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Abstract

Following up on a paper of Balamohan et al. [‘On the behavior of a variant of Hofstadter’s g-sequence’,
J. Integer Seq. 10 (2007)], we analyze a variant of Hofstadter’s Q-sequence and show that its frequency
sequence is 2-automatic. An automaton computing the sequence is explicitly given.
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1. Introduction

In his 1979 book Gdodel, Escher, Bach [7], Douglas Hofstadter introduced the sequence
Q(n) defined by the recursion

Q(n) = Q(n—Q(n—1)) + Q(n - Q(n - 2))

for n>2 and Q(1)=Q(2)=1. Although it has been studied extensively (for
example, [9]), still little is known about its behavior, and it is not mentioned in standard
books about recurrences (for example, [6]). It is sequence AO005185 in Sloane’s
Encyclopedia [11].

Twenty years later, Hofstadter and Huber introduced a family of sequences
analogous to the Q-sequence, and defined by the recursion

Qr,s(n) = Qr,s(n - Qr,s(n - I")) + Qr,s(n - Qr,s(n - S))

for n > s > r (private communication cited in [4]). The case r = 1, s = 4 is of particular
interest.
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TasLE 1. The sequence V.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Vwp) 11 1 1 2 3 4 5 5 6 6 7 8 &8 9 9 10
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Recently, Balamohan et al. [4] gave a nearly complete analysis of the sequence Q; 4
(called V in their paper). It is defined by

Vi) =v2)=V@3)=V#) =1
Vin):=Vin-Vn-1)+Vn-Vn-4))

for n > 4. Table 1 is a short table of the sequence V (sequence A063882 in Sloane’s
Encyclopedia [11]).

Among the results of Balamohan, Kuznetsov, and Tanny is a precise description of
the ‘frequency’ sequence F(n) defined by

F(a) :=#n:Vn) =a}.

Table 2 is a short table of the sequence F (sequence A132157 in Sloane’s
Encyclopedia [11]). In particular, they proved the following theorem [4, Lemmas
13-19 and Table 5].

Traeorem 1.1 (Balamohan, Kuznetsov, Tanny). There exist two (explicit) maps g, h,
with g, h:{1,2, 3}4 — {1, 2, 3}, such that, forall a >3

FQRa)=g(F(a-2),F(a-1),F(a), F(a+ 1)),
FQRa+1)=h(F(a-2),F(a-1),F(a), F(a +1)).

(We note that in [4, Lemma 13], the quantifiers a > 3 for the equality F(2a) = 2 and
a > 4 for the equality F(2a + 1) = 2 should have been mentioned.)

In this paper we prove that the sequence (F(n)),>; is 2-automatic, which means
essentially that F'(n) can be computed ‘in a simple way’ from the base-2 representation
of n. In particular, it can be computed in O(log n) time. Furthermore, we give the
automaton explicitly. For definitions and properties of automatic sequences, the reader
is referred to [2]. For some recent related papers, see [5, 8, 10].

2. The main result

We begin this section with a general result on automatic sequences. Before stating
the theorem we need some notation.
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Dermvition 2.1. Let U = (U(n)),»o be a sequence. Let @ be an integer. We let U®
denote the sequence defined by

U%n):=Um + ),
where n > —a. For positive integers g, i, j, let U,; ; be the subsequence of U defined

by
Ugij(n)=U(g'n+ j),
where n > 0.
For integers ¢ > 2 and ¢ > 1, let m(q, t) = ¢'*! — 1 and s(q, 1) = (¢"*' — 1)/(g — 1), so
that s(g, t) counts the number of integer pairs (i, j) with0<i<tand0< j<g' —1.In

the proof below it will be convenient to fix some ordering of such pairs (i, j) and then
enumerate the corresponding sequences U, ; jas Uy = U, Us, ..., Uygy.

THeEOREM 2.2. Let (U(n)),»0 be a sequence with values in a finite set A and let g > 2 be
an integer. Then (U(n)),>o is qg-automatic if there exist nonnegative integers t, a, b, n
and a family { fj}?:(g’t) of functions from the set A+ to A such that for all
j €10, m(q, t)] and all n > ny,

Ug™*'n+j)
= f{U ), ..., U (n), U(n), U'(n), . .., U (n), Us(n), Us(n), . . ., Uggn(n)).

Proor. To prove that the sequence U = (U(n)),»o is g-automatic, it suffices to find a
finite set of sequences & that contains U, such that if V = (V(n)),>o belongs to &, then,
for any r € [0, g — 1], the sequence (V(gn + r)),>0 also belongs to &. Fix two positive
integers K and L such that K > max(ng, g(a+ 1)/(g—1)) and L>g(b+ 1)/(qg - 1).
Recall that the sequence U} is defined by U éf(n) =Ue(n+ k).

Let & be the (finite) set of sequences defined by

Ve& e aArell, s(g, 0], ke [-K, L], Vn = A, V(n) = Ukn).

Now let V be a sequence in & Take r€[0,qg — 1]. There exist £ €[1, s(g, t)] and
k € [-K, L] such that for all n > A,

Vign+r)=Ukgn+r)=Ulgn +r+k).
Hence, for some i < tand j€[0,q - 1],
Vign+r) = U(qi(qn +r+k)+j).

By the division algorithm, write ¢'(r + k) + j=¢"'x +y, with x€Z and 0 <y <
¢! — 1 (so that, in particular, y < m(q, £)). Then

Vign+r) =UG"  (n+ x) + ).
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Note that _ 4 ' A
g Ix<g M x+y=¢g(r++j<qdr+k+1)
and . _ ' '
g x=gr+k+j-y>qr+k —q"".
Hence,

(r+k—-q)/g<x<@r+k+1)/q.
We distinguish two cases.
Case 1. i <t. Theni+ 1 <t. Thus there exists ¢’ € [1, s(g, #)] such that, for n > A,
Vign+r)=U@ " (n+x) +y) = Up(n+ x) = Uy (n).

Now
x>(r+k-q))qg=2(r-K-q/q=2(-K-q)/q=-K

(since K > g(a+1)/(g—1)=q/(g— 1)), and
x<(@r+k+1)/g<(g+L)/g<L

(since L>q(b+1)/(q—1)>q/(q — 1)). This shows that the sequence (V(gn + r)),s0
belongs to &.

Case 2. i=t. Then i+ 1 =1+ 1. From the hypothesis and the condition K > ny, we
can write, for n > K,

Vign+1r)=U(g" (n+x) +y)
= [U W), .. U ), U™ (), UM (), US(n), US(), - . ., U ().

To prove that the sequence (V(gn + r)),>0 belongs to &, it suffices to prove that all
sequences UP for 8 € [x — a, x + b] and all sequences Uy for C €1, (¢ = 1)/(g- D]
belong to &, and to use composition of maps. But

B=2x—a>r+k—-q)/g—a>(-K-q)/g—a>-K
(recall that K > g(a + 1)/(g — 1)) and
B<x+b<(r+k+1)/g+b<(g+L)/g+b<L

(recall that K > g(b + 1)/(¢ — 1)). This implies that all sequences occurring in the
arguments of f, above belong to &. O

Remark 2.3. Theorem 2.2 above is similar to (but different from) [3, Theorem 6, p. 5]
on k-regular sequences. That theorem implies Theorem 2.2 above in the case where
the maps f; are linear.

CoROLLARY 2.4. The sequence F = (F(n)),>o is 2-automatic.

Proor. It suffices to use the theorem recalled in the first section, after having extended
the sequence F by F(0) = 0. m|
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3. An explicit automaton

In this section we provide an explicit automaton' to calculate the sequence F.

The automaton is constructed in two stages. First, we give an automaton A with the
property that reading n in base 2 takes us to a state ¢ with the property that the four
values F(n + a) for —2 < a < 1 are completely determined by g. Next, we show that A
can be minimized to give an automaton B computing F'(n). We remark that we assume
throughout that the automaton reads the ordinary base-2 representation of n from ‘left
to right’, ending at the least significant digit, although we do allow the possibility of
leading zeros at the start.

Let us start with the description of A = (Q, Z, A, 6, go, 7). The machine A has 33
states with strings as names; £ =1{0,1}; A=1{0,1,2,3, 4)* go=e€. The transition
function ¢ and the output map 7 are given in Table 3.

We introduce some notation. Let [w] denote the integer represented by the binary
string w in base 2. Thus, for example, [00110] =[110] =6. Note that [e] =0,
where € denotes the empty string. If F is our sequence defined above, then by
F(a..a+i—-1) we mean the string of length i given by the values of the function F'
ata,a+1,...,a+i—1.

Our intent is that if w is a binary string, then 7(6(go, w)) is the string of length four
given by F(n — 2..n + 1), where n = [w]. (Note: we define F(0) = F(—1) = F(-2) =0.)

To prove that this automaton computes F(n) correctly, it suffices to show that:

(a) for each state g we have 7(q) = F([q] — 2)F([q] — D)F([q])F([¢] + 1); and
(b) if p=403(q, a) for two states p, g € Q and a € {0, 1}, then F([px]) = F([gax]) for
all strings x.

Part (a) can be verified by a computation, which we omit. For example,
since [111001111] =463, the claim 7(111001111) = 2133 means F(461..464) = 2133,
which can easily be checked.

Part (b) requires a tedious simultaneous induction on all the assertions, by induction
on |x|. Not surprisingly, we omit most of the details and just prove a single
representative case.

Consider the transition 6(100, 1) = 110. Here we must prove that

F([1001x]) = F([110x]) 3.1)

for all strings x. We do so by induction on x. The base case is x = €, and we have
F([1001]) = F(9) =2 and F([110]) = F(6) = 2.

For the induction step, we use the fact that [4, Table 5] shows that F(2a) and
F(Q2a + 1) are completely determined by F(a —2), F(a— 1), F(a), and F(a+1). It
thus suffices to check that F([1001x] + a) = F([110x] + a) for -2 <a < 1; doing so
will then prove (3.1) for x0 and x1, thus completing the induction.

The only cases that require any computation are when [x] =0 and a = -1, -2, or
[x] =1 and a = -2, or x is a number of the form 2/ — 1 for some j > 1 and a = 1.

! In honor of Alf van der Poorten, we cannot resist quoting Voltaire: ‘Impuissantes machines/Automates
pensants mus par des mains divines’.
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TasLE 3. The automaton A.

q 0(g, 0) o(g, 1) 7(q)

€ € 1 0004

1 10 11 0041

10 100 101 0411
11 110 111 4111
100 1000 110 1112
101 1010 1011 1122
110 1100 1101 1221
111 1110 110 2212
1000 1010 1011 2122
1010 1110 10101 2213
1011 10110 10111 2132
1100 1101 1110 1321
1101 11010 11011 3212
1110 11100 11101 2122
10101 101010 101011 1223
10110 10110 10111 2232
10111 1101 1110 2321
11010 101010 110101 1222
11011 111 1000 2221
11100 11010 111001 2213
10111 111010 10111 2132
101010 1010100 11101 1322
101011 101010 101011 3223
110101 1100 1101 3221
111001 1010 1110011 2223
111010 110100 1110101 2232
1010100 11010 111001 3213
1110011 10110 11100111 2133
1110100 11101000 10111 1332
1110101 1101 1110 3321

11100111 1010100 111001111 2323
11101000 110100 1110101 3232
111001111 111010 11100111 2133

Case 1. x =0/ for some j> 0. If j =0 then this is the assertion that F([1001] + a) =
F([110] + a) for =2 <a < 1, which is the same as the claim that F(7..10) = F(4..7).
But F(7..10) = 1221 = F(4..7).

Otherwise j>1. Then [1001x] — 1 =[10010/] — 1 =[10001/] and [110x] — 1=
[1100/] = 1 =[1011/]. Now by induction we have F([10001/]) = F([100011/~']) =
F([10111/717) = F([1011/]), as desired.

Similarly, [1001x] — 2 = [10010/] — 2 = [1001/710]. Also, [110x] — 2 = [1100/] —
2 =[101/0]. Then by induction we have F([1001/7'0]) = F([10011/720]) =
F([10111/720]) = F([101/0]), as desired.
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TaBLE 4. The automaton B.

q (g, 0) @l T
€ € 1 0
1 10 11 4
10 100 101 1
11 110 111 1
100 101 110 1
101 1010 1011 2
111 1110 110 1
1010 1110 10101 1
1011 1011 1100 3
1100 1101 1110 2
1101 11010 11011 1
1110 11100 1011 2
10101 1110 10101 2
11010 1110 110 2
11011 111 101 2
11100 11010 111001 1
111001 1010 1110011 2
110011 1011 11100111 3

11100111 11100 1110011

N8}

Case 2. x=07/1 for some j>0. Then [1001x] —2=[10010/1] -2 =[10001/*1].
Also [110x] =2 =[1100/1] — 2 =[101/*?]. By induction we have F([10001/*']) =
F([1000117]) = F([101117]) = F([1017*], as desired.

Case 3. x=1/ for some j>1. Then [1001x] + 1 =[1010/*']. Similarly [110x] +
1 =[1101/]+ 1 =[1110/]. By induction we have F([1010/*']) = F([101000/~']) =
F([111007'7) = F([11107]), as desired.

This completes the proof of correctness of a single transition.

Ultimately, we are not really interested in computing 7(g), but only the image of
7(g) formed by extracting the third component, which is the one corresponding to
F(n). This means that we can replace 7 by 7/, which is the projection of 7 along the
third component. In doing so some of the states of A become equivalent to other states.
We can now use the standard minimization algorithm for automata to produce the 20-
state minimal automaton B = (Q’, %, A, &', go, ') computing F(n). Table 4 gives the
names of the states of Q, and ¢’ and 7’ for these states.

4. Concluding remarks

It would be interesting to know whether the first difference sequence of the variant
of Hofstadter’s, that is, the sequence (V(n + 1) — V(n)),»0, is also 2-automatic. We
already know that it takes only finitely many values [4, Theorem 1, p. 5]. Of course
it might well be the case that this sequence is not automatic: in a very different
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context, think of the classical Thue—Morse sequence which is 2-automatic, but whose
run-length sequence is not [1]. It would be also interesting to determine for which
sequences O, (with the notation in the introduction) the frequency sequence is
automatic.
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