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THE p-HARMONIC BOUNDARY AND Dp-MASSIVE
SUBSETS OF A GRAPH OF BOUNDED DEGREE

MICHAEL J. PULS

Abstract

Let p be a real number greater than one and let Γ be a graph of bounded degree. We investigate links
between the p-harmonic boundary of Γ and the Dp-massive subsets of Γ. In particular, if there are n
pairwise disjoint Dp-massive subsets of Γ, then the p-harmonic boundary of Γ consists of at least n
elements. We show that the converse of this statement is also true.
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1. Introduction

Throughout this paper p will always denote a real number greater than one. A graph
is said to have the p-Liouville property if every bounded p-harmonic function on the
graph is constant. Similarly, a graph is said to have the Dp-Liouville property if every
bounded p-harmonic function on the graph with finite p-Dirichlet sum is constant.
When a graph has the p-Liouville property (Dp-Liouville property), the set of bounded
p-harmonic functions (with finite p-Dirichlet sum) can be identified with R, the real
numbers. Now let G be a finitely generated group. Our main motivation for studying
the p-harmonic boundary of a graph arose from the problem of determining the first
reduced `p-cohomology space of G. A locally finite graph with bounded degree,
called the Cayley graph of G, can be associated with G. Thus it makes sense to
define the p-harmonic boundary for G, and to say that G has the p-Liouville property
(Dp-Liouville property). It turns out that the first reduced `p-cohomology space of G
vanishes if and only if G has the Dp-Liouville property if and only if the p-harmonic
boundary of G consists of one point or is empty. A more complete discussion about
this characterisation can be found in [11] and the references therein. Another reason
for studying locally finite graphs with bounded degree is their intimate connection via
discrete approximation to complete Riemannian manifolds with bounded geometry.

The research for this paper was partially supported by PSC-CUNY grant 63873-00 41.
c© 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 $16.00

149

89 (2014), 149–158

(Received 3 December 2012; accepted 19 March 2013; first published online 12 June 2013)

https://doi.org/10.1017/S0004972713000439 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000439


150 M. J. Puls [2]

The papers [2, 4, 5] contain a wealth of information concerning this link between
graphs and manifolds.

Recently, a generalised version of the Dp-Liouville property for graphs has been
studied in [8, 9]: specifically, the conditions on a graph under which the bounded p-
harmonic functions with finite p-Dirichlet sum can be identified with Rn, n ∈ N. When
n ≥ 2, this also means that there are nonconstant p-harmonic functions on the graph.
Holopainen and Soardi proved in [2, Lemma 5.7] that there is a nonconstant bounded
p-harmonic function with finite p-Dirichlet sum on a graph of bounded degree if and
only if there exist two disjoint Dp-massive subsets of vertices of the graph.

The purpose of this paper is to bring into sharper focus this connection between
Dp-massive subsets and nonconstant p-harmonic functions on a graph. As a
consequence, we are able to determine exactly when the set of bounded p-harmonic
functions on a graph with finite p-Dirichlet sum can be identified with Rn. The main
tool we use to obtain our results is the p-harmonic boundary of a graph.

The p-harmonic boundary is a subset of the p-Royden boundary. When p = 2
these sets are respectively known as the harmonic boundary and the Royden boundary.
In [15, Ch. 6] the Royden and harmonic boundaries were studied for locally finite
graphs of bounded degree. Many of the results in [15, Ch. 6] were translated
from corresponding results on complete Riemannian surfaces. See [13, Ch. 3] for
information about the Royden and harmonic boundaries in the setting of complete
Riemannian surfaces. However, there are some major differences between these two
cases. In [15, Example 6.27] it was shown that the Royden boundary and the harmonic
boundary coincide for a locally finite graph of bounded degree that satisfies a strong
isoperimetric inequality. This is in stark contrast with the complete Riemannian
surface case. More precisely, if the harmonic boundary is removed from the Royden
boundary of a complete Riemannian surface, then the resulting set is dense in the
Royden boundary! See [13, page 157] for the details of this fact. Furthermore, if
the graph is a k-regular tree, k ≥ 3, then there are no isolated points in the harmonic
boundary of the tree [15, page 145].

The problem of explicitly computing the p-harmonic boundary of a locally finite
graph of bounded degree appears to be quite difficult. The only result we can find in
this direction is in the paper [16] where it is shown that the Royden boundary of a 2-
regular tree, which can be considered as a Cayley graph for the integers, is a quotient
space of βN, the Stone–Čech compactification of N. In [11, Ch. 7] the author gave
some examples of finitely generated groups whose p-harmonic boundary is empty or
contains exactly one point by using the fact that the first reduced `p-cohomology of
those particular groups is zero.

In Section 2 we define the main concepts used in this paper. We also state our main
result. Section 3 is devoted to the proof of the main result. We explain in Section 4
how our result extends the main result of [9].
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2. Definitions and statement of main result

Let Γ be a graph with vertex set VΓ and edge set EΓ. We will write V for VΓ and
E for EΓ. For x ∈ V , Nx will be the set of neighbours of x and deg(x) will denote the
number of neighbours of x. We shall say that Γ is of bounded degree if there exists a
positive integer k for which deg(x) ≤ k for every x ∈ V . A path γ in Γ is a sequence of
vertices x1, x2, . . . , xn, . . . where xi+1 ∈ Nxi for 1 ≤ i ≤ n − 1 and xi , x j if i , j. Note
that all paths considered in this paper have no self-intersections. A graph is connected
if any two distinct vertices of the graph are joined by a path. All graphs considered in
this paper will be connected, of bounded degree with no self-loops and have countably
infinite number of vertices. By assigning length one to each edge of Γ, V becomes a
metric space with respect to the shortest path metric. We will denote this metric by
d(x, y), where x, y ∈ V . Thus d(x, y) gives the length of the shortest path joining the
vertices x and y. For S ⊆ V , the outer boundary ∂S of S is the set of vertices in V \ S
with at least one neighbour in S , and |S | will denote the cardinality of S . We use 1V

to represent the function that takes the value 1 on all elements of V . Finally, if x ∈ V
and n ∈ N, the natural numbers, then Bn(x) will denote the metric ball that contains all
elements of V that have distance less than n from x.

We now proceed to define some function spaces that will be used in this paper. Let
S ⊆ V and let f be a real-valued function on S ∪ ∂S . We define the pth power of the
gradient, the p-Dirichlet sum, and the p-Laplacian of x ∈ S by

|D f (x)|p =
∑
y∈Nx

| f (y) − f (x)|p,

Ip( f , S ) =
∑
x∈S

|D f (x)|p,

∆p f (x) =
∑
y∈Nx

| f (y) − f (x)|p−2( f (y) − f (x)).

In the case 1 < p < 2, we make the convention that | f (y) − f (x)|p−2( f (y) − f (x)) = 0 if
f (y) = f (x). A function f is said to be p-harmonic on S if ∆p f (x) = 0 for all x ∈ S .
Observe that a function which is p-harmonic on S is also defined on ∂S . We now give
an alternative definition that is commonly used for a function to be p-harmonic on S
when S is a finite (compact) subset of V . We begin by setting

Ξ( f , S ) =
1
2

(
Ip( f , S ) +

∑
x∈∂S

∑
y∈Nx∩S

| f (x) − f (y)|p
)
.

A function f is said to be p-harmonic on S if it is the minimiser of Ξ among the
functions in S ∪ ∂S with the same value in ∂S as f , that is , if

Ξ( f , S ) ≤ Ξ(u, S )

for every function u in S ∪ ∂S with f = u in ∂S . The interested reader can find
more information about p-harmonic functions and harmonic functions on graphs in
the papers [1–3, 6, 8, 9, 11, 14, 15, 17] and the references therein.
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We shall say that f is p-Dirichlet finite if Ip( f , V) <∞. The set of all p-Dirichlet
finite functions on Γ will be denoted by Dp(Γ). This is a reflexive Banach space with
respect to the norm

‖ f ‖Dp = (Ip( f , V) + | f (o)|p)1/p,

where o is a fixed vertex of Γ and f ∈ Dp(Γ). We use HDp(Γ) to represent the set of
p-harmonic functions on V that are contained in Dp(Γ). Note that the constant
functions are members of HDp(Γ). Let `∞(Γ) denote the set of bounded functions on
V and let ‖ f ‖∞ = supV | f | for f ∈ `∞(Γ). Set BDp(Γ) = Dp(Γ) ∩ `∞(Γ). The set BDp(Γ)
is a Banach space under the norm

‖ f ‖BDp = (Ip( f , V))1/p + ‖ f ‖∞,

where f ∈ BDp(Γ). Let BHDp(Γ) be the set of bounded p-harmonic functions
contained in Dp(Γ). The space BDp(Γ) is closed under the usual operations of scalar
multiplication, addition and pointwise multiplication. Furthermore, for f , g ∈ BDp(Γ)
we have that ‖ f g‖BDp ≤ ‖ f ‖BDp‖g‖BDp . Thus BDp(Γ) is a commutative Banach algebra.
Let Cc(Γ) be the set of functions on V with finite support. Denote the closure of
Cc(Γ) in Dp(Γ) by Cc(Γ)Dp

. Set B(Cc(Γ)Dp
) = Cc(Γ)Dp

∩ `∞(Γ). Using the fact that
the inequality (a + b)1/p ≤ a1/p + b1/p is true when a, b ≥ 0 and 1 < p ∈ R, we see
immediately that ‖ f ‖Dp ≤ ‖ f ‖BDp . Consequently, B(Cc(Γ)Dp

) is closed in BDp(Γ).

2.1. The p-harmonic boundary. In this subsection we construct the p-harmonic
boundary of a graph Γ. For a more detailed discussion about this construction, see [11,
Section 2.1]. Let Sp(BDp(Γ)) denote the set of complex-valued characters on BDp(Γ),
that is, the nonzero ring homomorphisms from BDp(Γ) to C. We will implicitly use
the following property of elements in Sp(BDp(Γ)) throughout the paper.

L 2.1. Let χ ∈ Sp(BDp(Γ)). If f ∈ BDp(Γ), then χ( f ) is a real number.

P. Suppose that there exists an f ∈ BDp(Γ) for which χ( f ) = a + bi, where b , 0.
Set F = ( f − a)/b and observe that χ(F) = i. Since BDp(Γ) is a Banach algebra, F, F2

and F2 + 1V all belong to BDp(Γ). Also, χ(F2 + 1V ) = 0. For x ∈ V and y ∈ Nx,∣∣∣∣∣ 1
F2(y) + 1V

−
1

F2(x) + 1V

∣∣∣∣∣p ≤ |F2(x) − F2(y)|p,

because F2 + 1V ≥ 1 on V . It now follows that (F2 + 1V )−1 ∈ BDp(Γ), and so F2 + 1V

has a multiplicative inverse in BDp(Γ). Hence, χ(F2 + 1V ) , 0, a contradiction.
Therefore, χ( f ) is a real number. �

With respect to the weak ∗-topology, Sp(BDp(Γ)) is a compact Hausdorff space. If
A ⊆ Sp(BDp(Γ)), A will indicate the closure of A in Sp(BDp(Γ)). Given a topological
space X, let C(X) denote the ring of continuous functions on X endowed with the
sup-norm. The Gelfand transform defined by f̂ (χ) = χ( f ) yields a monomorphism of
Banach algebras from BDp(Γ) into C(Sp(BDp(Γ))) with dense image. Furthermore,
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the map i : V → Sp(BDp(Γ)) given by (i(x))( f ) = f (x) is an injection, and i(V) is an
open dense subset of Sp(BDp(Γ)). For the rest of this paper we shall write f for f̂ ,
where f ∈ BDp(Γ). The p-Royden boundary of Γ, which we shall denote by Rp(Γ), is
the compact set Sp(BDp(Γ)) \ i(V). The p-harmonic boundary of Γ is the following
subset of Rp(Γ):

∂p(Γ) := {χ ∈ Rp(Γ) | f̂ (χ) = 0 for all f ∈ B(Cc(Γ)Dp
)}.

We shall write |∂p(Γ)| to indicate the cardinality of ∂p(Γ).

2.2. Dp-massive sets. We now define the concept of a Dp-massive subset of a graph.
An infinite connected subset U of V with ∂U , ∅ is called a Dp-massive subset of V if
there exists a nonnegative function u ∈ BDp(Γ) with the following properties:

(1) ∆pu(x) = 0 for x ∈ U;
(2) u(x) = 0 for x ∈ ∂U; and
(3) supx∈U u(x) = 1.

We call any u that satisfies these conditions an inner potential of the Dp-massive
subset U. The next result is [11, Proposition 4.11] and will be needed later.

P 2.2. If U is a Dp-massive subset of V, then i(U) contains at least one point
of ∂p(Γ).

2.3. Statement of the main result. We now give the main result of this paper.

T 2.3. Let 1 < p ∈ R and let Γ be a graph of bounded degree. Suppose that
n ∈ N. Then there exist n pairwise disjoint Dp-massive subsets D1, D2, . . . , Dn of V if
and only if |∂p(Γ)| ≥ n.

By combining this theorem with [11, Corollary 2.7] we obtain the following
corollary.

C 2.4. Let 1 < p ∈ R, n ∈ N and let Γ be a graph of bounded degree. If there
exist n pairwise disjoint Dp-massive subsets of V, but there do not exist n + 1 disjoint
Dp-massive subsets of V, then BHDp(Γ) can be identified with Rn.

3. Proof of Theorem 2.3

The following lemma will be needed for the proof of Theorem 2.3. For a proof of
the lemma see the first part of the proof of [2, Lemma 5.7]

L 3.1. Let h be a nonconstant function in BHDp(Γ), and let U be an infinite
connected subset of V. Let a and b be real numbers such that

inf
x∈U

h < a < b < sup
x∈U

h.

Then each component of the set {x ∈ U | h(x) > b} and each component of {x ∈ U |
h(x) < a} is Dp-massive.
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We are now ready to prove Theorem 2.3. Let D1, D2, . . . , Dn be a collection of
pairwise disjoint Dp-massive subsets of V . For each k, with 1 ≤ k ≤ n, let uk be an inner
potential for Dk. We may and do assume that uk = 0 on V \ Dk. Also, Dk ∩ ∂p(Γ) , ∅
by Proposition 2.2. For each k we will produce an element χk ∈ Dk ∩ ∂p(Γ) for
which χk(uk) , 0 and χk(u j) = 0 if j , k. This will establish |∂p(Γ)| ≥ n. Extend
uk to a continuous function on Sp(BDp(Γ)). By [11, Theorem 2.6] there exists a
p-harmonic function hk on V such that hk = uk on ∂p(Γ). The maximum principle
[11, Theorem 4.7] says that 0 < hk < 1 on V . Let Bk = {x ∈ Dk | hk(x) > 1 − ε}, where
0 < ε < 1

4 . Since sup uk = 1 on Dk, Bk , ∅. Let Ck be a component of Bk. By
Lemma 3.1, Ck is Dp-massive. Thus Ck ∩ ∂p(Γ) , ∅. Select χk ∈Ck ∩ ∂p(Γ). Because
h j = u j on ∂p(Γ), χk(h j) = χk(u j). Consequently, χk(uk) = 1 and χk(u j) = 0 if k , j.
Hence, |∂p(Γ)| ≥ n if there exist n pairwise disjoint Dp-massive subsets of V .

Conversely, let χ1, χ2, . . . , χn be distinct elements from ∂p(Γ). By Urysohn’s
lemma there exists a continuous function f1 : Sp(BDp(Γ))→ [0, 1] with f1(χ1) = 1
and f1(χk) = 0 if k , 1. Let M1 = f −1

1 (1). For each integer k with 2 ≤ k ≤ n we can
inductively define a continuous function fk : Sp(BDp(Γ))→ [0, 1] with the following
properties:

fk(x) =


1, x = χk,

0, x = χi, i , k,

0, x ∈
⋃k−1

i=1 Mi,

where Mk = f −1
k (1).

By the density of BDp(Γ) in C(Sp(BDp(Γ))), we can assume that fk ∈ BDp(Γ) for
each k. Using [11, Theorems 4.6 and 4.8], we obtain a unique hk ∈ BHDp(Γ) with
hk = fk on ∂p(Γ) for each k. Also, 0 < hk < 1 on V . Observe that if hk(χ) = 1 = h j(χ) for
some χ ∈ ∂p(Γ), then k = j. Let ε > 0 and consider the set Ak,ε = {x ∈ V | hk(x) > 1 − ε}.
For each k let Dk,ε be a component of Ak,ε . Furthermore, choose the Dk,ε so that
Dk,ε1 ⊆ Dk,ε2 if 0 < ε1 < ε2. Lemma 3.1 yields that Dk,ε is Dp-massive. The proof
will be complete if there exists an ε > 0 such that Dk,ε ∩ D j,ε = ∅ if k , j. Assume
for the purposes of contradiction that this condition is not true. Then there exist
j, k with Dk,ε ∩ D j,ε , ∅ for all ε > 0. Let i ∈ N. Denote by Ci a component of
Dk,2−i ∩ D j,2−i . By the comparison principle [2, Theorem 3.14] Ci is infinite. Using
Lemma 3.1, we can produce a Dp-massive subset of Ci. An appeal to Proposition 2.2
produces a ψi ∈Ci ∩ ∂p(Γ). Clearly ψi(h j) > 1 − 2−i and ψi(hk) > 1 − 2−i. The
sequence (ψi) in ∂p(Γ) has a convergent subsequence that converges to some ψ in
∂p(Γ). Consequently, ψ(hk) = 1 = ψ(h j). This contradicts our earlier observation that
if hk(χ) = 1 = h j(χ) for some χ ∈ ∂p(Γ), then k = j. Therefore, there exists an ε > 0 for
which Dk,ε ∩ D j,ε = ∅ for each j, k with 1 ≤ j, k ≤ n. The proof of the theorem is now
complete.
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4. A result of Kim and Lee

In this section we elaborate on how Theorem 2.3 improves the main result of [9].
We start by giving some needed definitions.

Recall that E represents the edge set of a graph Γ. Denote by F (E) the set of all
real-valued functions on E and let F +(E) be the subset of F (E) that consists of all
nonnegative functions. For f ∈ F (E) set

ξp( f ) =
∑
e∈E

| f (e)|p.

The edge set of a path γ in Γ will be denoted by Ed(γ). Let Q be a set of paths with no
self-intersections in Γ. Denote byA(Q) the set of all f ∈ F +(E) that satisfy ξp( f ) <∞
and

∑
e∈Ed(γ) f (e) ≥ 1 for all γ ∈ Q. The extremal length of order p for Q is defined by

λp(Q)−1 = inf{ξp( f ) | f ∈ A(Q)}.

The number λp(Q)−1 is commonly known as the p-modulus of the path family Q. We
shall say that a property holds for p-almost every path in a collection of paths if the
set of paths for which the property does not hold has infinite extremal length (or p-
modulus zero).

Let A ⊆ V , and write ΓA for the largest subgraph of Γ that has vertex set A. Let γ be a
one-sided infinite path in Γ. For a real-valued function f on V , set f (γ) = limn→∞ f (xn)
as n→∞ along the vertices of γ. Let PA be the set of all one-sided infinite paths
with no self-intersections contained in ΓA. We define a real-valued function f to be
asymptotically constant on A if there exists a constant c such that

f (γ) = c for p-almost every path γ ∈ PA.

We shall say that an infinite connected set U has property AC if each function in
BHDp(Γ) is asymptotically constant on U.

An infinite connected subset S of V is said to be p-hyperbolic if there exists a
nonempty finite subset A of V for which

Capp(A,∞, S ) = inf
u

Ip(u, S ) > 0,

where the infimum is taken over all finitely supported functions u on S ∪ ∂S such that
u = 1 on A. If S is not p-hyperbolic, then it is said to be p-parabolic. The quantity
Capp(A,∞, S ) is known as the p-capacity of S .

Motivated by [18, Theorem 3.1], Kim and Lee prove the following result in
[9, Theorem 1.1].

T 4.1. Let n ∈ N and let Γ be a graph with n p-hyperbolic ends. Suppose that
each p-hyperbolic end has property AC. Then given any real numbers a1, a2, . . . , an ∈

R, there exists a unique h ∈ BHDp(Γ) such that

h(γ) = ai for p-almost every path γ ∈ PFi

for each i = 1, 2, . . . , n, where F1, F2, . . . , Fn are the p-hyperbolic ends of Γ.
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We see immediately that if a graph Γ satisfies the hypothesis of this theorem, then
BHDp(Γ) can be identified with Rn, which is the same conclusion as Corollary 2.4.
However, the hypotheses of Theorem 4.1 are quite strong. The number of ends of
a graph Γ is independent of p, and the AC property is also very restrictive. For
example, let G denote a co-compact lattice in the real rank-one simple Lie groups
Sp(n, 1), n ≥ 2. The Cayley graph of the group G has one end, but there are nonconstant
p-harmonic functions with finite p-Dirichlet sum on G precisely when p > 4n + 2. See
[10, Section 4] for the details.

When the cardinality of ∂p(Γ) is finite, Theorem 2.3 completely characterises the
number of elements in ∂p(Γ) in terms of pairwise disjoint Dp-massive sets. It is the
case that Dp-massive sets are also p-hyperbolic. The reason why we are able to
drop the property AC assumption from Theorem 4.1 in our Theorem 2.3 is given in
Proposition 4.3 below. Before we prove the proposition we need the following lemma.

L 4.2. Let Γ be a graph with bounded degree and let 1 < p ∈ R. Suppose that F
is an infinite connected subset of V with property AC. For h ∈ BHDp(Γ), denote by ch

the constant for which h(γ) = ch for p-almost every path in PF . If χ ∈ F ∩ ∂p(Γ), then
χ(h) = ch.

P. Let h ∈ BHDp(Γ). Suppose that ch < χ(h). Let ε > 0 such that ch < χ(h) − ε.
Define A = {x ∈ F | h(x) > χ(h) − ε} and let C be a component of A. Observe that
λp(PC) =∞ due to h(γ) > ch for each γ ∈ PC . By Lemma 3.1, C is Dp-massive. Now
[12, Proposition 5.3] yields the contradiction λp(PC) <∞. A similar argument shows
that it is also not the case that χ(h) < ch. Therefore χ(h) = ch. �

Denote by V(γ) the vertex set of an infinite path γ in Γ. Write V(γ) for the closure
of i(V(γ)) in Sp(BDp(Γ)). The set of extreme points of γ is given by

Ex(γ) = V(γ) \ i(V(γ)).

P 4.3. Let 1 < p ∈ R and let Γ be a graph of bounded degree. Let F be a
p-hyperbolic subset of V. Then F has property AC if and only if |F ∩ ∂p(Γ)| = 1.

P. Because F is p-hyperbolic, it is the case that λp(PF) <∞. From [12,
Lemma 5.2] we get that F ∩ ∂p(Γ) , ∅. Now suppose that χ1 and χ2 are distinct
elements from F ∩ ∂p(Γ). Since BDp(Γ) separates points in Sp(BDp(Γ)), there exists
an f ∈ BDp(Γ) for which χ1( f ) , χ2( f ). Combining [11, Theorems 4.6 and 4.8],
we obtain an h ∈ BHDp(Γ) with the property f = h on ∂p(Γ). Thus χ1(h) , χ2(h),
contradicting Lemma 4.2. Hence, |F ∩ ∂p(Γ)| = 1.

Now assume that |F ∩ ∂p(Γ)| = 1 and let χ be the unique element in F ∩ ∂p(Γ).
Select an h ∈ BHDp(Γ) and let ch = χ(h). We will now show that h(γ) = ch for p-almost
every path in PF . Denote by P∞ the set of all γ ∈ PF for which h(γ) does not exist. Let
γ = x0x1 . . . xn . . . ∈ P∞. The identity h(xn) = h(x0) −

∑n
k=1(h(xk−1) − h(xk)) implies

that
∑∞

k=1 |h(xk−1) − h(xk)| =∞. It now follows [7, Lemma 2.3] that λp(P∞) =∞.

https://doi.org/10.1017/S0004972713000439 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972713000439


[9] p-harmonic boundary and Dp-massive subsets 157

For each n ∈ N, set

P1/n = {γ ∈ PF \ P∞ | |h(γ) − ch| > 1/n}.

Now suppose that λp(P1/n) <∞ for some n ∈ N. By [12, Lemma 5.2],(⋃
γ

{Ex(γ) | γ ∈ P1/n}

)
∩ ∂p(Γ) , ∅.

Let ψ be an element in this intersection. The definition of P1/n implies that ψ(h) , ch.
Combining the fact that P1/n ⊆ PF with the hypothesis |F ∩ ∂p(Γ)| = 1 yields ψ = χ,
contradicting the fact that χ(h) = ch. Hence λp(P1/n) =∞ for all n ∈ N. Let PU =⋃∞

n=1 P1/n. According to [7, Lemma 2.2], λp(PU) =∞, and λp(PU ∪ P∞) =∞. Let
Ph = {γ ∈ PF | h(γ) = ch}. Then PF = Ph ∪ PU ∪ P∞. Another appeal to [7, Lemma
2.2] shows that λp(Ph) <∞ since λp(PF) <∞. Thus h(γ) = ch for p-almost every path
in PF . Therefore, h is asymptotically constant on F. �

It follows immediately from this proposition that if a graph Γ satisfies the
assumptions of Theorem 4.1, then |∂p(Γ)| = n.
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