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Droplet coalescence is an essential multiphase flow process in nature and industry. For the
inviscid coalescence of two spherical droplets, our experiment shows that the classical 1/2
power-law scaling for equal-size droplets still holds for the unequal-size situation of small
size ratios, but it diverges as the size ratio increases. Employing an energy balance analysis,
we develop the first theory for asymmetric droplet coalescence, yielding a solution that
collapses all experimental data of different size ratios. This confirms the physical relevance
of the new set of length and time scales given by the theory. The functionality of the solu-
tion reveals an exponential dependence of the bridge’s radial growth on time, implying a
scaling-free nature. Nevertheless, the small-time asymptote of the model is able to recover
the classical power-law scaling, so that the actual bridge evolution still follows the scaling
law asymptotically in a wide parameter space. Further analysis suggests that the scaling-
free evolution behaviour emerges only at late coalescence time and large size ratios.

Key words: breakup/coalescence

1. Introduction
Droplet coalescence (Eggers, Lister & Stone 1999; Aarts et al. 2005; Kavehpour
2015; Eggers, Sprittles & Snoeijer 2025) ubiquitously exists in numerous natural and
industrial processes, such as rain drop formation (Grabowski & Wang 2013), fuel spray
(Qian & Law 1997), sintering (Pokluda, Bellehumeur & Vlachopoulos 1997), emulsions
†These two authors contributed equally.
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(Keiser et al. 2017), inkjet printing (Lohse 2022), etc. The coalescence commences upon
the initial contact or impact of droplets, followed by the formation of a thin liquid bridge
between the two merging liquid–gas interfaces. The liquid bridge then undergoes a rapid
outward expansion, driven by a large capillary pressure (or surface tension) exerted on the
high-curvature bridge interface.

Extensive interest has been drawn to understand such a coalescence motion in the most
basic situation – the momentumless coalescence of a pair of liquid droplets (Eggers et al.
1999; Aarts et al. 2005; Thoroddsen, Takehara & Etoh 2005; Paulsen, Burton & Nagel
2011; Zhang & Law 2011; Paulsen et al. 2014; Kavehpour 2015; Eggers et al. 2025).
To describe the liquid-bridge evolution in the inviscid (or inertial) regime, where the
liquid–gas interface movement is dominated by a balanced effect between surface tension
and fluid inertia, Eggers et al. (1999) first derived the well-known scaling theory of
R ∼ t1/2 between the liquid-bridge radius R and time t . This 1/2 power-law scaling was
later corroborated by numerous experimental (Wu, Cubaud & Ho 2004; Aarts et al. 2005;
Thoroddsen et al. 2005; Fezzaa & Wang 2008; Case 2009) and numerical (Duchemin,
Eggers & Josseran 2003; Burton & Taborek 2007; Pothier & Lewis 2012; Sprittles &
Shikhmurzaev 2012; Gross et al. 2013) studies. On the other hand, the bridge evolution
is better modeled by a linear scaling (Aarts et al. 2005; Thoroddsen et al. 2005; Yao
et al. 2005; Burton & Taborek 2007; Paulsen et al. 2011) in the viscous regime, where the
surface tension serves to overcome the viscous stress. The crossover (or transition) (Burton
& Taborek 2007) between the viscous and inertial regimes has also attracted considerable
interest, from the discovery of a master curve for both regimes (Paulsen et al. 2011; Paulsen
2013) to the development of theoretical models justifying the underlying universality (Xia,
He & Zhang 2019; Hack et al. 2020).

Previous research on binary droplet coalescence revolves mainly around two equal-
size droplets. However, less attention has been given to droplet coalescence with size
disparities, despite its higher relevance to reality. Among the existing works involving
the coalescence of unequal-size droplets (Anilkumar, Lee & Wang 1991; Blanchette 2010;
Liu et al. 2013; Sun et al. 2015; Tang et al. 2016; Xia et al. 2017; Ray et al. 2023), the
main focus was on the effect of internal mixing or the coalescence outcome facilitated by
the breaking of symmetry. Regarding the evolution of the liquid bridge, it is evident from
our previous work (Xia et al. 2017) that the bridge surface shows an asymmetric growth –
the bridge interface becomes tilted as it expands out. Yet, little quantitative study exists on
the liquid-bridge evolution of unequal-size droplet coalescence. Especially, an intriguing
question is whether a scaling law still exists in the asymmetric coalescence scenario.

In this work, we first conduct an experiment to resolve the bridge’s evolution process of
droplet coalescence for various size ratios. Then, based on understanding the liquid-bridge
configuration, we obtain several key correlations of the bridge’s geometry by assuming
‘small bridge’ and ‘arc-shaped bridge interface’. Further employing an energy balance
analysis, we are able to derive the first analytical solution for the radial movement of the
liquid bridge between two coalescing droplets of distinct sizes. The performance of this
model is testified through the comparison with experimental data.

2. Experimental approach and observations
To have a basic understanding of the coalescence of two unequal-size droplets, we first
conduct an experiment to resolve the bridge’s temporal evolution for droplet pairs of
various liquid properties and size ratios. Our experiment employs the classical sessile-
pendant approach for droplet coalescence, similar to those reported previously (Aarts
et al. 2005; Thoroddsen et al. 2005; Fezzaa & Wang 2008; Case 2009). A schematic of
the set-up is illustrated in figure 1(a). During each experimental run, a sessile droplet
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Figure 1. (a) Schematic of the experimental set-up, (b) image of a pair of sessile and pendant droplets, and
(c) zoomed-in detail of the liquid bridge. Here, P1 and P2 are the intersection points corresponding to the two
characteristic radii, RS and RL .

with a diameter of 1–6 mm is first generated by a syringe pump (Longer Precision Pump)
and placed on a super-hydrophobic surface (acrylic coated with a mixture of nano silica,
silicone resin and ethanol), yielding a contact angle of ∼140◦ and a near-spherical upper
part as depicted in figure 1(b). Then, the syringe pump generates a smaller-size pendant
droplet (1–2 mm in diameter), which is attached to the needle tip. The size disparity is
quantified by the droplet size ratio, Δ = DL/DS , where DS and DL are the diameters
of the small and large droplets, respectively. In this experiment, the variation range of
Δ is between 1.0 and 5.0. Subsequently, the merging process is initiated by actuating an
automatic lifting platform (Winner Optics) which holds the super-hydrophobic surface,
slowly bringing the sessile droplet into contact with the pendant droplet. The platform
rises at a quite low speed of approximately 10 μm s–1 so that the gas-film flow has a
negligible influence on the initial droplet coalescence (Case & Nagel 2008; Case 2009;
Paulsen et al. 2011). Based on the work of Zhang & Law (2011), the van der Waals
force driving the interface merging becomes dominant when the gap (h) between the two
interfaces closes down to O(10−8) m. Based on their theory, the gas-film pressure of this
experiment is estimated to be O(10) Pa for h = 10−8 m, which is much smaller than the
capillary pressure of O(102) Pa; this means that the gas-film pressure is too small to cause
significant interface deformation prior to the coalescence onset.

A high-speed camera (Photron SA-Z) integrated with a long-distance microscope
(Questar QM100) is used to capture time-resolved shadowgraph images of the merging
droplets. The camera operates at 150 000 frames per second (f.p.s.) with a spatial
resolution of 384 × 256 pixels and a field of view of 2.04 × 1.36 mm2, corresponding to
a resolution of 5.3 μm pixel–1. The initial time for the coalescence onset is defined based
on the first frame showing apparent droplet contact and formation of a liquid bridge. As
the shutter speed is set at 1/197 647 s, this yields an uncertainty of ±2.53 × 10−6 s in
measuring the coalescence time. The droplet diameter is determined at the initial state
prior to the coalescence, based on fitting an arc to three arbitrarily selected points on each
droplet contour. The uncertainty associated with the diameter measurement is estimated
to be within ±3 %.
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Parameters Water 40 wt % Glycerol 60 wt % Glycerol

DL (mm) 1.98 2.20 2.84 4.90 5.60 4.07 4.19 4.31 3.31 6.11 6.47 3.09 4.75 3.38
DS (mm) 1.90 1.93 1.76 1.79 1.72 1.06 1.00 0.87 2.16 2.15 1.97 1.97 1.81 1.07
Δ 1.0 1.1 1.6 2.7 3.3 3.8 4.2 5.0 1.5 2.8 3.3 1.6 2.6 3.2
Oh (×10−3) 2.7 2.7 2.8 2.8 2.8 3.6 3.7 4.0 8.9 8.9 9.3 27.9 29.1 37.9

Table 1. Parameters (DL , DS , Δ and Oh) of all experimental cases, sorted in ascending order of Δ for each
fluid type. Note that two significant digits are adopted in the actual Δ calculations, e.g. Δ = 1.0 should
be 1.04.

Next, the radius of the liquid bridge is defined based on the experimental image.
Figure 1(c) illustrates the zoomed-in detail of a representative liquid bridge, exhibiting a
distinct asymmetric bridge interface. As such, we can define two characteristic radii of the
droplet bridge, RS and RL , respectively as the radial distances from the two points, P1 and
P2, where the bridge interface intersects the contours of the initial droplets (denoted by the
white-dashed lines), to the axis of symmetry. Then, the characteristic radius of the circular
bridge, R, is defined as R = (RS + RL)/2. Considering the uncertainties in estimating the
initial droplet diameters, the error propagates in determining the intersection points P1
and P2, yielding an uncertainty in the range of ±0.1 % to ±1 % in the R calculation. Note
the definition of R differs from the equal-size situation, for which the bridge radius is
typically defined as the minimum radial distance of the bridge interface to the centre axis,
marked by R0 in figure 1(c). Given the concave shape of the interface, R is slightly larger
than R0 in the unequal-size coalescence (see figure S1 of the supplementary material for
a quantitative comparison available at https://doi.org/10.1017/jfm.2025.353).

To account for the effect of varying liquid properties, i.e. density ρl , dynamic viscosity
μl and surface tension σ , we adopt water and two aqueous glycerol solutions with 40 wt %
and 60 wt % glycerol. These liquids correspond to ρ = 1000, 1100 and 1150 kg m−3,
μ = 1.002, 3.630 and 10.80 mPa s, and σ = 72.8, 70.0 and 66.0 mN m−1, respectively.
The different liquids can be characterised by the non-dimensional Ohnesorge number,
Oh = μl(ρlσ DS)

−1/2. In this experiment, Oh varies in the range of 10−3–10−2, which
belongs to the inviscid or inertia coalescence regime (Xia et al. 2019). The test parameters
for all cases are characterised in terms of Δ and Oh, as listed in table 1. The corresponding
coalescence images are included in figures S2–S4 of the supplementary material.

The image sequences for representative droplet coalescence cases are presented in
figure 2(a–c), where the droplet interface contours corresponding to the different snapshots
are extracted and overlapped in figure 2(d–f ). We observe from figures 2(e) and 2( f ) that
the liquid bridge displays a notable asymmetry for Δ > 1, rendering an inclined bridge
interface with RL > RS , which becomes more prominent as the bridge expands. As Oh
increases from 0.0028 to 0.0093, the bridge profiles in figure 2(f ) follow the original
droplet contour more closely than those in figure 2(e), as the ripple-like structures on the
bridge’s upper and lower surfaces tend to be inhibited. These ripples can be understood
as capillary waves developing along the droplet surface, owing to the perturbation of the
radially expanding liquid bridge, which can be damped by enhanced viscosity.

3. Theoretical model

3.1. Assumptions and correlations
To understand the distinct scaling behaviours in unequal-size droplet coalescence, we
next introduce a model for two merging droplets of different but comparable sizes
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Figure 2. (a–c) Image sequences of the droplet coalescence process of three different cases and (d–f )
evolutions of the liquid-bridge contours extracted from the images in (a–c), respectively.

(i.e. Δ ∼ O(1), RL/RS ∼ O(1) and θL/θS ∼ O(1)). A simplified geometry of the liquid-
bridge interface is presented in figure 3(a), based on which two physical assumptions can
be made.

(i) ‘small bridge’, meaning that the characteristic radii of the bridge, RS and RL , are
much smaller than the droplet diameters, i.e. RS/DS ∼ o(1) and RL/DL ∼ o(1). This is
clearly satisfied during the early-stage coalescence.

(ii) ‘arc-shaped bridge interface’, meaning the interface section between P1 and P2 can
be approximated by an arc of the same curvature, where the pressure difference Δp is
evenly distributed. As such, we can define the bridge’s principle normal direction np as
that pointing from the arc midpoint to the arc centre. This assumption can be considered a
reasonable first approximation.

Several geometric correlations can be deduced from the coalescence model in
figure 3(a). We begin with two basic ones:

RS/DS = 1
2

sin (2θS) = θS − O(θ3
S),

RL/DL = 1
2

sin (2θL) = θL − O(θ3
L). (3.1)

Under assumption (i), both θS and θL are of o(1), so the higher-order terms in (3.1) can be
neglected.
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Figure 3. (a) Zoomed-in schematics of the liquid-bridge interface between two unequal-size merging droplets.
The red arrows represent the forces applied over the bridge interface, and the green arrow indicates the overall
movement of the interface. (b) Three main surfaces (AS , AL and AB ) with significant area changes, respectively
corresponding to the three arc segments, CS , CL and CB , in (a).

A key characteristic of the unequal-size coalescence, which differs from the equal-size
situation, is the tilted bridge interface and the misaligned bridge movement from the radial
direction, as delineated in figure 3(a). This tilted interface results from the force balance
across the interface. Given the arc shape of the bridge interface according to assumption
(ii), the total surface stress (�p + τ ) has a symmetric distribution with respect to the arc
midpoint, where τ = 2μS is the viscous stress (S is the strain-rate tensor). So the bridge’s
principle normal direction np is in line with the integral of the total surface stress over
the bridge interface, which is balanced by the surface tension σ pulling at its both ends
(P1 and P2). Since the two surface tensions are of the same magnitude, np must also be in
line with the angular bisector of these two forces. Accordingly, the tilting angle (θ ) of the
bridge interface satisfies a simple geometric correlation:

θ = θS − θL . (3.2)

As θS and θL are of o(1), θ is also of o(1) and is thereby treated as the ‘small parameter’
in this model.

The width of the bridge (S), defined as the axial distance between P1 and P2, has the
correlation

S ≈ RSθS + RLθL . (3.3)

Furthermore, the interface geometry in figure 3(a) satisfies RL − RS = S tan θ ≈ Sθ ,
which can be used to derive (3.2) and (3.3) as

θ ≈
(

D−1
S − D−1

L

)
R, (3.4)

S ≈
(

D−1
S + D−1

L

)
R2. (3.5)

The detailed derivations of (3.3)–(3.5) are provided in the supplementary material.
With the symmetrically distributed total surface stress and the evenly distributed �p

over the arc-shaped bridge interface (assumption (ii)) in figure 3(a), it can be implied that
the viscous stress (τ ) also has a symmetric distribution with respect to the arc midpoint.
It follows that the liquid-side velocity must also be symmetrically distributed over the
bridge interface, so that the overall bridge movement is in line with its principle normal
direction np. This has significant physical implications. Consider the very early stage of
coalescence when RS ≈ RL , (3.4) dictates that θ is a positive value. This explains why
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the bridge movement is inclined towards the smaller droplet and why RS is smaller than
RL from the beginning. Thus, the bridge interface movement can be described by an
essential kinematic relationship, dR/dt = V cos θ , where V is the velocity at which the
bridge interface expands radially. Applying Taylor expansion, it takes the form

dR

dt
≈ V

(
1 − θ2

2

)
. (3.6)

Note that (3.6) recovers the equal-size coalescence kinematics with vanishing θ .

3.2. Energy balance analysis
From the energy conservation perspective, the movement of the liquid entrained by the
expanding bridge is driven by the rapid discharge of the surface energy, which can be
formulated as �Es + �Ek ≈ 0, where �Es and �Ek , respectively, represent the changes
in surface and kinetic energies from the initial state of coalescence onset. Note this only
applies to the inviscid-dominant regime (Oh ∼ o(1)) with negligible viscous dissipation,
which is valid for the present experiment.

According to figure 3(b), the change in surface energy can be estimated as �Es =
(−AS − AL + AB)σ , where AS , AL and AB are the main surfaces with varying areas.
It can be further derived as

�Es ≈ −πD2
Sθ

2
Sσ − πD2

Lθ2
Lσ + πS(RS + RL)σ, (3.7)

where the third term is one order smaller than the first two terms and can be dropped off
(see supplementary material for details). Additionally, �Ek can be estimated as

�Ek ≈ C

2
πρl R2SV 2, (3.8)

where C is a prefactor related to the flow entrainment by the liquid bridge. Equations (3.7)
and (3.8) are almost identical to those for the equal-size scenario, except for the terms
relating to the size disparity.

With S and V given by (3.5) and (3.6), respectively, we can apply (3.7) and (3.8) to
derive the energy balance as

1
1 − β R2/2

dR

dt
≈ γ

R
, (3.9)

where β = (D−1
S − D−1

L )2 and γ = (4σ DS)
1/2[Cρl(1 + Δ−1)]−1/2. Given the initial

condition R(t = 0) = 0, (3.9) has the solution, R2 ≈ (2 − 2e−βγ t )β−1, with the non-
dimensional form

R∗2 ≈ 2 − 2e−t∗, (3.10)

where R∗ = Rβ1/2 and t∗ = tβγ . Interestingly, the bridge evolution governed by (3.10) no
longer has a power-law scaling between R and t .

It is worth discussing the features of this solution. Letting Δ → 1 in (3.10), we have
β → 0 and R2 ≈ 2[1 − (1 − βγ t)]/β = 2γ t . This means that the present model is able to
recover the inviscid scaling law of R ∼ t1/2 in the equal-size limit. Likewise, we attain
R∗2 ≈ 2t∗ when t∗ → 0, suggesting that in practice the power-law scaling still holds for
the early-stage coalescence of unequal-size droplets, owing to the asymmetric effect being
negligible. When t∗ → ∞, it predicts R∗2 ≈ 2, which corresponds to an up-limit radius as
if the bridge movement could turn continuously from radial to axial. It should be noted,
however, the limiting R in reality is confined by the actual droplet sizes.
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Figure 4. Effect of Δ on the scaling of R2 ∼ t . The bridge evolution images for all cases are reported in the
supplementary material.

3.3. Model validation and discussion
Before verifying the proposed theory, we first check whether the classical scaling
law of R ∼ t1/2 holds for unequal-size droplet coalescence, by plotting the time
sequence data of the liquid-bridge radius for various Δ and Oh in the parameter space
[(8σ/(ρD3

S))
1/2t, (2R/DS)

2] (Duchemin et al. 2003; Aarts et al. 2005) in figure 4. The
result indicates that the R2 ∼ t scaling is approximately valid for most cases. However,
as Δ increases, there is an apparent upward drift of data from the baseline of Δ = 1.0,
which is associated with an increase of the scaling prefactor from 1.25 to 2.65. Note that,
in terms of the scaling relation of R ∼ t1/2, where R is scaled by DS/2 and t is scaled by
τi = (ρD3

S/(8σ))1/2, the two corresponding prefactors are 1.12 and 1.63, respectively. The
latter, marking the up-limit of the large-Δ cases, is significantly higher than those reported
in previous equal-size experiments (Aarts et al. 2005). This can be physically understood in
that the presence of a larger droplet enhances the expansion speed of the bridge interface.
Furthermore, the cases with Δ > 3 display slightly decreased slopes compared with that of
R2 ∼ t as time proceeds to the later stage of coalescence when the liquid bridge becomes
more asymmetric, indicating a tendency to divert from the classical scaling of R2 ∼ t .

The comparison of the new theoretical model with the same data in figure 4 is
presented in figure 5(a). We can observe the collapse of non-unity-Δ data onto a
single line given by (3.10), with C = 6 given by fitting. In the equal-size limit (Δ →
1), C = 6 corresponds to a prefactor of 1.28 in the scaling relation of R ∼ t1/2 under
the aforementioned non-dimensionalisation. This prefactor is in approximate agreement
with previous experimental results, e.g. 1.03–1.29 in Wu et al. (2004) and 1.11–1.24 in
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This theory (3.10)

t∗
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0

0

Figure 5. (a) Model validation of (3.10) against experimental data and (b) the performance of (3.10) versus the
classical power-law scaling. The top-left inset in (b) shows the deflection of this model from the scaling law in
normal coordinates; the bottom-right inset plots the experimental relationship between R∗ and θ .
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Aarts et al. (2005), which is supportive of our experimental data and model. In this sense,
a major significance of the present work lies in its generalisation of Eggers et al. (1999)’s
model through the consideration of droplet size disparity. However, it should be noted
that this prefactor is slightly smaller than the numerical results, e.g. 1.62 in Duchemin
et al. (2003) and 1.5 in Sprittles & Shikhmurzaev (2014). While further study is necessary,
the discrepancy between experiment and simulation is possibly related to the ideal initial
conditions of the simulations, which does not account for the van der Waals force or
potential viscous effect that may influence the initial coalescence behaviours in reality.

Figure 5(a) justifies the universality of our theory in resolving the droplet coalescence
of various size ratios, including the late-stage coalescence dynamics at large size ratios.
Another important implication is that this theory offers the proper characteristic length
and time scales for unequal-size droplet coalescence; these turn out to be β−1/2 and
(βγ )−1, respectively, both of which depend on the size ratio Δ. So a larger Δ corresponds
to larger R∗. The good agreement in figure 5(a) also suggests that although the theory
was developed for the early-stage coalescence, which generally requires R/DS ∼ o(1)

according to assumption (i), the model prediction is potentially useful towards a much later
stage—a typical observation in asymptotic analysis (Van Dyke 1964). This likely reflects
that the geometric and kinematic correlations used in our model offer relatively accurate
approximations to later stages. Nevertheless, the extension of this model to very late
coalescence stages (R/DS approaching 0.5) for large-size-ratio cases should be handled
with caution, owing to the non-negligible errors associated with the finite bridge size as
well as significant deviation from symmetry.

To assess to what extent the unequal-size droplet coalescence deviates from the power-
law scaling of the equal-size case, figure 5(b) compares the data with (3.10) in the
R∗2−t∗ diagram. Again, a promising agreement between experiment and theory can be
confirmed; an uncertainty analysis is included in the supplementary material. However,
the theoretical line here remains almost linear when R∗2 < 10−1, while it exhibits a
slight deflection or deviation from the power-law scaling of R∗2 = 2t∗ when R∗2 > 0.1 or
R∗ > 0.3. According to the present study, this deviation can be interpreted as the result of
a strong asymmetry. The bottom-right inset in figure 5(b) demonstrates a general positive
correlation between R∗ and the liquid-bridge asymmetry measured by θ . Evidently, the
coalescence stage R∗ > 0.3 indeed has high degrees of asymmetry, roughly corresponding
to θ > 0.3.

In figure 5(b), it also seems that all data do not notably exceed the linear regime.
To understand the physical R range where the deviation becomes apparent, we can express
R∗ as (DL − DS)D−1

L R/DS , which is generally much smaller than 0.3 for small-Δ cases
because (DL − DS)D−1

L is rather small. For large Δ, (DL − DS)D−1
L approaches unity

and the scaling line deflects as R reaches the magnitude of approximately 0.3DS , which
is rather large. This means that the power-law scaling becomes effectively inaccurate only
at large Δ and the bridge’s radius is comparable to 0.3DS . On the other hand, R has
a geometric up-limit of 0.5DS , which yields a minimum Δ = 2.5 for one to detect any
deviation. This explains why the diversion from R2 ∼ t in figure 4 is observable after a
rather late stage of coalescence and when Δ is greater than 3 or so. To understand the time
range corresponding to the scaling-law deviation, we can use the asymptotic behaviour
R∗2 ≈ 2t∗ to obtain the criterion, t∗ > 0.05. With the calculation of t∗ given by (3.9) to
(3.10), the criterion can be derived as t > 0.17τi for Δ → ∞. For a finite Δ, e.g. Δ = 2,
we have t > 0.85τi . As Δ → 1, the critical time increases dramatically, which makes it
physically impossible to break the scaling law.
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We last discuss the viscous effect. From our previous theory (Xia et al. 2019), the
viscous regime for equal-size droplet coalescence occurs for R/(Oh DS) < 1. In the
present work, as Oh varies from 10−3 to 10−2, the viscous regime corresponds to R/DS
being smaller than 10−3–10−2, for which the evolution process is beyond the resolution
of this experiment. Note that during such an early stage the liquid bridge is effectively
symmetric, which in turn justifies the extension of the equal-size theory to the unequal-size
scenario. Given the limited asymmetry, it can be speculated that there are not substantial
differences in the viscous regime between the equal-size and unequal-size situations for
the present low-Oh conditions. However, if Oh increases to be O(10−1) or higher, the
viscous term in the energy balance analysis cannot be ignored, which may render the
present model inaccurate. In this case, one may adopt a similar modelling approach to
Xia et al. (2019) by integrating the Navier–Stokes equation and then incorporating (3.6) to
account for the asymmetric bridge movement; this will be explored in our future work.

4. Conclusions
A combined experimental–theoretical investigation was performed to understand the
scaling law in the liquid-bridge evolution during the inviscid coalescence of unequal-
size droplets. Experimental results suggest that the unequal-size case leads to notably
increased prefactor and deviation from the classical 1/2 power-law scaling when the
size disparity enlarges. By employing an energy balance analysis, we derived the first
theoretical solution for the asymmetric bridge evolution. The resultant model is able
to yield the collapse of different-size-ratio data onto a single curve, confirming the
relevance of the proposed characteristic length and time scales. Although the solution has
a mathematically scaling-free form, its small-time asymptote still recovers the exact 1/2
power-law scaling. This explains why its difference from the power-law scaling is marginal
in a wide parameter space of the present experiment. In this sense, this theory can be
considered a generalisation of the equal-size scaling law proposed by Eggers et al. (1999).
However, the emergence of the scaling-free behaviours depends on the liquid bridge
being considerably asymmetric, which is satisfied only at sufficiently late coalescence
time and large size ratios. We envisage that these new insights will motivate further
studies of unequal-size droplet coalescence, in different scenarios related to not only the
traditional droplet applications (Eggers et al. 2025) but also the emerging technologies of
microfluidics (Sun et al. 2024) and meta-surface (Xu et al. 2023).

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2025.353.
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