\ = \\[/f\ on K for all q G (?) by the following argument. For q £ Q, 

(*//lM/i = / = / o g = [*/ o g/^r o g]/i 0 5 = Xfo, o g/tfy o g]/i a.e. on C 

where X is a unimodular constant. Thus <j>f/^f — \(<t>f o q/\f/f o q) on X. Note 
that fy o q and fo o q have no common factors since 0/ and ypf have no common 
divisors. Since <t>f(\f/f o g)/^/ and (<£/ o q)^f/\^f o g are inner functions, it 
follows that ypf and ^ ; o § divide each other and thus \\pf\ = \\pf o g| on K. 
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This implies that the same relation holds between <j>f and <j>f o q. Thus <j>f and \f/f 

are modulus invariant. 
We have already observed that a collection of inner functions has a greatest 

common divisor. It follows that if a collection of inner functions has a common 
multiple, then it has a least common multiple. 

(3.1) LEMMA. {^y|/G VT\ has a least common multiple. 

Proof. Consider Q ± V, Q je 0. Then for F G V, 

J r WFQ dp = 0 for all W G 4 (iï), 

and thus FQ du = ff*. co* for some # F G i ^ ( r ) . Fix M £ V, M & 0. Then 
F/M = HF/HM a.e. on T and it follows that f/m = A//Am a.e. on C where 
/ = F o T, rn = M o T, hj = HF o T, and fem = HM o 7\ Then 

(h)(}b») = &k a e o n C 

where (h/)o and (Aw)o are the inner factors of hf and hm respectively. Hence 
( U o i ^ / = (hf)o<l>m. Thus ^y divides W o i < ( > / , and since 1/7 and <j>f 

have no common factors, \[/f divides (hm)o\l/m. That is, (hm)o^m is a common 
multiple of {^/|/G F r } . It follows that {^/|/G F r } has a least common 
multiple. 

Let <i> be a greatest common divisor of {<£/ | / G Fr} and let ^ denote a 
least common multiple of {\pf \f G F r } . By (8, Lemma (4.7)), </> is modulus 
invariant and by a similar argument \f/ is modulus invariant. Then <f>/\l/ G Jc L

00 

for some c and (<f)/\l/)hï G IL00. 

LEMMA. Ze/ F ' r = (<t>/t)h-c(m
2). r*c» F \ = F r . 

Proof. Clearly VT C F ' T . We shall prove that VT Z) V T by showing that 
F D V where F ' = {/o T"1 | / G F ' r } . Let Ç J. F, Ç & 0. Then as in the 
proof of the previous lemma FQ dfi = HFœ*, HF G Jff^r). That is, PQ = 
HF P a.e. on T. Let £ = P o T and g = Q o 7\ Then log \p\ and log |#| G ILK 
Let £1 and gi be the outer functions such that \pi\ = \p\ and \q\\ = \q\ a.e. on C. 
Then for £0 = P/pi and g == g/gi, 

(h/<l>f)f IQOQI =fQ = hfp= (hf)o(hf)ipopi 

and it follows that (<Pf/\^f)qo = (hf)opQ. Then if h0 is a greatest common divisor 
of {(A/)o 1/ € F r î , (<t>/^)go = /*o£o and 

(<j>/\p)h-cq = hohqipo = (h0h-cqi/pi)p = A/> 

where A G Ztf2. Let ̂  = [(«/^)Aë] o T"1. Then ^ Q = i7P where 

H = A o T - 1 G # 2 ( r ) . 

For IF G # 2 ( r ) , Wiï G ^ ( r ) and thus 

jrAWQdfx =fTWHo3* = 0. 
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Therefore, Q _L AH2(T). It is easy to see that V = AH2{Y). Thus Q _L V. 
We have shown that f •»• C V'±\ thus V D F'. 

Proof of Theorem 1. We have 

VT = £0/*6 f r = gohb(<t>/*)h-c(IH*) = $ / 5 / P 

for $ = goO/vV) and â = &c. 
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