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1. Introduction. The permanent of an nxn matrix A = (a^) is the matrix 
function 

( ! ) p e r A = X a l - ( D ' * * amr(n) 
TTESn 

where the summation is over all permutations in the symmetric group, Sn. An 
n x n matrix A is a circulant if there are scalars au . . . , a„ such that 

(2) A=taiP
i~1 

i = l 

where P is the n x n permutation matrix corresponding to the cycle (12 • • • n) 
in Sn. In general the computation of the permanent function is quite difficult 
chiefly because it is not invariant under addition of a multiple of one row to 
another. Using the principle of "inclusion and exclusion", Ryser [6, p. 27] gave 
an expansion for the permanent. Also the Laplace expansion is available for 
the permanent [2, p. 20]. Neither of these methods are particularly efficient. In 
[4] Mine considered the permanents of matrices with entires either 0 or 1. Mine 
also studied tridiagonal circulants in [5]. Metropolis, Stein, and Stein [3] have 
given recurrence relations for evaluating the permanents of circulant matrices 
(2) where the first k scalars are 1 and the remaining ones are 0. Permanents of 
circulant matrices were also studied by Tinsley [7]. 

2. The algorithm. If we consider the scalars as indeterminates over an 
underlying field every term of the permanent (1) of a circulant matrix (2) is a 
monomial in the scalars au . . . , a^. Our algorithm deletes appropriate mono­
mials from the set of all nn such monomials until only those appearing in the 
permanent remain. This is easily programmed because the monomials need 
only be considered one at a time and may be indexed by the nn n-tuples 
chosen from 1 , . . . , n and ordered lexicographically. It is convenient to state 
the algorithm in terms of these indices. 
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Algorithm. If 1 = ( i i , . . . , in) is an n-tuple with entries chosen from 1 , . . . , n 
then discard I if 

n 

(i) X h*0 (modn), 
J = I 

or if 

(ii) ij+k = ij-k (mod n) for any k and / = 1 , . . . , n -1. 

Condition (ii) excludes the occurrence of terms in the permanent of (2) with 
the following pattern 

(3) • • 'ai^m^ai+k+1" • 
k—2 entr ies 

where ai+n is considered to be at if necessary. For example, if n = 4 condition 
(ii) of the algorithm discards a monomial whenever one of the following 
patterns occurs: 

• • • 14 . . . . . . . 2 1 . . . . . . . 32 . . . . . . . 43 ••• 

•1*3-,-2*4-,-3*1-,-4*2-
i * * 2 2**0 '1**4 4.**i 

Condition (i) leaves the following 4-tuples: 

1111 1214 1313 1412 2114 2213 2312 2411 

1124 1223 1322 1421 2123 2222 2321 2424 

1133 1232 1331 1434 2132 2231 2334 2433 

1142 1241 1344 1443 2141 2244 2343 2442 

3113 3212 3311 3414 4112 4211 4314 4413 

3122 3221 3324 3423 4121 4224 4323 4422 

3131 3234 3333 3,432 4134 4233 4332 4431 

3144 3243 3342 3441 4143 4242 4341 4444 

Condition (ii) eliminates all of the above 4-tuples which are underlined. 
Hence, if n = 4 the permanent of (2) will be 

4 4 

X at + 2alaj + 2alal + 4 X afoi+tOi+s. 

Let Rn denote the set of n-tuples left by the algorithm. We remark that the 
n-tuples in i?n need not be formally distinct; e.g., 1313 and 3131 are both in 
jR4. The number of formally distinct diagonal products in the permanent of an 
arbitrary circulant has been determined by Brualdi and Newman [1]. 

https://doi.org/10.4153/CMB-1977-011-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1977-011-3


1977] AN ALGORITHM FOR THE PERMANENT OF CIRCULANT MATRICES 69 

3. Proofs 
THEOREM. Let Abe a circulant matrix (2) with scalars a i 9 . . . , o„. Then 

perA = £ < v * 0 i n 

where the summation is over all (ii, • •, in)& Rn-
Proof. We are concerned with determining conditions for which â  • • • a^ is 

a term of the permanent of the n x n matrix (2). Thus, Oik always denotes an 
element of the fcth row of (2). The ith column of (2) is 

r U t i 

|_fli-n+lj 

where subscripts are taken modulo n. If the Laplace expansion along the first 
row is used to find per A the entry Oi_k+1 cannot be chosen from row k to 
appear in any monomial beginning with a*. In any monomial of the permanent 
the pattern (3) cannot appear since we may expand along any row. 

Therefore any ( i \ , . . . , i j in Rn satisfies 

ij+k^ij-k for fc = l, . . . , n - l . 

Again, subscripts are taken modulo n when necessary. 
Write ij+k = ij-k + Xjk (mod n) where J C ^ O , l < X f k ^ n - l , and fc^O. We 

would like to show that s^t implies XjS^xit. 
Suppose xjs = Xft. Then 

*/s = h+s fi ~r 5>== ij+t ~~ ij? "r t = xJt. 
H e n c e 

ij+s = ii+t-(s-t), 
but unless s = t 

lj+s == î/+t+(s-t) ^ h+t ~ \S~- t). 

So assuming xjs = xJf leads to a contradiction. Hence the contrapositive is true 
and s^t implies XjS^xit. 

Step (i) is included in the algorithm because it is easy to implement. In fact, 
(ii) implies (i) as we now show: 

n - 1 n - 1 / n - 1 \ 

X ij+k = h+ X ij+k = U + Z (%-& + %)) (modn) 
fc=0 fc = l \ fc = l / 

( n —1 n —1 \ 

ni,- X fc+ Z %) (modn) 
fc=i fe=i / 

= ( m J - | n ( n - l ) + | n (n - l ) ) (modn) 
= 0 (modn). 
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We have shown why the n-tuples mentioned in (i) and (ii) must be discarded. 
It remains to show that no more should be excluded. Condition (ii) says there 
are n choices for atl, n — \ choices for ah and in general n-k + l choices for 
aik. That is, condition (ii) does not eliminate exactly n\ terms. But there are n! 
terms in the permanent so precisely the right number of monomials has been 
excluded. 

4. Numerical results. Dr. Joan Cooper wrote a Fortran programme for our 
algorithm which was implemented on an ICL 1904A at the University of 
Newcastle, N.S.W., Australia. The following various 7 x 7 circulants were 
computed using 2.54 seconds of core time. 

First row of row sum of 

3 
1 
1 
1 
0 
1 
1 

circulant matrix A 

1 
1 
1 
1 
1 
1 
1 

1 
1 
0 
1 
1 
1 

- 1 

0 
0 
0 
1 
0 
0 
0 

1 
0 
0 
1 
1 
1 
0 

0 
0 
0 
1 
0 
0 
0 

0 
0 
0 
1 
0 
0 
0 

per A 

4416 
31 

2 
5040 

24 
144 

1 

A = r 

6 
3 
2 
7 
3 
4 
1 

per (Air) 

0.0157750 
0.0141747 
0.0156250 
0.0061199 
0.0109739 
0.0087891 
1.0 

We believe the algorithm is not shown to best advantage as most of the 
elapsed time is due to reading the 7-tuples of the example from disc. 
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