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WHAT IS THE THEORY OF SHAPE?

KAROL BORSUK AND JERZY DYDAK

This expository article on Shape Theory contains the main

concepts of this theory with a formulation of the most important

results of this theory and also with some open problems. The

proofs are omitted, however the article gives references to the

tooks and papers, in which the reader can find the proofs.

For simplicity, we formulate several theorems only in the form

which clearly gives their geometric sense, even if there are

known more general results with rather complicated formulations.

The reader more interested in details, can find them in the

original papers quoted in the list of references.

1. Introduction

The relationships between the concepts of general topology and

geometric intuition constitute the subject called geometric topology, which

deals as well with set-theoretical and algebraic methods. Aleksandrov in

his talk opening the International Topology Conference in Moscow in 1979,

distinguished three periods in the development of this branch of topology

(see [/], p. k; compare also [2] and [3], pp. 33 and 35). The first of

these periods is dominated by the works of L.E.J. Brouwer (years 1909-1913).

The second period is marked by the development of the theory of homology

and cohomology (including the duality theorems), the creation of the theory

of dimension and the development of the theory of continua. The third

period (which continues even today) began (according to Aleksandrov) with

the creation of the theory of retracts, including the theory of homotopy
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162 K a r o I B o r s u k and J e r z y Dydak

groups due to W. Hurewicz, and i t i s continued by the development of the

theory of shape.

The aim of t h i s a r t i c l e i s to give a short survey of the most

important notions and resu l t s of the theory of shape, together with some of

i t s problems. We assume that the reader i s familiar with the mostly

elementary topological notions. We recal l also several more special

topological concepts, together with indications where the reader can find

the i r exact def in i t ions .

By a map f : X ->• Y of a space X into another space Y we

understand always a continuous function. Two maps f,g:X->-Y are said

to be homotopie in a space Z (notation: f^g in Z ) if there exists a

map <p : X * < 0, 1> •* Z (called a homotopy) such that cp(x, 0) = fix) and

cp(x, l ) = gix) for every x € X . In the case Z = Y one says that

/ , g : X •*• Y are homotopie (notation: f ~ g ). If there exist maps

/ : X •* Y and g : Y -+ X such that gf ~ i (where i denotes the

identity map of X ) , then one says that Y homotopieally dominates X .

If there exist two maps / : X -*• Y and g : Y •* X such that gf ~ •£„ and

fgo^i , then one says that the spaces X and Y are homotopieally

equivalent, or that they have the same homotopy type. The properties of a

space X depending only on i t s homotopy type are said to be homotopy

properties of X . By aompacta we understand always compact metrizable

spaces.

We need also the following concepts:

connectedness in dimension n and local connectedness in

dimension n ( s e e , f o r i n s t a n c e , 1101, p . 3 0 ) ;

contractibility and local contractibility ([/(?], pp. 26 and 28);

polyhedra ( f i n i t e ) , polytopes and their triangulations (see {.101,

p. 11 and p. 71);

dimension (the covering dimension) (see [47], p . 5k);

upper semi-continuous decomposition and i t s quotient space (see
[77], p. 6k).

Homology group H (X, A.) (over an abelian group A^ ) in the sense of

https://doi.org/10.1017/S000497270000647X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270000647X


The theory of shape 163

L. Vietoris , or of E. Cech (see [JO], p. 35). If A i s the group of

integers, then H (X, Aj i s called the nth Betti group of X (notation:

Hn(X) ) and i t s rank i s the nth Betti number of X (notation: P^U) ] •

If a l l homology groups H (X, A) are t r i v i a l , then X i s said to be

acyelic.

Homotopy groups IT [X, x ) of a po in ted , arcwise connected compactum

[X, x ) ( s e e , for i n s t a n c e , [ JO] , p . 50) .

2. Some information on the theory of retracts

Since the theory of shape is intimately related to the theory of

retracts, let us recall some basic notions and results of this latter

theory.

A map f : X -*• Y of a space X into another space Y is said to be

an r-map, if there exists for / a right inverse map; that is, a map

g : Y -*• X such that fg : Y •+ Y is the identity map iy for Y , that is

•£y(i/) ~ y f°r every y € Y . If there exists an r-map of X into Y ,

then we say that Y is an r-image of X .

A special kind of r-map is a -retraction; that is, a map / : X •*• Y ,

where Y c X and f(y) = y for every y £ Y . If there exists a

retraction / : X -*• Y , then Y is said to be a retract of X . It is

known that every retract of a space X is closed in X .

In the theory of retracts one distinguishes the following classes of

spaces with especially regular properties.

A metrizable space Y is said to' be an absolute retract for

metrizable spaces (notation: Y € AR(^) , where M. denotes the class of

all metrizable spaces) if for every space X £ M which contains Y as a

closed subset, Y is a retract of X . It is well known that every convex

subset of any linear normed space is an AR(^l) .

A metrizable space Y is said to be an absolute neighborhood retract

for metrizable spaces (notation: Y € ANR(^) ) if for every space X (. M

containing Y as a closed subset, Y is a retract of some of its

neighborhoods in X .
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Compact AR(M) spaces are said to be absolute retracts (notation:

X € Ah ) , and compact ANR(̂ ) are said to be absolute neighborhood

retracts (notation: X € ANR ) . In par t icular , the Hilbert cube (which we

s t i l l denote by Q ) is an AR and every polyhedron is an ANR . Clearly

every AR-set i s contract ible in i t se l f to a point.

Many topological propert ies of polyhedra hold t rue for a l l ANR's .

So i t i s , in par t i cu la r , with a l l homotopy properties of polyhedra, as i t

follows from a theorem recently proved by West ([99], p. 13) that every

ANR-space has the homotopy type of a polyhedron. However, there exist

among ANR's (even among AR's ) spaces with properties very different

from the properties of polyhedra. In par t icular , there exis ts a

2-dimensional AR-set A such that every non-empty and different from A

compactum X c A , containing a non-empty open subset of A , has a

posi t ive f i r s t Bet t i number p,(X) .

Let us mention some theorems on AIJR-sets, which will be useful in the

sequel.

THEOREM (2.1) on extension of a homotopy ([JO], p. 9*t). Let X be a

closed subset of a space X' € M and Y € ANR(M) . If cp : X x < o, 1> •+ Y

is a homotopy such that the map f : X •* Y given by the formula

fix) = cp(x, 0) for every x € X has an extension to a map f : X' •+ Y ,

then there is a homotopy cp' : J ' x < 0, V ->• Y which is an extension of

the homotopy <p and q>'(x, 0) = / ' ( x ) for every x € X' .

THEOREM (2.2) ( [70] , p . 122). A finite-dimensional compactum is an

ANR-space if and only if it is locally contractible.

However there exis t infinite-dimensional, local ly contractible

compacta which are not ANR's ([JO], p. 121*).

THEOREM (2.3) (Hanner [53], p. li»3 and p. 392). Every open subset of

a space X £ ANR(M) is an ANR(M)-space. If for every point x € X £ M

there is a neighborhood U € ANR(M) , then X € ANR(M) .

I t follows that the property to be an AHR(M)-space i s a local

property.

THEOREM (2.4) (W. Hurewicz; see, for instance, [70], p. 52). If X

is a connected ANR-space and x € X and if the homotopy groups
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TT, [x, arj are trivial for k = 1, 2, ..., w-l , then the group T*n[x, x )

is isomorphia to the nth Betti group H (X) .

THEOREM (2.5) (Whitehead, C O J ] , p. 1133). If [x, xQ) and (Y, yQ)

cere two connected pointed ANR-spaces and if a map f : [X, x ) •*• [Y, yQ)

induces an isomorphism f^ : ir [x, xQ) -*• tr (Y, yQ) for every

n = 1, 2, , then f is a homotopy equivalence.

THEOREM (2.6) (S. Smale; see, for instance, [JO], p. 127). If f is

a map of a space X € ANR onto a space Y such that f~ (y) € AR for

every y € Y , then Y is locally n-connected compaction for

n = 1, 2

THEOREM (2.7) (K. Kuratovski and M. Wojdys&wski; see, for instance,

C O ] , p. 79). Every metrizahle space is homeomorphic to a closed subset

of a convex, bounded set lying in a Banach space.

3. Preliminary remarks on the theory of shape

In the classical homotopy theory only the homotopy properties of

spaces are studied. The classification of spaces into homotopy types is

based on the study of families of maps of one space into another space.

However the local complications in the topological structure of a space Y

may imply that the family of maps of another space X into Y can be very

limited and does not give a sufficient base to study global properties of

those spaces. For instance, if X is an arcwise connected space and Y

does not contain any arc, then the only maps of X into Y are maps of

X onto singletons. Thus the natural domain of the classical homotopy

theory are spaces with a rather regular local structure, in particular, the

spaces ANR(}A) .

The aim of the theory of shape is to study the global properties of

spaces, neglecting the complications in their local structures. In the

case of compacta, one gets such an approach to the study of global

properties if one replaces in the basic notations of the classical homotopy

theory, maps by a more elastic concept of fundamental sequences.

The theory of shape of compacta was initiated in 1968 (see ill']).

Later the range of this theory was extended to more general classes of
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spaces. In 1971, Holsztyfiski ([55]) gave an axiomatic approach to this

theory, based on the concepts of the theory of category and exhibiting a

deep connection between the concept of shape and the concept of the inverse

limit. A l i t t l e la ter , Mardesic and Segal (see [7S]) gave a systematic

tyeory of shape of compact Hausdorff spaces, based on the notion of the

inverse system of ANR-spaces. Finally, in 1973, Mardesic (see [73])

extended the notion of the shape to arbitrary topological spaces. Today

the commonly used definition of shape category is that one given by Morita

Wl.

Now the theory of shape i s a large branch of topology, and there exist

in the world l i t e r a t u r e more than ^00 papers devoted to t h i s theory, among

them several synthetic courses of this theory (see [ /2] , [142, 1151, [43]).

The most developed is the theory of shape of compacta, which is

intimately connected with geometric in tui t ion. However even th is part of

the theory of shape s t i l l contains many open problems.

4. Fundamental sequences and the concept of the shape of a compactum

It i s well known (see [.101, p. 79) that for every compactum X there

exis t AR-spaces M such that X c M . Let Y be another compactum and

Y c N € AR . By a fundamental sequence f : X •*• Y one understands a

sequence of maps f,:M + M, k = 1 , 2 , . . . , such t h a t

for every neighborhood V of Y in M t h e r e i s a neighborhood

U of X i n M such t h a t fJU ~ fk+1/
u i n v f o r almost a l l

k .

Let us denote this fundamental sequence f by {/,, X, Y} . In

particular, if X = Y and M = N , then setting / , = i (where i

denotes the identity map of M ) for every k = 1, 2, . . . , one gets a

fundamental sequence i^ = {i^, X, X] called the fundamental identity

sequence for X in M .

If f = {fk, ^, r}M>N a n d g = {gk, Y, Z\ ff ̂  ( w h e r e Z c M A B ) ,

t h e n gf = {9-fJr.i %•> Z)M • is a fundamental sequence called the

composition of f and g .
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Two fundamental sequences f = {/, , X, Y}^ ^ and f = [f£, X, Y}^ ^

are said to be homotopic (notation: f a f ) if for every neighborhood V

of Y in N there i s a neighborhood U of X in M such that

/fc/y ~ /^/£/ in 7 for almost a l l fc .

One says that a compactum X c M € AE shape dominates another

compactum Y c ff € AR i f there exist two fundamental sequences f : X -*• Y

and g : Y -+ X such that fg ~ i y N . If M, N, f and g may be

selected so that also gf ~ i , then one says that X and Y are

shape-equivalent. One sees easily that the choice of the spaces

M, N € AE is immaterial. Thus the shape of a given compactum X

(notation: Sh(X) J may be considered as the collection of a l l compacta

which are shape-equivalent to X .

If a compactum X shape dominates another compactum Y , then we

write ShU) 2 Sh(Y) . If ShU) 2 Sh(Y) , but ShU) is different from

Sh(Y) , then we write Sh(A") > Sh(Y) . The shape of a singleton is said to

be trivial and we denote i t by Sh(l) . I t i s clear that Sh(l) 5 Sh(Y)

for every compactum Y ? 0 . One sees easily that all compacta with

trivial shape are acyclic. However, there exist acyclic compacta with non-

t r i v i a l shape. Such an example i s the curve constructed by Case and

Chamberl in (see [25]) . A simple characterization of compacta with t r i v i a l

shape i s given by the following

THEOREM (4.1) (see 1141, p. 262). A compactum X + 0 has trivial

shape if and only if for every space M € ANR(M) containing X , the set

X is contractible to a point in every neighborhood U of X in M .

p
Let us addj that a compactum X lying in the plane E has t r i v i a l

2
shape i f X and E \X a r e connected.

By a pointed compactum [x, x ) one unders tands a compactum X i n

which a point a; i s s e l e c t e d . Let X c M , Y c N , M, tf € AR and

l e t x (. X , y € Y . I f i n t h e d e f i n i t i o n of t h e fundamental sequence

{/fc. * . y } w N one cons ide r s only maps f^-.M+N s a t i s f y i n g t h e

condi t ion fj.[x^\ = ^ 0
 f o r ^ = 1> 2 . ••• (no ta t ion :
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/ , : [M, x ) •* (N, y.) ) and i f one assumes that by homotopies

/ , IV c~ f].+-,fU i n V the point x. i s s t i l l mapped onto yQ , then we

obtain the notion of the pointed fundamental sequence

f : [X, xQ) -* [Y, yQ) , which one denotes by {/^, (*, xQ) , [Y, yQ)\M^ .

I t i s clear how the notion of the homotopy of two fundamental sequences

t ransfers to the case of pointed compacta, and so i t is also with the

notions of homotopy domination, of homotopy equivalence and of shape. Thus

one gets the concept of pointed shape Sh(^, x ) and also of the relat ions

Sh(*, xu) > Sh(>, yQ) and Sh(*, xQ) > Sh(Y, yj .

One proves easi ly that i f X, Y are two ANR's , then the relat ion

Sh(Af) = Sh(y) holds t rue i f and only if the homotopy types of X and of

Y coincide, and the re la t ion Sh(£) 2 Sh(y) i s equivalent to the homotopy

domination of X over Y . Thus in the domain of ANR-spaces the concepts

of the theory of shape do not exceed the range of the corresponding

homotopy concepts. The s i tua t ion is quite different for arbi t rary

compacta, as seen by the following

THEOREM (4.2) (see 1142, p. 2 a and p. 222). If X, Y are two plane

continua, then Sh(/) = Sh(y) if and only if X and Y decompose the
2

plane E into the same number of regions, and Sh{X) > Sh(7) if and only
o

if the number of components of E \X is greater than or equal to the
2

number of components of E \Y .

I t follows that for shapes of plane continua the law of the trichotomy

holds true (that i s , i f X, Y are plane continua, then either

ShU) = Sh(T) , or Sh(#) > Sh(/) , or ShU) < Sh(r) ] .

Another s i tua t ion prevails for continua lying in the 3-dimensional

euclidean space E . There exist continua X, Y c E such that

ShU) 2 Sh(r) and ShU) < ShU) , but ShU) * Sh(y) . The question i f

such a s i tuat ion i s possible for polyhedra remains open.

By Theorem (k.2), the family of all shapes of plane continua is

countable. One proves easily that there exist 2 ° different shapes of

plane compacta. By a -theorem due to Spiez ([94] , p. 155) there exists a
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plane compaction X such that for every plane compaction X t 0 ,

Sh(#) 5 Sh(^J . It is not so for compacta lying in E , because already

the family consisting of al l solenoids of van Dantzig (concerning this

notion see [35], p. 106) there does not exist any compaction with shape

greater than or equal to the shapes of all those solenoids (see [22],

p. 108).

Let us denote by O[X) , for every compactum X , the decomposition

space of the decomposition of X into i t s components. The following

theorem holds t rue :

THEOREM (4.3) (see [74], p. 21U). Let X, Y be two compacta,

X c M , Y c N , M, N £ AR . For every fundamental sequence

f = {f, , X, Y] „ there exists a map

Af : OU) -»• DU)

such that for every component X of X the sequence {/jXy ̂ f^o^M N

is fundamental. Moreover, if Z is a compaction lying in a space R (. AR ,

and if 9 = {gv> >̂ z}«r r> ^s a fundamental sequence, then A - = A_AJT •

It follows by this theorem that

If X, Y are compacta with Sh(̂ f) 2 Sh(J) , then there exists an

r-map A : n(X) •* D(y) such that Sh(AT-) > Sh(A(#J) for every

XQ (. O(X) . Moreover, if Sh(*) = Sh(7) , then there exists a

homeomorphism A : D(^) —»• D(y) assigning to every component Xn of

X the component A( / J such that Sh(-fJ = Sh(A(#J) .

I t follows in par t icular , that two O-dimensional compacta with the
same shape are homeomorphic.

The Hilbert cube Q may be considered as the subset of the Hilbert

space consisting of all points (x , x , ...) with 0 2 x, £ 1/k for

k = 1, 2, . . . . Let us denote by Q the so called pseudo-interior of Q ,

defined as the set of a l l points (x , x , . ..) with 0 < x, < l/k for

k = 1, 2, . . . . One of the most remarkable theorems of the theory of shape

is the following
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THEOREM ( 4 . 4 ) (Chapman, [ 2 6 ] , p . l 8 l ) . Two compacta X, Y c Q have

the same shape if and only if the sets Q\X and Q\Y are homeomorphic.

Another theorem of a similar kind characterizes the shape of f in i t e

dimensional compacta:

THEOREM (4.5) (see [27], p. 26l and also [50], p. 28l) . If X and Y

are compacta of dimension less than or equal to k , lying in the

n-dimensional euclidean space E*1 with n 2 2fc+2 , and satisfying some

additional conditions (which, in particular, hold true for all geometric

polyhedra), then Sh(X) = Sh(Y) if and only if the sets En\X and En\Y

are homeomorphic.

5. Shapes of topological spaces

In order to define the shape category for topological spaces, we need

the notion of the pro-category of a given category, introduced by

Grothendieck [5 / ] in a greater generality than we need here. Recall that a

category i s a t r i p l e C consisting of:

1. a class of objects denoted by Ob(C) ,

2. a set of morphisms C(X, Y) from X to Y for any two

objects X and Y of C ,

3. a function (called composition) from C{X, Y) x C(J, Z) to

C{X, Z) (the image of a pair ( / , g) of morphisms is

denoted by gf ) ,

such that the following conditions are sat isf ied:

h. for any morphisms / € C{X, Y) , g i C{Y, Z) and

h € C(Z, W) there i s h(gf) = (hg)f ,

5. for any object X of C there exists an identi ty morphism

id« € C(X, X) such that for any morphisms g € C(X, Y) and

h € C(Z, X) , g{idx) = g and ( id^fc = h .

A category V is called a full subcategory of a category C provided

Ob(P) i s a subclass of Ob(C) , V(X, Y) = C{X, Y) for X, Y 6 Ob(P) and

the compositions of two morphisms in V and C coincide.

The following categories are used in the sequel:
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Setl, - Ob(Se£&) is the class of all sets,

Set4(J, Y) is the set of all functions from X to Y

and the composition is defined as usual;

T - Ob(T) is the class of all pointed topological spaces,

T(X, Y) is the set of all maps from X to Y

preserving base points;

HI - Ob(HT) is the class of all pointed topological spaces,

HT(X, Y) is the set of all homotopy classes of maps

from X to Y which preserve base points. If

/ : X -*• Y and g : Y -*• Z are two maps, then the

composition [<?]•[/] of their homotopy classes is

defined to be [gf] ;

W - is the full subcategory of HT , whose objects are

pointed spaces homotopy equivalent to pointed polytopes.

A morphism / € C{X, Y) is called an isomorphism if there is

g i C{Y, X) such that gf = id^ and fg = idy .

Let C and V be categories. A covariant (respectively

contravariant) functor T : C -+ V is a pair consisting of a function

T : Ob(C) -»• Ob(P) and a family of functions T%J = T : C(X, Y) .-»• V{TX, TY)

(respectively T : C(X, Y) •* V(TY, TX) ) such that for any pair X, Y of

objects of C , T(gf) = T(g)-T(f) (respectively T(gf) = T{f)'T{g) ) and

T[±ax) = ±aTX .

Let Y be an object of a category C . By C(Y, •) (respectively

C(-, Y) J we denote the covariant (respectively contravariant) functor from

C to Set6 defined in the following way.

For X € Ob(C) we set C(Y, «)U) = C(J, X) (respectively

C(«, Y)(X) = C(X, Y) ) and for f 6 C(X, X') we have C(Y, -)f(g) = fg

for each g f C(Y, X) (respectively C(-, Y)f(g) = gf for each

g € C(X', X) ).

Recall that a directed set (A, <) is a pair consisting of a set A

equipped with a non-reflexive and transitive relation "<" such that for

any two elements a, 3 € A there exists an element y with y > a, 6 •
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f a' \
An inverse system \X, p , A I in a category C consists of a set

£/ of objects of C indexed by a directed set A , and of a set of

phisms p € C[x ,, X ) , where a' > a such that for a" > a' > a
mor

there is

a' a" a"
V 'V • — P

A direct system \x,p.,A\ in a category C consists of a set

{x } ,. of objects of C indexed by a directed set A , and of a set of

morphisms pa, € ̂ [Xa, X ,) , where a' > a such that for a" > a' > a

there is

a' a a
P-P P

a
~ Pa,r

, where x 6 X and

( at \

If \X , p , A\ is an inverse system in Se&> , then

lim \x , pa , A\ is the set of all families {x } „

pa [x .) = x for a ' > a .
fa v a ' a

Suppose \x , p ,, A) is a direct system in S&ti . In the disjoint

union of all X , a € A , we define an equivalence relation "~" as

follows:

x ~ xo if and only if there is an index 6 > a, 3 with
a p

Then lity \X , p ,, A\ is defined to be the set of all equivalence classes
a

of this relation.

Consider the class of al l inverse systems in a category C . It is

the class of objects of some category, called the -pro-category of C and

denoted by pro-C . The set of morphisms in this category is defined by
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(5.1). pro-CU, y) = lim. lim C[xa, yg) , if X = |* a , p " \ 4j and

Thus i f B is a one-point se t , that i s , Y = Y is an object of C ,

then

p r o - C ( X , X) = J i m [c [x^ x) , C ( - , 7 ) p j ' ,

Then the composition g*f of two morphisms

f : X = \xa, p " ' , A -»• y € Ob(C) and j : I + U Ob(C) of pro-C

i s a morphism whose r e p r e s e n t a t i v e i s g'f 6 C[X , ZJ , where

/" € C [X , Xj i s a r e p r e s e n t a t i v e of f for some a € A .

Now each morphism

o f p ro -C c a n b e r e g a r d e d a s a f a m i l y {fo}D<-t, , w h e r e fo € pro-C (X, Y_]
p pstis p v p '

and £?e'f3» = f
e f ° r 8 £ 6' ..

So we define the composition g«f of two morphisms

and

g =

as fol lows: take for each 6 € D a r e p r e s e n t a t i v e <?r € C ( y . , . i ,

of gx and l e t

( a ' 1
The identi ty morphism id^ of X = hf , p ,.4 i s the family

{p } £. , where the identi ty morphism id^ is a representative of
a
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p : X -*• X for each a. 6 A . The morphism p is called a projection

morphism.

Observe that each category C can be considered as a full subcategory

of pro-C . I t i s also clear that any covariant functor F : C •+ V

induces in a natural way the functor pro-F : pro-C -*• pro-P .

An object X of pro-C is stable if i t is isomorphic in pro-C to

some object of C .

Let X be a topological space. Recall that a family of maps

7r = {TT. : X •+• <0, l > } ' , . i s a partition of unity i f ^TT.(X) = 1 for
U

every x £ X . A covering U of X is numerable if a par t i t ion of unity

TT = {^Tilr/fii exis ts such that

ir^CO, 1) <= U for every 1/ f 1) .

Let [x, x ~] be a pointed topological space and l e t {(J } be the

set of a l l loca l ly f i n i t e numerable open coverings of X such that each

U has exactly one member containing xQ . If U , i s a refinement of

U and a ' t a , then we put a < a ' . For each a U , l e t N[u ) be

the nerve of U , that i s # (^0 is the family of a l l f in i t e sets

k
{£/.. , . . . , U7 } such that £ / . € £ / , i = 1, . . . , k , and D U. ? 0 .

Then N(U ) i s a simplicial complex and the body of i t equipped with the

weak topology is denoted by K (this means that a subset B of K i s

closed i f and only i f the intersection of B and of any closed simplex

is closed in s ) . For the base point k of K we take the vertex

corresponding to the unique element of U containing x . .

Then for each a. € A , there exists a map

such that £/ contains the counterimage of the open star of the vertex U

(see [37] , p. 355). The homotopy class of ir is denoted by p
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Suppose 3 > a . We can choose a map u : £/„ -»• U such that U c \l{U)

for every U t. Uo . Then there i s the unique simplicial map
p

which agrees with u on ver t ices . I t s homotopy class i s denoted by

p£ . Then p^.pg = p a and p^-p^ = p^ for a < 6 < y (see [37] ,

pp. 355-356). Consequently C[X, xQ) = (#a, kj , p^ , Aj i s an inverse

system in W called the dech system of [X, x ) . Moreover,

i s a morphism of pro-HT .

The main property of the morphism p v is expressed by the following

theorem (see [43], p. 22).

THEOREM ( 5 . 2 ) . l e t

be the natural morphism from a pointed topologieal space [x, x ) to its

system. Then for any map

f : [X, xQ) - (X, fc) € Ob(W)

is a map f^ : {K^, kj * (X, k) with [ f j ' P a = [/] • 1 /

g, h •. [K , k ) -*• (K, k) G Ob(W) are two maps SMC?J that [^I'P = [h]-p ,

then [g]'P^ = [h]-p^ /or some (3 > a .

Theorem (5-2) can be easily generalized to the following

THEOREM (5.3) . For any morphism f : [X, x ) •+ Y 6 Ob(pro-fcJ) there

i s a unique morphism g : £{x, x ) •+ Y o / pro-W such that g«p = f .

Now we can introduce the shape category Sh . I t s objects are a l l

pointed topologieal spaces and for the set of morphisms Sh[{X, x), (y, y)}

we take pro-W(f(^T, x), C(Y, y)) and the composition of morphisms i s

induced from pro-W .
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The shape functor 5 : HT •* Sh is defined as follows:

S(X, x) = {X, x) and if / : (X, x) •*• (T, y) is a homotopy class, then

S(f) is the unique morphism from C(X, x) to 5(Y, y) such that

Py-f = S(f)-px .

If (X, x), (7, y) € Ob(Sh) , then

ShU, x) = Sh(y, y)

means that (X, x) and (Y, y) are isomorphic in Sh and

Sh(X, x) 2 Sh(7, i/) means that {Y, y) is dominated by (X, x) in Sh .

Observe that the property of 5ech systems stated in Theorem (5.2) was

crucial when defining the shape category. In the case when one deals with

compact spaces only, we can take, instead of the Cech system, any

expansion of a compact space as an inverse limit of ANR's . This is

guaranteed by the following theorem (see [73], p. 272).

f S' 1
THEOREM (5.4). Let Y = Yg, q* , B\ be an inverse system of compact

Hausdorff spaces, Y its topological inverse limit and q^ • Y "*• ?a

projection maps. Then for any map f : Y -*• K € Ob(W) there is a map

fo : Yo •* K such that f ̂  f.-qa . If g, h : Y + K Z Ob(01) are tuop P t> P p
or or

maps such that 9'<Jo — ̂ 'aa > then <7"<7g ^ ^ ' ^ R for some 3 ' - 3 •

Using Theorem (5-1*), one can prove that the shape functor i s

continuous when considered on compact Hausdorff spaces, that i s :

THEOREM (5 .5 ) . If Y is a topological inverse limit of an inverse
( at \

system \YO, qo , B\ of compact Hausdorff spaces and q : Y •+• Yo are
( P P J p p

projection maps, then

^s an inverse limit of \Y~, S\qz. \, B\ in the shape category.

6. Homotopy and homology pro-groups

In shape theory the role of the homotopy groups IT (X, x) introduced
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by W. Hurewicz is taken by the homotopy -pro-groups pro-ir (X, x) . I t is

the inverse system

fir [K , k ) , 17 fpgI , A\ ,[ n^ a ' aJ ' n[ya)' J '

where \[K , k ) , p , i4 i s the Cech system of a pointed topological space

{X, x) . The corresponding inverse l imit IT (X, X) i s the nth shape

group of (X, x) .

Analogously one can define the nth homology pro-group pro-H (X)

as the inverse system

\H (K), H f p B l , A\ .{ nK aJ n {^aj ' J

The inverse l imit of pro-fl (X) i s the well known nth Cech homology

group Hn(X) .

For nice spaces, l ike ANR's , one can replace the homotopy pro-

groups (or homology pro-groups) by shape groups (respectively, Cech

homology groups). However, in general much information is lost by passing

to the limit and one must consider the whole pro-group as a new and

important shape invariant.

Let us show how some theorems on homotopy and homology groups carry

over to shape theory.

THEOREM (6.1) (Moszyfiska [S3], p. 260). Let f : (X, x) •* (Y, y) be

a shape morphism of pointed finite-dimensional continua. If f induces

isomorphisms of homotopy pro-groups in all dimensions, then f is a shape

equivalence.

Theorem (6.1) was the f i r s t generalization of the c lass ical theorem

due to Whitehead. Later on some stronger resul ts were obtained by Mardesic

([74], [75]) and by Morita [ £ / ] . Edwards and Geoghegan [46] and also Dydak

[4/] have obtained several theorems of th i s type weakening the condition

that both X and Y be finite-dimensional. However th i s condition cannot

be completely omitted. Indeed, Handel and Segal [52] have shown that a

certain continuum constructed by Kahn [59] has non-tr ivial shape, although

a l l of i t s homotopy pro-groups vanish. An extensive discussion of
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Whitehead's theorem in shape theory the reader can find in [ 4 / ] .

The second resu l t i s a generalization of the W. Hurewicz theorem:

THEOREM (6.2) (see [ 5 ] , p . 39). Let (X, x) be a pointed continuum.

If pro-TiAX, x) is isomorphic to the trivial group for k £ n (n 2 l ) ,

then the Hurewiaz morphism from pro-ir +1(%> x) to pro-# AX) is an

isomorphism.

7. Fundamental dimension

One of the most important shape invariants is the fundamental

dimension Fd(#) of a compactum X . It is defined as the smallest of

numbers dim X' , where X' runs through all compacta with

Sh(^f) £ Sh(X') . The following theorem gives another characterization of

FDU) .

THEOREM (7.1) (Hoi sztynski; see [S4], p. 215). For every compaction

X there exists a compactum 1 such that Sh(X) = Sh(J) and

ShU) = dim Y .

By a remark due to Nowak ([S4], p. 2l6) the inequality Fd(x) < n ,

where X is a compactum lying in the Hilbert cube Q and n is a non-

negative integer, holds true if and only if X can be homotopically

deformed in each of its neighborhoods (in Q ) to a polyhedron of dimension

less than or equal to n . This enabled Dydak ([39], p. 1+39) to define the

deformation dimension (or shape dimension) def-dim X of any topological

space X as the smallest integer n such that any map f : X ->• K from X

to a polytope K is homotopic to a map g whose image is contained in the

nth skeleton K of K . Obviously, in the case of compacta, these two

notions coincide.

Observe that the fundamental dimension of every compactum with trivial

shape is equal to 0 (in particular, Fd(<j) = 0 J . Moreover, if X and

Y are compacta, then F d U x ?) 2 Fd(X) + Fd(y) .

A more detailed study of the fundamental dimension of the cartesian

product of two compacta requires the use of algebraic methods. In this

way, one obtains

THEOREM (7.2) (Nowak, [S6], p. 33). If X and Y are compacta with
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FdU) t 2 and dim Y = n such that for every non-trivial abelian group A

the nth cohomology groicp Hn{Y, A) is not trivial, then

FdU x Y) = FdU) + Fd(Y) .

By an example due to Nowak ([S5], p. 71) the formula

FdU x y) = FdU) + Fd(Y)

fa i ls even for polyhedra. In fact , there exist two connected polyhedra P

and P2 such that FdfpJ = Fd(P2) = Fd(P1 x p^ = 3 .

8. Movability and related shape invariants

An important shape invariant due to Borsuk is the movability and also

the n-movability. Let X be a compactum lying in a space M € AR . One

says that X i s movable (n-movable), if for every neighborhood U of X

in M there exists a neighborhood V of X in M such that for every

neighborhood W of X in U and for any map / : Y -*• V , here Y i s a

compactum (respectively n-dimensional compactum), there is a homotopy

ip : Y x < 0, 1> -»• U such that

<p(y, 0) = f(y) and y(y, l ) € W for every y f Y .

One shows that the choice of the space M € AR containing X i s

immaterial, for both the movability and the n-movability. I t i s clear

that every movable compactum is n-movable for n = 1, 2, . . . . Let us add

that if X , X , ... are movable compacta, then the cartesian product

X x X x . . , i s also movable.

Both properties: the movability and the n-movability are monotone

shape invariants, that i s , the movability of a compactum X (or the

n-movability of X ) implies the movability (or the n-movability,

respectively) of every compactum X' with ShU) t ShU') .

One t ransfers , in a natural way, the definitions of movability and of
n-movability onto pointed compacta.

The class of a l l movable compacta i s large. I t contains, in

part icular , a l l ANR's and also a l l plane compacta. However in the

3-dimensional euclidean space E there exist continua which are not

movable (even not 1-movable); for instance a l l solenoids of van Dantzig.
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As we have already noticed, there does not exist a compactum with shape

greater than or equal to the shapes of a l l solenoids. Therefore the

following theorem is remarkable.

THEOREM (8.1) (Spiez, [95], p. 619). There exists a movable compactum

X such that Sh[x ) > Sh.[X) for every movable compaction X .

Thus the class of a l l movable compacta i s in some sense shape-bounded,

in contrast to the class of a l l continua.

One shows that if every component of a compactum X is movable (or

rc-movable), then X i s movable (or rc-movable, respectively). However the

converse f a i l s , because there exist movable compacta for which there are

several components which are even not movable (see [14], p. 165).

THEOREM (8.2) (Trybulec, [97], p. 732). Every movable curve has the

shape of a plane curve.

I t follows, that the shape of a movable curve is determined by i t s

f i r s t Bett i number of i t . Consequently the collection of shapes of movable

curves is countable.

THEOREM (8.3) (Dydak [40], p. 60). If (X, x) is a 1-movable

pointed continuum and Si\[X) = Sh(.J') , then Sh(A", x) = Sh(Y, y) for every

y € r .

So, if we ca l l a continuum X pointed 1-movable [pointed movable) when

(X, x) is 1-movable [movable) for some point x € X , we get in th i s way

some unpointed shape invar iants . Here are some properties of these

notions.

THEOREM (8.4) (Krasinkiewicz [ 7 / ] , p. lMi). If X is movable and

pointed 1-movable, then it is pointed movable.

T H E O R E M ( 8 . 5 ) ( K r a s i n k i e w i c z [ 7 1 ] , p . 1 5 2 a n d M c M i l l a n [ 7 5 ] ) . A

continuous image of a pointed 1-movable continuum is pointed 1-movable.

THEOREM (8 .6) (Krasinkiewicz [ 7 2 ] ) . A continuum X is pointed

1-movable if and only if it has the shape of a locally connected continuum.

Some re la t ions between pointed 1-movability of a continuum X and

the existence of so called approximative paths joining two points of X

have been recently established by Krasinkiewicz and Mine (see [73]).
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The following problem remains s t i l l open. Is every movable continuum

pointed movable?

9. Shape embedding properties

Let us assign to every compactum X 4- 0 a coefficient e(X) defined

as the minimal number n such that the w-dimensional euclidean space

s contains a compactum Y with Sh(X) = Sh(Y) . If such a natural

number n does not exist, then we set e(X) = » . Clearly e{X) is a

shape invariant.

A remarkable example given recently by Kadi of ([5£], p. 905) shows

that e(X) is not a monotone shape invariant, because there exist two

polyhedra P , P such that P c E (hence e[P ) S 3 ) , and

Sh(Px) > Sh(P2) , but e[P2) > 3 .

The following question remains open:

(9.1). Is it true that if [x, x ) is a pointed continuum with

trivial group TT [X, x' ) , then e(Y) S e{X) for every

continuum 1 with Sh(Y) < Sh(Z) ?

By the well known theorem of K. Menger and G. Nb'beling, every

compactum X with dimension less than or equal to n is homeomorphic to a

compactum Y c: E . Consequently e(X) 5 2n + 1 for every compactum X

with Fd(X) 5 n . Moreover, there exists for every natural number n , an

n-dimensional polyhedron P such that no subset of E is homeomorphic

to P . However, for fundamental dimension, the following problem remains

still open.

(9.2). Does there exist, for every natural number n > a

compactum X such that 7d(X) = n and e{X) = 2n + 1 ?

By a recent result due to DuvaI I and Hush ([3S]), if n = 2 , then

the answer to this question is positive. On the other hand, Ivansic showed

(see [56], p. 1*73) that every pointed 1-movable continuum of dimension n

has the shape of a pointed compactum lying in the space E
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10. Fundamental retractions. Spaces FANR

Let X, Y be compacts, Y c X c M £ AR . A fundamental sequence

r = {r, , X, l] is said to be a fundamental retraction of X to Y if

p, (y) = y for every y € Y and k = 1, 2 . If there exists a fundamental

retraction of X to Y , then Y is said to be a fundamental retract of

X . I t is clear how to transfer those notions onto the case of pointed

compacta.

I t is known that every fundamental retraction of X to X (or of

\X, x J to (Y, X-J J induces an r-homomorphism of the group S (X, A.)

onto H (Y, A) (and also an r-homomorphism of if [X, x ) onto if (Y, X )

respectively). One knows also that the movability (or n-movability) passes

from X [or from [x, x ) ) onto their fundamental retracts.

By FANR-sets one understands compacta X such that for every

compactuin X' n X there exis ts a compact neighborhood U of X in X'

such that X i s a fundamental retract of U . The concept of FANR-spaces

is a shape invariant. Moreover, the following theorem (see [74], p. 25^)

holds t rue .

THEOREM (10.1). A compactum X is an FANR-set if and only if it is

shape dominated by a polyhedron.

Among plane compacta, the sets X € FANR are characterized by the

finiteness of Betti numbers PrS%) and p {x) .

The class of FANR-spaces constitutes a natural extension of the class

of ANR1 s and the global properties of FANR's are similar to some

extent, to the global properties of ANR's , hence also to the global

properties of polyhedra. However the similarity with the global properties

of polyhedra is limited, because Edwards and Geoghegan (see [45], p. 275)

have constructed a 2-dimensional FANR-set which is not of polyhedral

shape. But, as i t was recently shown by Kadi of, every pointed 1-movable

FANR-set lying in the space E has the shape of a polyhedron.

I t is s t i l l unknown whether every FANR-set has the shape of a

polytope. This seems to be a difficult problem. So i t makes sense to

distinguish the class of compacta (called pointed FANR's) being' FAMR-sets
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with the shape of polytopes. Let us s ta te some properties of pointed

FANR's.

THEOREM (10.2) (Demers [36], p. k and Edwards and Geoghegan [45],

p. 523). Let X be a continuum. If (X, x) i s shape dominated by some

pointed polytope, then (X, x) has the shape of a pointed polytope.

THEOREM (10.3) (Geoghegan, [ 4 9 ] , p . 278). If X has the shape of a

polytope, then (X, x) has the shape of a pointed polytope for every

x 6 X .

THEOREM ( 1 0 . 4 ) (Dydak, Nowak and S t r o k , [ 4 2 ] , p . U8?)- If X, Y and

X n Y are pointed FANR's , then X u X is a pointed FANR .

11. Shape-regular compacta

I t is well known that the shape of every fundamental re t rac t of a

compactum X is less than or equal to Sh{x) . Let us say that X is

shape-regular, if for every compactum Y with Sh(Y) 5 Sh(#) there exists

a fundamental re t rac t Y' of X such that Sh(Y) = Sh(y') . One sees
2

easily that already in the plane E there exist continua which are not
2

shape-regular. So it is, for instance, with any continuum X c E which
2

decomposes E into 3 regions and constitutes the common boundary of

those regions. It follows, that the shape-regularity is not a shape

invariant. In the space E there exist even connected polyhedra which

are not shape-regular. However one can prove that all locally connected

curves, and also all locally connected plane compacta are shape-regular

(see [27]).

THEOREM (11.1). If X d FANR , then X *• Q is shape-regular.

The question whether for every compactum X there exists a shape-

regular compactum X' with Sh(^f) = Sh(X') remains open. This question

is related to the general problem to select among all compacta with a given

shape, a representative with especially interesting topological properties.

It is known (see ['7], p. llU6) that for every continuum X there exists

an indecomposable continuum X' with Sh(X') = Sh(X) . However, as has

been recently shown by Krasinkiewicz there exist continua X with shape

different from every hereditary indecomposable continuum.
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To similar problems belongs also the question of giving a system of

shape properties characterizing the shapes of all closed manifolds.

Recently, Spiez solved this problem in the special case of all

2-dimensional manifolds (that is , of all surfaces).

12. Some operations on shapes

One shows easily that for every two compacta X, Y the shape of the

cartesian product X x Y depends only on the shapes of X and Y . Thus

one can define the operation of the multiplication of shapes by the formula

ShU) x sh(r) = ShU x y) .

The shapes ShU) and Sh(J) are said to be factors of the shape

ShU x Y) . Similarly one defines the multiplication of pointed shapes by

the formula

sh(*. *Q) x sh(y, yQ) = sh(x x y, [xQ, yQ)) .

THEOREM (12.1) (Trybulec, [9£], p. 69). For every movable continuum

X there exists at most one representation of ShU) as a finite or

countable product of shapes of curves.

However the question whether in th i s theorem the hypothesis of the

movability i s essent ia l , remains open.

The shapes of compacta which can not be decomposed into two not

t r i v i a l shapes are called prime shapes. By an example due to Sieradzki

( [93] , p. 97) there exist polyhedra with shape for which there exist two

different decompositions into product of prime shapes. Another example of

th i s kind is given in [74], p. 356. I t i s s t i l l unknown if for every

compactum X there exists a prime factor of ShU) .

There exist many other resu l t s and other open questions concerning the

decomposition of shapes into factors. In par t icular , the question remains

open i f for every X 6 FANR there exists only a f in i te number of factors

of ShU) . Also the question if ShU) x Sh^S1] = Sh(Y) x Sh(51) implies

that ShU) = ShU) remains open.

I t i s clear that for given pointed compacta [x, xQ) , (Y, ySj there

exist two pointed compacta [X', a), (¥', a) such that X' n Y' = {a} and

{X', a), ( i " , a) are homeomorphic to [x, xQ) and [Y, J / J respectively.
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One sees that the shape of (X' u Y', a) depends only on the shapes

Sh(x, x ) and [Y, y ) . Thus one can define the addition of pointed

shapes "by the formula:

Sh[x, xQ) + Sh(y, yQ) = ShU' u Y', a) .

The shapes Sh(X, x.) and Sh(y, y ) are said to be constituents of

the shape Sh(X, x ) + Sh(y, y ) . If there does not exist a decomposition

of Sh(x, jr.) into the sum of two not t r i v i a l pointed shapes, then we say

that Sh(x, «_) is simple.

THEOREM (12.1) (see [54], p. 288). If M is a closed, connected

n-dimensional manifold and a € M , then Sh(M, a) is simple.

13. Modified Lusternik-Schnirelmann category

By the modified Lusternik-Schnirelmann category of a compactum X

(lying in an AR-space M ) , one understands the number K(x) defined as

follows.

If X = 0 , then «U) = 0 .

If X + 0 and if there exist natural numbers n such that for every

neighborhood U of X (in M ) there are compacta X. , ..., X

contractible in U such that X = Xu X u . . . u X , then H(X) denotes

the smallest of a l l such numbers n .

In all other cases, one sets

One proves (see [/9], pp. 36 and 37) that the choice of the space

M € AB containing X is immaterial and that ^(X) is a monotonous shape

invariant, satisfying the inequality ^(X) 5 Fd(̂ f) + 1 . Moreover, one

shows that if T is the cartesian product of n circles £> , then

K(T ) = n + 1 . One knows also (by an example due to Case and Chamber I in

[25]) that K(x) is not determined by the homology and the fundamental

groups of X . Moreover the question whether the same holds true for

movable compacta remains open.

Let us assign to every compactum X two coefficients:
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a(X) equals the smallest cardinal number m such that X i s

the union of m compacta with t r i v i a l shape;

a(X) equals the smallest of a l l cardinal numbers a(y) , where

Y runs through a l l compacta Y with Sh(j) > Sh(X) .

The question remains open if for every compactum X there i s a

compactum Y with ShU) = Sh(l) with a{X) = a(Y) .

I t i s clear that 1 5 a{X) 5 2 ° for every compactum X # 0 and that

for any compacta X±, X^ , [x± u X^ < a(Xx) + a{x^\ and

One shows (see [20]) that a(X) i s a monotonous shape invariant and

that a(x) > N(X) for every compactum X . Moreover a ( r ) = n + 1 and

there exist compacta X with a (AT) = ^0 • I t i s known (see [20]) that for

every -f € FANR the coefficient a(Af) i s f i n i t e . Moreover, for every

plane continuum X the coefficient a{X) i s less than or equal to 2 and

so is also for every movable curve X . The question remains open if there

exis ts a continuum X c E with U-5 a(X) S N .

Let us add that Dydak and Nowak recently proved that if X i s a

continuum with a{X) < 2 ° , then X i s 1-movable.

14. C e l l - l i k e maps

A map f : X -*• Y of a compactum X into another compactum Y i s

cal led cell-like, provided a l l i t s point inverses have t r i v i a l shapes. The

theory of c e l l - l i k e maps consti tutes one of the most interest ing parts of

geometric topology. We refer the reader to [72] for a survey of i t . Let

us s t a r t with resu l t s about ce l l - l ike maps whose domains and ranges are

loca l ly nice.

THEOREM (14.1) (Lacher [72], p. 510). A map f : X •*• Y where

X, Y e ANR is cell like if and only if for every open set V of Y the

restriction f/f (V) : f (7) •+ V is a homotopy equivalence.

Easy corollaries to Theorem (l^.l) are the following:

COROLLARY ( 1 4 . 2 ) . If f : X •*• Y is a cell-like map between ANR's
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and the shape of B c Y is trivial, then the shape of f (B) is trivial.

COROLLARY (14.3). If X, Y, Z are ARN's and if f : X-" Y and

g : Y •*• Z are cell-like maps, then gf : X •*• Z is a cell like map.

In par t icular , one gets from Corollary (lit.3) that AHR's and ce l l

l ike maps form a category.

The following resul t was used by West in proving that ANR's have

homotopy type of f in i te polyhedra ( recal l that a Q-manifold i s a space

locally homeomorphic to the Hilbert cube Q ) .

THEOREM (14.4) (West [94], p. 12). For every X € ANB there exists a

Q-manifold M and a cell-like map f : M -*• X .

Moreover Chapman [26] gave the f i r s t proof that simple homotopy type

is a topological invariant, and l a t e r extended th i s resul t to the following

THEOREM (14.5) (Chapman 1291, p. 230). A cell-like map between

polyhedra is a simple homotopy equivalence.

Concerning the notion of a simple homotopy equivalence see ([100]).

Let us mention that Theorem (lit. 5) enabled Chapman [29] to extend the

simple homotopy theory from the category of f in i te CW-complexes to the

category of a l l ANR's . More specif ical ly: he cal l s a homotopy

equivalence / : X -*• Y between ANR's to be a simple homotopy equivalence

provided there exists a set Z e ANR and two ce l l - l i ke maps g : Z •* X

and h : Z •*• Y such that fg~h. Thus ce l l - l i ke maps between ANR's

(polyhedra) have to be homotopy equivalences (simple homotopy

equivalences).

Let us mention what i s known about c e l l - l i ke maps between manifolds.

THEOREM (14.6) (Siebenmann [92] , p. 271). Let M and N be closed

n-manifolds (n > 5) . Then the set of all cell-like maps from M onto N

is precisely the closure of the set of homeomorphisms from M onto N in

the space of maps from M to N .

Theorem (1^.6) holds true in case n = 3 under the additional
assumption that M contains no fake 3-cells, that i s , compact
contractible 3-manifolds not homeomorphic to the standard 3-cell (see
[4]).
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The main difference between the theory of ce l l - l ike maps of ANR's

and the ce l l - l i ke maps of compacta i s that the las t ones do not have to "be

shape equivalences. In fact , Keesling [63], p. 997, constructed a c e l l -

l i k e map of the Hilbert cube Q onto a non-movable compactum Y and

Taylor [.961 gave an example of a ce l l - l ike map of a compactum X with non-

t r i v i a l shape onto Q . However, in some cases ce l l - l ike maps are shape

equivalences.

THEOREM (14.7) (Sher [S3], p. 86; see also [8] and [64]). A cell-

like map between finite-dimensional compacta is a shape equivalence.

The difficulties with cell-like maps between compacta led Kozlowski

[65] to introduce a subclass of the class of all cell-like maps. Namely,

he c a l l s a map f : X •*• Y a hereditary shape equivalence provided for any

closed subset B of Y the restriction

///~1(B) : f"1(S) •+ B

is a shape equivalence. By taking one-point sets for B one gets that

every hereditary shape equivalence is cell-like.

Using Theorem ( lU . l ) , one gets that every cell-like map between ANR's

is a hereditary shape equivalence. Theorem (ll+.7) implies that also every

cell-like map betueen finite-dimensional compacta is a hereditary shape

equivalence.

THEOREM (14.8) (Kozlowski, see [ 4 3 ] , p . 138). If f : X •* Y is a

cell-like map and the dimension of Y is finite, then f is a hereditary

shape equivalence.

The main property of hereditary shape equivalences is expressed in the

following

THEOREM (14.9) (Kozlowski, [43], p. 133). Let f : X ->• Y be a

hereditary shape equivalence. If X is a subset of a compactum Z 6 ANR ,

then Z u ~ Y € ANR .

15. Final remarks

In this short exposition of the most simple ideas and results of the

theory of shape, we have omitted several important topics, which s t i l l

await their whole development.
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(a) Covering space theory and shape f ibrat ions. The idea of

transferring the class ical notions of covering space and of overlay theory

to the theory of shape is due to Fox (see [4S]). Later Coram and DuvalI,

introduced the notion of approximate fibration, replacing the l i f t ing

property basic for the notion of Hurewicz f ibrat ion, toy the more general

approximate homotopy lifting property ( [34]) . An essential step in th is

process was taken by Mardesic and Rushing (see [76] and [77]), who have

introduced a new class of maps between local ly compact metric spaces,

called shape fibrations. They coincide with approximative fibrations in

the case of ANR's .

(b) Theory of position. I t is clear that concepts of the c lass ica l

theory of knots, as yet developed only for very special classes of closed

curves, concern in fact several phenomena of a global character. There are

some attempts to introduce a more general notion of position, which wil l

allow us to exhibit some global aspects of the theory of position, in

par t icular , of the theory of knots. For instance, one can show (see [ /3 ] ,

p. 155) that every plane continuum X with p (X) = 1 , can be embedded in

3 3
the 3-dimensional euclidean space E so that i t consti tutes in E a

knot similar (in some sense) to a given polygonal knot. The connection of

position with shape theory was studied also by Sher ( [ 9 / ] ) . One can

suppose that many phenomena of position of compacta are intimately related

to the shape properties of those compacta and their complement se t s .

(c) Another domain which probably has a close connection with the

notions of the theory of shape i s the endeavour to express the difference

between the global properties of two compacta in the terms of topological

notions in the collection of all compacta lying in a given space. The well

known metric of Hausdorff does not give any account on the re la t ion between

the distance of two compacta and their topological properties. There exist

some attempts to introduce another metric free from th i s defect (see [9]

and [69]), but limited only to ANR's . Another step in th i s direction

examines metrics in the collection of compact subsets of a given space, by

which a re la t ion between the distance of two arbi t rary , non-empty compacta

and the i r shape properties is taken into consideration. There are several

papers concerning those ideas ( [ JS] , [24], [32], [33]) . However the

researches in t h i s domain are s t i l l only at thei r beginning.
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(d) Proper shape theory, introduced by BalI and Sher (see [7] and

also [6]) i s an attempt to transfer the concepts of the theory of shape of

compacta to the more general case of local ly compact spaces. Instead of

maps, one considers proper maps (that i s , maps / : X -*• Y such that for

every compact subset B of Y the set A = f (B) c X is compact) . In

t h i s way one gets the notion of the proper shape category and one obtains a

theory which in the case of compacta agrees with the usual shape theory and

gives a good insight into global properties of local ly compact spaces.

(e) Shape properties of topological groups. The important task to

study properties of continua which support a topological group structure

has been considered, in par t icular in some papers of Keesl ing (see [60],

[ 6 7 ] , 1621).
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