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Introduction

In general, a structure is called rigid if it admits only the trivial structure
preserving transformations. Of course, what is trivial depends on the context.
In [7] the authors understand by a rigid graph one which has the property that
the only edge preserving transformation of the vertices is the identity map. In
other contexts, however, it is convenient to regard the constant maps as trivial
also. (See [2] where a topological space is given which admits as continuous
transformations only the identity and the constants.) The purpose of this note
is to construct graphs rigid in the later sense; we call them completely rigid.

Completely rigid graphs yield a supply of rigid graphs since any completely
rigid graph can be modified to a rigid graph (by deleting a certain subgraph).
However the concerse is not true (see example below). Another distinction be-
tween the two concepts is that completely rigid graphs on a finite number of
vertices are by no means easy to construct, whereas, for rigid graphs, a well
order suffices. They do however possess a stronger connectedness property than
those constructed in [7], and this enables us to give, in a manner similar to [5],
a new representation theorem for semigroups with identity.

1. Definitions, simple results

Let X be a non-empty set. A (directed) graph T on X is any subset o f l x l .
The elements of T are called edges and the elements of X vertices of T. We set
T"1 = {(y,x);(x,y) e T}. Then T is symmetric if T = T"1, and antisymmetric
if (x, y)e T n T-1 implies x = y. Let J~(X),X~(X), and JfT\X) be the full
transformation semigroup on X, the semigroup of all constant transforma-
tions of X, and this latter with the identity transformation adjoined, respectively.
By End(F;.Y) (or End F for short) we shall understand the set of endomorphisms
of F, namely

x,y)er^ (xa,ya)eF}.
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[2] Completely rigid graphs 311

Clearly End r is a semigroup of 3~(X) under composition. We shall use the
symbol i to denote both the identity of F{X) and the graph {(x,x);xe X}. It
is customary to call the elements of F n i loops.

In [7] a rigid graph F is defined by the property EndF = {t}. We shall
call F completely rigid if EndF = X'1(X). This is a convenient terminology
for if F is completely rigid then f 2 i and F\ i is rigid. Complete rigidity is, in
fact, stronger than rigidity.

EXAMPLE. Set X = {1,2, ••-,«} and put

F = {(r,s)eX x X ; r ^ s } .

If n ^ 3 , EndF contains mappings other than the identity or the constants,
while F \i is obviously rigid.

It is easy to see that if F is completely rigid then F is antisymmetric. For if
x # y and (x, y) e F n F ~ l then we may map X onto {x, y} in any way we please
and still preserve the edges of F . We shall prove a deeper property of completely
rigid graphs.

Firstly, let a and b be vertices of F s X x X. If there exists a sequence
of vertices of F , a = ao,au---,an = b, such that each ( a ; , a i + 1 ) e r , we say
that b is accessible from a. We write D(a) for the set of vertices accessible from a,
together with a itself. If a and b are each accessible from the other then we say
that a and b are mutually accessible. This is equivalent to D(a) = D(b). Finally
a directed graph is mutually connected when all its vertices are mutually acces-
sible, and connected when F u F " 1 is mutually connected. We prove

THEOREM 1. / / | X \ > 2 and F s X x X is completely rigid then F is mu-
tually connected.

PROOF. Let F be completely rigid with | X | > 2 . We define an equiv-
alence, p, on X by writing apb whenever D(a) = D(b). We construct a graph,
F j , with the elements of X/p as vertices, by admitting the edge (A, E) whenever
there exist a e A and b e B with (a, b) e F . Now F , contains no cycles (excepting
loops), for this would imply that elements in distinct p-classes were mutually
accessible. It follows that the transitive closure of Fx is a partial order, ^ , say.
If | Xjp | = 1 we have nothing to prove: we assume | XIp \ > 1. If A e Xjp is
not ^ comparable to any other element of Xjp, then, a fortiori, there are no
edges in F joining A and X \A. Consider a transformation of X which maps
all A to some vertex in X \A and vice versa. This mapping clearly preserves the
edges of F and is neither the identity nor a constant, a contradiction. We conclude
that A is comparable to some other element of Xjp, so that there exists B, C e X/p
and an edge (b,c)eF with beB, ceC and B > C. We put

D = UE
E5B
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and define by
xx = b when xeD,

= c otherwise.

It is straightforward to show that a e End F so that a = i. Hence | X | = 2,
contrary to hypothesis.

REMARK 1. The edges of the rigid graph constructed in [7] are a subset of
well order. It is clear that such a graph cannot be mutually connected: one can
go forwards, but not back. Thus one does not obtain a completely rigid graph
by adjoining all loops to this graph.

REMARK 2. It is also possible to prove that a completely rigid graph has,
in the terminology of [4], no separating vertices and hence is strongly cyclic
edge connected.

2. Completely rigid graphs

In this section we prove

THEOREM 2. There are no completely rigid graphs with 3 or 4 vertices;
for sets of all other cardinalities, there exist completely rigid graphs.

PROOF. The case | X | = 1 is trivial. If | X \ = 2 it is easy to see that
r = i u {(x,y)} gives the desired graph. In Figure 2.1 we have drawn all graphs
F on 3 and 4 vertices that are mutually connected and antisymmetric. We have
omitted loops, and the broken edges may be directed in either sense, or deleted.

Figure 2.1.

The first and fourth graphs have obvious edge preserving transformations: the
rotations. For the second graph, the trasformation which maps v' to v and fixes
the other vertices preserves the edges, while in,the third case we map v' to v^
or v2 according as edge (v', v3) is directed towards v' or v3. The result now follows
from Theorem 1.

Now we assume X is of the form {a, b, c, d, e) u A where A is an ordinal
number considered as the set of its predecessors (we admit zero), Let JSf(̂ 4)
and £(A) be the set of limit ordinals less than A, and the set of even ordinals
less than A, respectively. We choose an injection
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f: X{A)->

with the property

f(Q)<Q

(The existence of such an / follows from a Zorn argument. One considers partial
transformations of ^C(A) to S'(A)\^'(A) and orders them by extension. We omit
the details. Also note than an ordinal is even if it can be represented as IB, odd
if it can be represented as 2B + 1, and that all ordinals are even or odd but not
both. In particular, limit ordinals are even. See [6]). We regard 0 as a limit ordinal
and define /(0) = d. Our graph F(A) is then the union of the following sets:

i, J (the graph on the vertices a, b, c, d, e in Figure 2.2) together with

a(A) = {{n,n + 1); n < A)

o{A) = {(n,c); n < A, n odd}

e(A) = {{n,a); n < A, n even}

= {(LJ(L));Le&(A)}

= {{c,L);LeJ?(A)}.

Two properties of T(A) are fundamental:

(i) T(A) is antisymmetric.
(ii) The directed triangles (i.e. graphs on 3 vertices isomorphic to the first

graph in Figure 2.1) either reside in J or have vertices L, L + 1, c where Le S'iA).

Now let a e End(X; r(A)) be neither the identity nor a constant map. We
observe that J is not mapped to a single vertex. For then ca = da. whereas (Oa, da)
and (ca, Oa) are edges of T(A). Antisymmetry implies Oa = da., and observing
that each ordinal is the end-pont of an edge emanating from J or an edge ema-
nating from a predecessor, as well as the starting-point of an edge to J, a trans-
finite induction shows a is constant — contrary to assumption.

Note that in general a directed triangle may not be mapped to an edge:
its image is either a vertex or another directed triangle. Since the three directed
triangles in J are, in pairs, adjacent or mutually adjacent to a third, it is clear
that if any one is mapped to a vertex, the other two are mapped to the same
vertex. Since this is prohibited, each directed triangle in J is mapped to a directed
triangle. Further (aa, ba) and (ba', ca) e F(A). Hence ca # ax or aa = ba = ca.
We eliminate the latter possibility since abe is mapped to a triangle. Similarly
ba ,£ da. Observe that any edge is the base of at most two directed triangles.
Hence, in particular, (ea,aa) has at most two directed triangles lying upon it,
and since ba ^ da, it has precisely two. In the same way (da,ea) is the base of
two directed triangles. Noting that only the edges (e, a) and (d, e) have this prop-
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erty it is easy to see that ea. = e, aet = a, and dec = d. (Note that antisymmetry
prohibits act = d, dec = a). It is now immediate that bee = b, cot = c.

We have shown that a is the identity transformation on J. Moreover Oa = 0.
For 0a begins an edge which terminates at dec = d, so that 0a = d, a,c, or 0.
If Oa = c, then (Oa, aet) = (c, a) e F(A) which is false. Similarly Oa ^ a, while
if Oa = d, then (Oa, aa) = (d, a) e F(A), again a contradiction.

+ 2

Figure 2.2. (Loops omitted)

Let B be the least ordinal < A such that Bet # B. We distinguish two cases:
B is a limit ordinal.Then (Ba,f(B)a)=(Ba,f(B))er(A) and/(B)eg{A}\!£(A).
Inspection of F(A) gives the possibilities Ba = /(B), /(B) - 1, or L (when
/(B) =/(L)) . Moreover (ca,Ba) = (c,Ba)erO4) so that Ba is a limit ordinal.
But since neither/(B) nor/(B) - 1 are limit ordinals, Ba = L. However,/(B)=/(L)
gives B = L= Bet, a contradiction.

B is not a limit ordinal. Then ( B - l , B ) e r ( 4 ) so that (B - 1, Ba)eF(/l).
By assumption (B—l,Ba)^t(/l). If B — 1 is even then Ba = B—l,a, or (when
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B-l e £?(A))f(B-l). Since in this case B is odd, (Boc.ca) = (Ba,c)er(A). An
inspection of T(A) shows that (a, c) ^ F(A) and, moreover, no even ordinal begins
an edge which terminates at c. This observation eliminates all possibilities for
Bat when B— 1 is even. The case B— 1 odd is handled similarly and we conclude
that there is no B < A with 5a # B, a contradiction. (Since we have assumed
a # i.) The theorem is proved.

REMARK 1. Since F(A) is completely rigid, it follows from Theorem 1 that
F(A) is mutually connected. To see this directly note that from any ordinal we
may pass to c (perhaps via its successor). From c we may pass to any limit ordinal
and it suffices to observe that any ordinal number is greater than a limit ordinal
by a finite ordinal.

REMARK 2. We note that only a and c are ever incident to an infinite number
of edges. Recall the following theorem from [4], page 28:

If N is an infinite cardinal and each vertex of the connected graph F is in-
cident to at most N edges, then F has at most N vertices and N edges.

It follows that if F is completely rigid and | X \ > No then F must contain
at least one vertex incident to an infinite number of edges. Our graph T{A)
contains two. It is of interest to know whether there exists, in general, a completely
rigid graph containing only one such vertex. This would be the "simplest"example
possible.

3. Monoids

In this section we shall outline the result below. No proofs will be given since,
in spirit at least, the constructions have been used by a number of authors. See
[1], [2], [5].

THEOREM 3. Let S be a monoid {semigroup with identity). Then there
exists a mutually connected antisymmetric graph F with

S s End T.

Note. In the papers [3], [5], [7] the authors prove this result with "mutually
connected antisymmetric" replaced by

(i) "antisymmetric connected", and
(ii) "symmetric connected".

CONSTRUCTIONS. We recall the notion of the Cayley graph S* of S. We assume
to each seS three corresponds on object c(s), distinct seS giving rise to distinct
c(s). These objects are called colours, and we denote the set of colours by C.
The vertices of S* are the elements of S and an edge is drawn from beS io aeS
and assigned a colour c(s) when a = sb. The resulting colured directed graph
is S*. Note that S* may have multiple edges, but from each vertex there is pre-
cisely one edge of a given colour.
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We define further Col. End. S* to be those a e &~{S) which map each directed
edge to a directed edge of the same colour. It is an easy matter to see S = Col.
End. S*. We wish to have a set of | C | distinct graphs {yt; i e C} with the follow-
ing property
(P) For each i e C let Xt be the vertex set of yt. Then if a: Xt -* Xj maps
edges to edges we have i = j and a = i. Let {At; j e C} be a collection of | C |
distinct ordinals, each at least three greater than a limit ordinal, and let / be the
function of Theorem 2 constructed for the ordinal sup^j . If we now take
yt = r(At) \i it is impossible to imbed y( in yy when At < A} in the obvious way.
To exclude this possibility we attach another edge: we take

We claim the proof of Theorem 2 may now be adapted to prove (P). In fact,
the task is easier, since we now cannot map an edge to a vertex. The vertices
of the }>; are not disjoint, but by taking | C | copies of J and the class of ordinals
it is clear we may ensure this. Accordingly we shall distinguish corresponding
vertices of distinct y{ by subscripts: bt, coj, lk,-- .We now construct our (uncol-
oured) graph T.

Figure 3

Along each edge (x, y) of S* insert two vertices, orientating the new edges
in the original direction of {x,y). We emphasise that edges joining the same
vertices but of different colours (perforce) are to be regarded as distinct. The
construction is completed by joining both of the inserted vertices to bt e y, where
i is the colour of (x, y), and orientating the two edges thus arising, so that, with
their base, they form a directed triangle. In Figure 3 we illustrate the subgraph
formed from edges (xi,j>i) and (x2,y2), both of colour i. Then

EndF^Col . End. S* s S.

The proof of this is straightforward but not immediate. It is, of course, a matter
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of verifying that the inserted graphs, under endomorphisms, play the role of the
colours of S*.

By the nature of the construction, T is clearly antisymmetric. To see that
F is mutually connected, note that we may pass, by a finite path, from any a e S
to any beS. (We use the fact that each aeS* has a loop of colour c(l), and the
directed triangles that we inserrt are all attached to bc(1).) It then suffices to note
that all the y, are mutually connected.
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