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Abstract

Background. A wealth of clinical studies have identified objective biomarkers, which separate
schizophrenia patients from healthy controls on a group level, but current diagnostic systems
solely include clinical symptoms. In this study, we investigate if machine learning algorithms
on multimodal data can serve as a framework for clinical translation.
Methods. Forty-six antipsychotic-naïve, first-episode schizophrenia patients and 58 controls
underwent neurocognitive tests, electrophysiology, and magnetic resonance imaging (MRI).
Patients underwent clinical assessments before and after 6 weeks of antipsychotic monotherapy
with amisulpride. Nine configurations of different supervisedmachine learning algorithms were
applied to first estimate the unimodal diagnostic accuracy, and next to estimate the multimodal
diagnostic accuracy. Finally, we explored the predictability of symptom remission.
Results. Cognitive data significantly classified patients from controls (accuracies = 60–69%;
p values = 0.0001–0.009). Accuracies of electrophysiology, structural MRI, and diffusion ten-
sor imaging did not exceed chance level. Multimodal analyses with cognition plus any com-
bination of one or more of the remaining three modalities did not outperform cognition
alone. None of the modalities predicted symptom remission.
Conclusions. In this multivariate and multimodal study in antipsychotic-naïve patients, only
cognition significantly discriminated patients from controls, and no modality appeared to
predict short-term symptom remission. Overall, these findings add to the increasing call
for cognition to be included in the definition of schizophrenia. To bring about the full poten-
tial of machine learning algorithms in first-episode, antipsychotic-naïve schizophrenia
patients, careful a priori variable selection based on independent data as well as inclusion
of other modalities may be required.

Introduction

Awealth of clinical studies have successfully applied various objective measures to identify bio-
markers, which separate schizophrenia patients from healthy controls on a group level.
Although these studies have provided profound insight into the pathophysiology of schizo-
phrenia, these efforts have not been translated into diagnostic utility (Kapur et al., 2012).
Thus, the diagnosis of schizophrenia according to Diagnostic and Statistical Manual of
Mental Disorder (DSM) and International Classification of Diseases (ICD) classifications
entirely relies on clinical symptoms. Likewise, no clinical or objective measures for course
of illness or response to antipsychotic medication have been implemented into clinical
practice.

Numerous studies using objective cognitive test batteries such as Cambridge
Neuropsychological Test Automated Battery (CANTAB) (Robbins et al., 1994) have estab-
lished that cognitive deficits in, e.g. attention, verbal memory, and working memory are endur-
ing and core features of schizophrenia, which are relatively unaffected by clinical state of the
psychopathological symptoms (Paulus et al., 2001; Gur et al., 2006; Kahn and Keefe, 2013).
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Assessment of early information processing as measured with
electrophysiological paradigms has also indicated impairments in
schizophrenia patients, and also these disturbances are generally
considered unaffected by disease stage and severity of symptoms
(Koychev et al., 2012; Thibaut et al., 2015; Blakey et al., 2018).
Commonly used electrophysiological paradigms comprise P50
suppression (Adler et al., 1982), pre-pulse inhibition of the startle
response (PPI) (Braff and Geyer, 1990), and mismatch negativity
(MMN) (Shelley et al., 1991).

Finally, magnetic resonance imaging (MRI) has demonstrated
that schizophrenia is associated with structural brain changes
(Haijma et al., 2013). Gray matter structures have commonly
been assessed with a region of interest (ROI) approach, but the
development of diffusion tensor imaging (DTI) techniques such
as tract-based spatial statistics have enabled assessment of the
cerebral white matter microstructure (Smith et al., 2006).
Overall, both subtle gray (Shepherd et al., 2012; Gong et al.,
2016) and white matter (Fitzsimmons et al., 2013; Canu et al.,
2015) deficits are present already at illness onset and before initi-
ation of antipsychotic medication.

From a clinical perspective, the current categorical diagnostic
systems contrast the multifaceted clinical phenotype of schizo-
phrenia, and it is plausible that schizophrenia is better conceptua-
lized using a more dimensional view (Jablensky, 2016). The
research domain criteria (RDoC) were formulated to conceptual-
ize integration of data ranging from basic biological levels to
behavioral constructs across mental disorders (Insel et al.,
2010). Theoretically, subgroups of schizophrenia patients may
share certain pathophysiological disturbances, which can serve
as targets for treatment with enhanced precision (Bak et al.,
2017). In order to operationalize the RDoC approach, novel ana-
lysis strategies, which are sensitive to subtle signals in rich data-
sets, may be advantageous.

Categorical separation of groups is classically investigated with
application of univariate statistical tests on unimodal data. It is
increasingly appreciated that application of advanced multivariate,
supervised machine learning algorithms on multimodal data may
provide an improved framework for operationalizing the complex,
dimensional clinical characteristics in, e.g. schizophrenia (Veronese
et al., 2013; Dazzan, 2014). In short, a supervised machine learning
algorithm identifies ‘patterns’ in complex data, which are not
modelled by more classical statistical methods. Next, these patterns
can be used to predict the outcome (e.g. ‘schizophrenia’ v. ‘healthy’;
or ‘remission’ v. ‘non-remission’) for future, independent, individ-
ual observations with an estimated ‘accuracy’. Various algorithms
have been developed, eachwith their own advantages and disadvan-
tages depending on, e.g. the variance and distribution of the data
(Bishop, 2006; Cawley and Talbot, 2010). Previous machine learn-
ing studies have generated encouraging diagnostic accuracies >85%
(e.g. Shen et al., 2014; Chu et al., 2016; Santos-Mayo et al., 2017;
Xiao et al., 2017) as well as prediction of the clinical outcome
(Zarogianni et al., 2017). However, most previous studies have
been unimodal and performed in medicated and more chronic
patient samples, in which the variation in data is greater than at
first illness presentation. Studies investigating multiple modalities
in antipsychotic-naïve schizophrenia patients are absent.

In this proof-of-concept study, we applied nine configurations
of different supervised machine learning algorithms, and we first
compared the diagnostic accuracies of cognition, electrophysi-
ology, structural MRI (sMRI), and DTI in a sample of first-
episode, antipsychotic-naïve schizophrenia patients and healthy
controls. Tests of group differences were supplemented with

univariate analyses. Next, we investigated if combinations of
modalities improved the diagnostic accuracy. Finally, we explored
the predictive accuracy with regard to symptom remission after 6
weeks of antipsychotic monotherapy with amisulpride. We
hypothesized that all four modalities would significantly discrim-
inate patients from controls, and we expected higher accuracies
for multimodal analyses.

Materials and methods

Trial approval

The authors assert that all procedures contributing to this work
comply with the ethical standards of the Danish National
Committee on Biomedical Research Ethics (H-D-2008-088) and
with the Helsinki Declaration of 1975, as revised in 2008. All par-
ticipants approved participation by signing informed consent.
Clinical trials identifier: NCT01154829.

Participants

As part of a comprehensive multimodal study conducted between
December 2008 and 2013, we recruited antipsychotic-naïve first-
episode schizophrenia patients from psychiatric hospitals and
outpatient mental health centers in the Capital Region of
Denmark. Unimodal data on electrophysiology (Düring et al.,
2014, 2015), DTI (Ebdrup et al., 2016), global cortical structures
(Jessen et al., 2018), as well as data on cognition in combination
with electrophysiology (Bak et al., 2017) have previously been
published.

Patients were aged 18–45 years and all were lifetime naïve to
any antipsychotic or methylphenidate exposure. Patients under-
went a structured diagnostic interview (Schedule of Clinical
Assessment in Neuropsychiatry, SCAN, version 2.1) to ensure ful-
filment of ICD-10 diagnostic criteria of schizophrenia or schizo-
affective psychosis (Wing et al., 1990). Inclusion required a
normal physical and neurological examination and no history of
major head injury. Previous diagnoses of drug dependency
according to ICD as well as current recreational drug use were
accepted. A current diagnosis of drug dependency was an exclu-
sion criterion. Current drug status was measured by urine test
(Rapid Response, Jepsen HealthCare, Tune, Denmark). Patients
treated with antidepressant medication within the last month or
during the study period were excluded. Benzodiazepines and
sleep medication were allowed until 12 h prior to examination
days.

Duration of untreated illness (DUI) was defined as the period
in which the patient reported a continuous deterioration of func-
tioning due to disease-related symptoms (Crespo-Facorro et al.,
2007). Level of function was assessed with the Global
Assessment of Function (GAF) and the Clinical Global
Impression Scale (CGI) (Busner and Targum, 2007). Symptom
severity was assessed by trained raters using the Positive and
Negative Syndrome Scale (PANSS) (Kay et al., 1987). After com-
pleting all baseline examinations, patients commenced amisul-
pride monotherapy for 6 weeks. Dosing of amisulpride was
adjusted aiming to optimize clinical effect and minimize side
effects. Use of anticholinergic medication was not allowed.
Symptom remission after 6 weeks was assessed using the
Andreasen criteria (Andreasen et al., 2005).

Healthy controls matched on age, gender, and parental socio-
economic status were recruited from the community. Controls
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were assessed with a SCAN interview, and former or present psy-
chiatric illness, substance abuse, or first-degree relatives with psy-
chiatric diagnoses, were exclusion criteria. Demographic data are
presented in Table 1.

Cognition

A comprehensive neurocognitive test battery was used to assess all
participants, administered by research staff trained and supervised
in the standardized administration and scoring of the battery. We
included variables from the following neurocognitive tasks:
Danish Adult Reading Test (DART) (Nelson and O’Connell,
1978), Wechsler Adult Intelligence Scale (WAIS III) (Wechsler
Adult Intelligence Scale® – Third Edition n.d.), Brief Assessment
of Cognition in Schizophrenia (BACS) (Keefe et al., 2004), and
Cambridge Neuropsychological Test Automated Battery
(CANTAB) (Robbins et al., 1994), yielding a total of 25 cognitive
variables for the current study [listed in online Supplementary
Material (Table S1)].

Electrophysiology

The Copenhagen Psychophysiology Test Battery (CPTB) was used
to examine all participants (Düring et al., 2014, 2015). Auditory
stimuli were presented by a computer running ‘Presentation’
(Neurobehavioral Systems, Inc., Albany, NY, USA) software
(soundcard: Creative soundblaster 5.1, 2008 Creative Technology
Ltd, Singapore, Singapore). Stimuli were presented binaurally
through stereo insert earphones (Eartone ABR, 1996–2008
Interacoustics A/S, Assens, Denmark; and C and H Distributors
Inc, Milwaukee, WI, USA). To avoid cross-test influences, the
CPTB is always assessed in a fixed order, including PPI, P50
suppression, MMN, and selective attention paradigms, yielding a
total of 19 electrophysiological variables for the current study [listed
in online Supplementary Material (Table S1)].

Neuroanatomy

MRI scans were acquired with a Philips Achieva 3.0 T whole body
MRI scanner (Philips Healthcare, Best, The Netherlands) with an
eight-channel SENSE Head Coil (Invivo, Orlando, Florida, USA).

Structural MRI

The three-dimensional high-resolution T1-weighted images (repe-
tition time 10 ms, echo time 4.6 ms, flip angle 8°, voxel size 0.79 ×
0.79 × 0.80 mm) were acquired and processed through FSL pipe-
lines (Jenkinson et al., 2012) comprising the following steps: (1)
brain extraction; (2) brain segmentation using the ‘fslanat’ algo-
rithm, and resulting in gray and white matter partial volume
maps for each subject; (3) non-linear warping of structural images
to MNI standard space, and subsequent application of the trans-
formation matrices to the tissue maps; (4) modulation of the
warped maps using the Jacobian determinant in order to maintain
local gray matter volume during the non-linear warping. Finally,
regional gray matter volumes were extracted from each of the 48
anatomical regions per hemisphere derived from the Harvard–
Oxford cortical atlas as specified by FSL. The total brain volume
and relative ventricular volume were determined using the
FSL-SIENAX program. For the brain structural analyses, we a
priori applied the ROI approach since ROI analyses have been
widely applied in the field (Haijma et al., 2013), and we aimed to

optimize the external validity and reproducibility of the results.
These procedures yielded a total of 98 sMRI variables for the cur-
rent study [listed in online Supplementary Material (Table S1)].

Diffusion tensor imaging

Whole brain DTI images were acquired using single-shot
spin-echo echo-planar imaging and a total of 31 different diffu-
sion encodings [five diffusion unweighted (b = 0 s/mm2) and 30
diffusion weighted (b = 1000 s/mm2) non-collinear directions].
Acquired matrix size = 128 × 128 × 75; voxel dimensions =
1.88 × 1.88 mm × 2 (no slice gap); TR/TE = 7035/ 68 ms; flip
angle = 90°. Images were processing using the FSL library of
tools (Jenkinson et al., 2012). Diffusion parameter maps of frac-
tional anisotropy (FA), mean diffusivity (MD), parallel diffusivity
(λ1), radial diffusivity (λ23) and mode of anisotropy (MO) were
derived using DTIFIT as previously described (Ebdrup et al.,
2016). The mean values of these five diffusion parameters were
extracted from 20 regions (based on the JHU white matter tracto-
graphy atlas) and yielded a total of 100 DTI variables for the cur-
rent study [listed in online Supplementary Material (Table S1)].

Statistical methods

Statistical Package for the Social Sciences software (version 22,
SPSS Inc., USA) was used to analyze demographic and clinical
data. The distribution of continuous data was tested for normality
with the Shapiro–Wilk test. Data on age and years of education
were not normally distributed, and group comparisons were per-
formed non-parametrically with the Mann–Whitney U test.
Group differences in gender and socioeconomic status were tested
with Pearson’s χ2 test, and differences in abuse variables were
tested with Fisher’s exact test. Group differences in DART and
estimated total IQ from WAIS III were tested using two-sample
t tests with pooled variance estimates in MATLAB®.

Machine learning algorithms

We included participants with available data from all four modal-
ities. We allowed subjects to have missing data points in up to 12
variables across all modalities. Twelve patients and 13 healthy
controls had missing variables in the cognitive and electrophysio-
logical data. Missing data were imputed as part of the analysis
pipeline using K-nearest neighbor imputation with K = 3 (Bak
and Hansen, 2016). Imputation of missing data was performed
as part of the 100 random subsamples cross-validation (CV)
loop, and thus the imputation procedure was only performed
within the training set of a given split. We used a total of nine dif-
ferent configurations involving six machine learning algorithms:
naïve Bayes (nB), logistic regression, support vector machine
(SVM) (Cortes, 1995), decision tree (DT) (Breiman et al.,
1984), random forest (RF) (Breiman, 2001), and auto-sklearn
(AS) (Feurer et al., 2015). The algorithms were selected a priori
based on their common usage and their proposed strength in rela-
tively small datasets. To ensure comparability across all algo-
rithms and modalities, the same pipeline and set-up were used
for all analyses (Fig. 1).

Analysis pipeline

To estimate the generalization error, we used random subsamp-
ling CV (Varoquaux et al., 2017) with 100 stratified splits of
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patients and controls (Fig. 1). This approach ensured that all con-
figurations of algorithms were trained on the same data, and the
ratio between the two classes was similar for all splits. Therefore,
the performance of algorithms was evaluated on the same test
data. For each split, one-third of the data was used for testing
and two-thirds were used for training. All data imputation, feature
selection, model training, and optimization were based exclusively
on the training set of a given split. Logistic regression was used in
two configurations: with L1 regularization (LR_r) and without
regularization (LR). SVM was used in three configurations: one
with a linear kernel (SVM_l), one with a radial basis function ker-
nel using heuristic parameters (SVM_h), and one with optimized
parameters (SVM_o). An inner loop fivefold CV was used to opti-
mize model parameters (LR_r, SVM_o) or perform backwards

elimination feature selection (LR, SVM_l, SVM_h, DT).
Algorithms RF and AS have inherent parameter optimization,
and therefore these configurations required no inner loop CV.
See online Supplementary Material ‘Machine learning algorithms’
for details.

Strategy for analyses

To acquire unimodal estimates for the ability to separate patients
from healthy controls (i.e. the ‘diagnostic accuracy’), data from
each of the four modalities (cognition, electrophysiology, sMRI,
and DTI) were analyzed using each of the nine configurations
of machine learning algorithms yielding nine estimates per
modality (Fig. 2). In order to compare the contribution of

Table 1. Demographical and clinical data. Lifetime use of tobacco, alcohol, cannabis, stimulants, hallucinogens, and opioids were categorized according to an
ordinal five-item (0 = never tried/1 = tried few times/2 = use regularly/3 = harmful use/4 = dependency)

Schizophrenia Healthy controls

N Mean (SD) N Mean (SD) p

Age, years 46 25.0 (5.6) 58 24.79(5.68) 0.79a

Gender (m/f) 46 28/18 58 36/22 0.901b

Parental SES (a/b/c) 44 8/30/6 56 16/30/10 <0.001b

Years of education 45 12.5 (2.6) 56 14.58(2.60) <0.001a

Danish Adult Reading Test (DART)c 41 21.4 (9.7) 56 23.2 (6.3) 0.27d

Total IQ (WAIS III)e 41 −0.8 (1.5) 54 0.0 (1.0) 0.002d

Tobacco (0/1/2/3/4) 45 7/11/22/1/4 59 13/29/11/2/1 0.003f

Alcohol (0/1/2/3/4) 46 2/6/33/4/1 57 3/1/53/0/0 0.005f

Cannabis (0/1/2/3/4) 46 8/23/9/6/0 57 23/28/6/0/0 0.003f

Opioids (0/1/2/3/4) 46 38/8/0/0/0 56 52/4/0/0/0 0.132f

Stimulants (0/1/2/3/4) 46 27/14/5/0/0 56 47/9/0/0/0 0.003f

Hallucinogens (0/1/2/3/4) 45 38/7/0/0/0 57 53/3/0/0/0 0.105f

Other drugs (0/1/2/3/4) 43 40/3/0/0/0 56 54/2/0/0/0 0.65f

Benzodiazepines (0/1/2/3/4) 42 31/11/0/6/0 55 55/0/0/0/0 <0.001f

DUI, weeks 45 65.8 (70.5) – – –

CGI, severity 44 4.2 (0.7) – – –

GAF, symptom 44 40.9 (9.9) – – –

GAF, function 43 42.6 (11.1) – – –

PANSS, positive 46 20.1 (4.2) – – –

PANSS, negative 46 21.3 (7.9) – – –

PANSS, general 46 42.2 (9.4) – – –

PANSS, total 46 83.5 (17.2) – – –

Amisulpride, mg/day 32 248.4 (140.6) – – –

Remission (yes/no)g 34 11/23 – – –

SES, parental socioeconomic status; DUI, duration of untreated illness; CGI, Clinical Global Impression Scale; GAF, Global Assessment of Functioning; PANSS, Positive And Negative Syndrome
Scale.
aMann–Whitney U test.
bχ2.
cDanish Adult Reading Test (DART) (Nelson and O’Connell, 1978).
dTwo-sample t test with pooled variance estimates.
eA combined score based on four subtests from WAIS III: Wechsler Adult Intelligence Scale (Wechsler Adult Intelligence Scale® – Third Edition n.d.), presented as z-scores standardized from
the mean and standard deviation of the healthy control sample.
fFisher’s exact test.
gSymptom remission after 6 weeks according to Andreasen criteria (Andreasen et al., 2005).
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Fig. 1. Diagram of the multivariate analysis pipeline. Forty-six patients and 58 healthy controls were included in the baseline analyses. ‘Data’ refer to input variables
from cognition, electrophysiology, structural magnetic resonance imaging, and diffusion tensor imaging. For each of the 100 splits, 2/3 of subjects were used for
training and 1/3 of subjects were used for testing. Subjects with missing data were not used in test sets. Training data were scaled (zero mean, unit variance), and
the test sets were scaled using these parameters. Missing data were imputed using K-nearest neighbor imputation with K = 3 (Bak and Hansen, 2016), and only
subjects with complete data were included in the test sets. Finally, nine different configurations of machine learning algorithms were applied to predict diagnosis.
CV = cross-validation. See text for details.

Fig. 2. Unimodal diagnostic accuracies for cognition (Cog), electrophysiology (EEG), structural magnetic resonance imaging (sMRI), and diffusion tensor imaging
(DTI) for each of the nine different configurations of machine learning algorithms. X-axes show the accuracies (acc), and y-axes show the sum of correct classifica-
tions for each of the 100 random subsamples (see Fig. 1). Dotted vertical black line indicates chance accuracy (56%). With cognitive data, all nine configurations of
algorithms significantly classified ‘patient v. control’ ( p values = 0.001–0.009). No algorithms using EEG, sMRI, and DTI-data resulted in accuracies exceeding chance.
The nine different configuration of machine learning algorithms: nB, naïve Bayes; LR, logistic regression without regularization; LR_r, logistic regression with regu-
larization; SVM_l, support vector machine with linear kernel; SVM_h, SVM with heuristic parameters; SVM_o, SVM optimized through cross-validation; DT, decision
tree; RF, random forest; AS, auto-sklearn. See text for details.
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individual variables to these unimodal multivariate estimates, we
performed univariate t tests between patients and healthy controls
(Fig. 3). In order to estimate the multimodal diagnostic accuracy,
any modality, which significantly discriminated between patients
and healthy controls, was analyzed with all seven combinations in
an early integration of the remaining modalities, where variables
are concatenated to form larger combined modalities. Finally, we
explored if any modality predicted PANSS symptom remission
according to the Andreasen criteria (Andreasen et al., 2005).
Analyses of symptom remission were performed for patients
only, and for these analyses, a fifth ‘clinical modality’ was con-
structed. The clinical modality comprised basic demographic
and clinical features, which may influence on illness prognosis:
age, gender substance use, DUI, GAF (symptoms and function),
and PANSS subscores (positive, negative, and general symptoms).
To estimate prediction of symptom remission after 6 weeks of
amisulpride treatment, data from each of the five modalities
were analyzed using all nine configurations of algorithms via
the same analysis pipeline as described above (Fig. 1).

Results

Demographics

Forty-six patients and 58 healthy controls were included in the
current analyses. Groups were well matched on age, gender, but
parental socioeconomic status was lower in patients compared
with controls. Compared with controls, the patients had signifi-
cantly fewer years of education, and significantly higher use of
tobacco and recreational drugs, except for use of hallucinogens.
Patients were treated with amisulpride in an average dose of
248.4 mg/day for 6 weeks. After 6 weeks of amisulpride treatment,
11 out of 34 (32%) patients fulfilled remission criteria (Andreasen
et al., 2005) (Table 1).

Unimodal diagnostic accuracy

Since the two groups differed in size (46 patients and 58 healthy
controls), the ‘chance accuracy’ was 56% [(58/(46 + 58) × 100)].
The diagnostic accuracy of cognition ranged between 60% and

69% for all nine configurations of algorithms. A permutation
test using 1000 permutations showed that all configurations
using cognitive data significantly differentiated between patients
and controls ( p values ranging from 0.001 to 0.009) (see online
Supplementary Material, Table S1). The diagnostic accuracy for
electrophysiology, sMRI, and DTI ranged between 49% and
56% and did not exceed chance accuracy (Fig. 2).

The planned t tests showed that 11/25 of the cognitive vari-
ables survived Bonferroni correction (0.05/25 = 0.002) (Fig. 3).
The variables covered domains of IQ, working memory, motor
function, verbal fluency, processing speed, executive functions,
spatial working memory, and sustained attention (see online
Supplementary Material, Table S2 for specification of variables).
None of 19 electrophysiological, 3/98 sMRI, and 5/100 DTI
variables significantly differed between patients and controls at
p < 0.05; however, none survived after Bonferroni correction
(Fig. 3 and online Supplementary Material, Table S2).

Multimodal diagnostic accuracy

None of the multimodal analyses with cognition plus any com-
bination of one or more of the remaining modalities (electro-
physiology, sMRI, and DTI) revealed significantly higher
accuracies than cognition alone (accuracies ranging between
51% and 68%) (see online Supplementary Material, Table S1).

Prognostic ability

Using symptomatic remission (N = 11) v. non-remission (N = 23)
as a dichotomous outcome measure equals a ‘chance accuracy’ of
68% [(23/(11 + 23) × 100)]. None of themodalities predicted symp-
tom remission after 6 weeks above chance level: cognition, electro-
physiology, sMRI, and DTI predicted symptom remission at
accuracies ranging between 48% and 67%. The fifth ‘clinical vari-
able’predicted symptom remissionwith accuracies ranging between
51% and 67% (see online Supplementary Material, Table S3).

Discussion

To our knowledge, this is the first study to investigate the diagnos-
tic accuracy of machine learning algorithms using multimodal

Fig. 3. (a) Manhattan plot with univariate t tests of all variables along the x-axis [cognition (Cog), electrophysiology (EEG), structural magnetic resonance imaging
(sMRI), and diffusion tensor imaging (DTI)] and log-transformed p values along the y-axis. Lower dashed horizontal line indicates significance level of p = 0.05.
Upper dashed lines indicate the Bonferroni-corrected p value for each modality. (b) In colored horizontal lines, the fraction of data splits (see Fig. 1), where indi-
vidual variables were included in the final machine learning model, which determined the diagnostic accuracy (presented in Fig. 2). Specification of variables is
provided in online Supplementary Material. Only configurations of the six machine learning algorithms, which included feature selection, are shown. nB, naïve
Bayes; LR, logistic regression without regularization; LR_r, logistic regression with regularization; SVM_l, support vector machine with linear kernel; DT, decision
tree; RF, random forest.
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data in antipsychotic-naïve, first-episode schizophrenia patients.
Contrary to our expectations, we found that only cognitive data,
but no other modality, significantly discriminated patients from
healthy controls. Moreover, we did not find enhanced accuracies
by combining cognition with other modalities, and finally, none
of the modalities predicted symptom remission.

Based on cognitive data, all nine configurations of machine
learning algorithms could separate patients from healthy controls
with a statistically significant accuracy. Supervised machine learn-
ing algorithms model the interdependent pattern of variables,
which best separate the data with respect to the outcome (e.g.
‘schizophrenia’ or ‘healthy’). Our t tests indicated that patients
differed from controls on a broad spectrum of cognitive domains,
and the feature selection lines shown in Fig. 3b indicate that vari-
ables with lower p values were included more frequently in the
machine learning models. Hence, at initial diagnosis of schizo-
phrenia, cognitive deficits appear markedly more pronounced
than electrophysiological and neuroanatomical aberrations.
Interestingly, two previous multimodal studies in medicated
patients also indicated that cognitive parameters yielded higher
classification accuracies than sMRI (Karageorgiou et al., 2011),
and genotype, DTI, and fMRI (Pettersson-Yeo et al., 2013).
Cognitive deficits are not a part of the diagnostic criteria for
schizophrenia, although this has been discussed in the field before
the implementation of DSM-5 (Kahn and Keefe, 2013). Our find-
ings support resuming these discussions and examining the evi-
dence for including objective cognitive assessment into future
diagnostic systems.

The accuracies regarding neuroanatomical and electrophysio-
logical markers reported in this study are remarkably lower
than the accuracies reported in several previous studies. A recent
meta-analysis of 20 sMRI studies concluded that application of
multivariate algorithms could discriminate schizophrenia patients
from healthy controls with a sensitivity of 76% and a specificity of
79% (Kambeitz et al., 2015). Higher age and more psychotic
symptoms, which in turn may be associated with illness duration
and illness severity, more antipsychotic exposure, and more sub-
stance abuse, were identified as significant moderators. Moreover,
resting-state fMRI data were superior to sMRI in discriminating
schizophrenia patients from controls. In the current study,
patients were all antipsychotic-naïve, relatively young (mean age
of 25.0 years), and displayed moderate psychotic symptoms
(PANSS-positive symptoms of 20.1) (Table 1). Furthermore,
resting-state fMRI was not included. A previous study using elec-
trophysiological data from 16 schizophrenia patients and 31
healthy controls resulted in a correct classification rate of around
93%. Notably, different EEG measures were used than in the cur-
rent study, and a mean age of 36 years suggests that the patients
were chronically ill and medicated (Santos-Mayo et al., 2017).
Collectively, the limited clinical confounders in the current
study may have contributed to the low diagnostic accuracies of
sMRI and DTI, and electrophysiology.

Moreover, methodological differences may contribute to
explain the current findings. To optimize the external validity,
we applied a rigorous approach in our analysis pipeline.
Specifically, we used all available variables, i.e. no feature selection
was done prior to entering data into the analysis pipeline.
Generally, the studies, which have reported very high accuracies,
have first applied a statistical test to pre-select variables, which
discriminate between groups on the outcome measure for the spe-
cific dataset (e.g. Chu et al., 2016; Santos-Mayo et al., 2017). A
recent SVM study using sMRI cortical thickness and surface

data from 163 first-episode, antipsychotic-naïve patients (mean
age 23.5 years) and matched controls (mean age 23.6 years)
revealed a diagnostic accuracy of 81.8% and 85.0%, respectively,
for thickness and surface. In that study, the SVM input comprised
variables, which separated patients from controls on a t test
adjusted for multiple comparisons (Xiao et al., 2017).
Conversely, a recent machine learning study on voxel-based
MRI data from 229 schizophrenia patients and 220 healthy con-
trols from three independent datasets used no prior feature selec-
tion and reported low accuracies ranging between 55% and 73.5%
(Winterburn et al., 2017). Thus, pre-analysis feature selection may
provide higher accuracies at the expense of generalizability of the
results and should therefore be discouraged in studies aiming at
clinical translation.

Contrary to our expectations, we did not find added diagnostic
accuracy when combining cognition with other modalities.
Moreover, neither cognition nor our constructed ‘clinical variable’
predicted symptom remission after 6 weeks according to criteria
which were validated after 6 months of treatment (Andreasen
et al., 2005). Since the between-subject variability in our data is
large, but the group differences between antipsychotic-naïve
patients and healthy controls regarding electrophysiology and
neuroanatomy are subtle, our results encourage application of
multimodal, multivariate analyses in order to disentangle neuro-
biological distinct subgroups within cohorts of schizophrenia
patients. Specifically, multimodal, multivariate analyses may iden-
tify clinically meaningful subgroups of schizophrenia patient, e.g.
with regard to clinical trajectories (Bak et al., 2017). Finally, and
in line with the RDoC initiative, it is conceivable that indices of
clinical trajectories may expand beyond psychopathology also to
encompass more objective, biologically valid assessments.

Some strengths and limitations should be considered. At inclu-
sion, the patients were antipsychotic-naïve and as intervention we
used a relatively selective dopamine D2 receptor antagonist.
Therefore, our diagnostic accuracies reflect minimally confounded
estimates of neurobiological disturbances at the earliest stage of
schizophrenia. First-episode, antipsychotic-naïve patients are
challenging to recruit, and since we required close to complete
datasets from all participants on four modalities, the number of
included patients may have been too small for optimal modeling
of electrophysiology, sMRI, and DTI data. The four modalities
used in this study were a priori selected because our own eletro-
physiological (Düring et al., 2014, 2015) and DTI data (Ebdrup
et al., 2016) as well as abundant independent data have rather
consistently shown group differences between schizophrenia
patients and controls. Moreover, data on these four modalities
can be obtained by means of relatively standardized procedures,
which enhances the generalizability our study. As we have also
previously published group differences on this cohort in reward
processing (Nielsen et al., 2012a, 2012b), resting-state activity
(Anhøj et al., 2018), and striatal dopamine D2 receptor-binding
potentials (Wulff et al., 2015), inclusion of functional MRI or
neurochemical data may have given more positive results. In the
current study, we aimed at balancing measures with high clinical
generalizability on the largest possible dataset. Because of the
absence of standardized pipelines for more dynamic and
task-dependent measures, and because inclusion of additional
modalities would have reduced the number of participant with
full datasets, we a priori decided not to include fMRI and
neurochemical data in the current analyses. Nevertheless, across
all four modalities, our nine different configurations of machine
learning algorithms appeared to detect similar signals as the

2760 Bjørn H. Ebdrup et al.

https://doi.org/10.1017/S0033291718003781 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291718003781


conventional t tests (Fig. 3b). This overlap in signal provides
indirect validation of the applied methods and implies that multi-
variate algorithms are not a ‘black box’ (Castelvecchi, 2016). As
recommended in a recent meta-analysis of machine learning
classifications studies, we corrected for age and demographical
group differences (Neuhaus and Popescu, 2018). Nevertheless,
our modest sample size requires replication in an independent
sample, which was currently not available. Regarding prediction
of outcome, we only evaluated symptom remission with respect
to criteria, which were validated after 6 months of treatment
(Andreasen et al., 2005). Because our analyses of symptom remis-
sion were based on only 34 patients (11 patients were in remis-
sion), these results should also be interpreted cautiously since
we cannot exclude a Type 2 error.

The inclusion of all available data resulted in an unintended
group difference in parental socioeconomic status (Table 1).
There were no group differences in premorbid IQ (i.e. DART),
but significant group differences on estimated total IQ, with effect
sizes similar to previous findings in first-episode samples
(Mesholam-Gately et al., 2009), but still, these sociodemographic
differences cannot explain the marked group differences in
cognitive performance we see between groups. We allowed benzo-
diazepines on an ‘as needed’ basis until 12 h prior to examination
days to reduce anxiety and secure sleep. Therefore, we cannot
exclude an effect of benzodiazepines on our results; however,
since sleep restriction also negatively affects cognition (Lowe
et al., 2017), we judge the potential bias of benzodiazepines
minimal. Our comprehensive approach where we included all
available variables may have compromised the signal-to-noise
ratio. A priori selection of predefined candidate variables, i.e. to
make use of ‘domain knowledge’, could potentially have enhanced
our signal-to-noise ratio, and in turn our accuracies, without com-
promising the external validity. Moreover, for neuroanatomical
analyses, we included regions of interest. Although a voxel-based
approach may be more sensitive to global brain structural
aberrations, this was not the case in the recent large machine
learning study on voxel-based MRI data mentioned above
(Winterburn et al., 2017).

Visual inspection of the t tests presented in Fig. 3a show that
the magnitude of cognitive group differences is marked and
extensive (22/25 variables had p values <0.05), whereas only few
variables from electrophysiology, sMRI, and DTI had p values
<0.05. A more liberal correction for multiple comparisons than
the applied Bonferroni correction, e.g. the false discovery rate
ad modum Benjamini–Hochberg (Benjamini and Hochberg,
1995) would not have changed our overall conclusion that cogni-
tive deficits, compared with electrophysiological and regional
brain measures, are core features of schizophrenia at first clinical
presentation (Kahn and Keefe, 2013). Since we only investigated
one diagnostic category (i.e. schizophrenia), we cannot infer to
what extent the discriminative diagnostic patterns of cognitive
disturbances are specific to schizophrenia per se (Bora and
Pantelis, 2016).

In conclusion, this multivariate and multimodal proof-of-
concept study on antipsychotic-naïve patients showed that cogni-
tion, but not electrophysiological and neuroanatomical data, sig-
nificantly discriminated schizophrenia patients from healthy
controls. Overall, these findings add to the increasing call for cog-
nition to be included in the definition of schizophrenia. To bring
about the full potential of machine learning algorithms in first-
episode, antipsychotic-naïve schizophrenia patients, careful a
priori variable selection based on independent data as well as

inclusion of other modalities may be required. Machine learning
studies aiming at identification of clinically meaningful subgroups
of schizophrenia patients are encouraged.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291718003781.
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