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Abstract Let Waff be an extended affine Weyl group, H be the corresponding affine Hecke algebra over

the ring C[q
1
2 ,q− 1

2 ], and J be Lusztig’s asymptotic Hecke algebra, viewed as a based ring with basis

{tw}. Viewing J as a subalgebra of the (q− 1
2 )-adic completion of H via Lusztig’s map φ, we use Harish-

Chandra’s Plancherel formula for p-adic groups to show that the coefficient of Tx in tw is a rational
function of q, with denominator depending only on the two-sided cell containing w, and dividing a
power of the Poincaré polynomial of the finite Weyl group. As an application, we conjecture that these
denominators encode more detailed information about the failure of the Kazhdan-Lusztig classification
at roots of the Poincaré polynomial than is currently known.

Along the way, we show that upon specializing q = q > 1, the map from J to the Harish-Chandra
Schwartz algebra is injective. As an application of injectivity, we give a novel criterion for an Iwahori-
spherical representation to have fixed vectors under a larger parahoric subgroup in terms of its Kazhdan-
Lusztig parameter.
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1. Introduction

LetWaff be an affineWeyl group or extended affineWeyl group, and letH be its associated
Hecke algebra over A := C[q1/2,q−1/2], where q is a formal variable. The representation

theory of H is very well understood, behaving well and uniformly when q is specialized

to any q ∈C× that is not a root of the Poincaré polynomial PW of the finite Weyl group
W ⊂Waff .

When q is specialized to a prime power q, the category of finite-dimensional mod-

ules over the specialized algebra H is equivalent to the category of admissible representa-
tions with nonzero Iwahori-fixed vector of some p-adic group. A form of local Langlands

correspondence, the Deligne-Langlands conjecture, has been established by Kazhdan and

Lusztig in [25], where they classified modules over the generic algebra H using algebraic

K -theory. A slightly different approach to this classification due to Ginzburg is explained
in [12]. In both treatments, a first step is to fix a central character. In particular, one

must choose a complex number q ∈ C× by which q will act. Decomposing the K -theory

of certain subvarieties of Springer fibres into irreducible representations of a certain
finite group yields the standard modules. It can happen that the standard modules are

themselves simple (for example, simple tempered representations, which play an essential

role in the present paper, are of this form), but in general simple modules are obtained as
a certain unique nonzero quotient of standard modules. This quotient exists when q ∈C×

is not a root of unity, but can be zero otherwise. Lusztig conjectured in [30] that this

classification would in fact hold whenever q was not a root of PW , and this result was

proven by Xi in [52]. Xi also showed that the classification fails in general at roots of
the Poincaré polynomial, and presented this failure by giving an example related to a

lack of simple H|q=q-modules attached to the lowest two-sided cell. Our results in this

paper explain that the lowest two-sided cell is, in a precise sense, maximally singular with
respect to the parameter q.

One way Lusztig expressed the uniformity in q of the representation theory of the

various algebras H|q=q is via the asymptotic Hecke algebra J. This is a C-algebra (in
fact, a Z-algebra) J with distinguished basis {tw}w∈Waff

, equipped with an injection

φ : H ↪→ J ⊗CA. In this way there is a map from J -modules to H-modules, and Lusztig

has shown in [29] and [17] that when q is not a root of unity (other than 1), the specialized

map φq induces a bijection between simple H|q=q-modules and simple J -modules, these
last being defined over C. Moreover, he showed that when PW (q) �= 0, the map φq induces

an isomorphism

(φq)∗ : K0(J −Mod)→K0(H|q=q −Mod)

of Grothendieck groups. The map φ becomes a bijection after completing H and J ⊗CA
by replacing A with C((q−1/2)) and allowing infinite sums convergent in the (q−1/2)-adic

topology. In this way one can write a basis element tw as an infinite sum

†(−)◦φ−1(tw) =
∑

x∈Waff

ax,wTx, (1.1)
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where each ax,w is a formal Laurent series in q−1/2, and †(−) is the involution ofH defined
in Definition 1.6. It agrees with the Goldman involution of H when G is simply connected.

In this paper we will almost exclusively work with φ ◦ †(−), for reasons explained in

Section 1.1.

In light of the above, it is natural to ask how ax,w behaves when q is specialized to a
root of unity.

1.1. The asymptotic Hecke algebra and p-adic groups

This paper is prompted by the work of Braverman and Kazhdan in [11], who related

the asymptotic Hecke algebra to harmonic analysis on p-adic groups. Specifically, in [17],

Lusztig relates simple J -modules to certain H⊗A C(q−1/2)-modules termed tempered
because their definition is made in analogy with Casselman’s criterion for temperedness

of p-adic groups. In [11], Braverman and Kazhdan showed essentially that the analytic

meaning of the word ‘tempered’ can be substituted into Lusztig’s results from [17].
More precisely, let G be a connected reductive group defined and split over a non-

archimedean local field F whose extended affine Weyl group is Waff . Then in [11],

Braverman and Kazhdan define a map expressing J as sitting between the Iwahori-Hecke
algebra of G=G(F ) and the Harish-Chandra Schwartz algebra C, and propose a spectral

characterization of J via the operator Paley-Wiener theorem, obtaining a diagram

H(G,I) CI×I

J

EI EI
J EI

t ,

∼

φq◦†(−)

∼

φ̃

η

(1.2)

where the outer vertical maps are Fourier transform f �→ π(f) and the rings EI and EI
t

of endomorphisms of forgetful functors to vector spaces are as described by the operator

Paley-Wiener theorem, as we recall in Section 2.3.

The map η is defined in [11] and we will recall its definition below. In particular,
it induces the map φ̃, which then associates a Harish-Chandra Schwartz function to

every element of J such that η(j) = π(φ̃(j)), giving another way of associating to tw an

expression similar to (1.1).
This prompts several questions: whether η (equivalently φ̃) is injective, whether it is

surjective, and the nature of the relationship between the Schwartz function φ̃(tw) and

the expression (1.1).

1.1.1. Denominators in the affine Hecke algebra and injectivity of η. In
the first part of this paper we prove that η is injective. Along the way, we prove in

Proposition 3.18 that φ̃ is essentially the map φ−1. Our strategy is to determine that

the Schwartz functions fw on the p-adic group G satisfy the statements of Theorem 1.2
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below, and are in addition sufficiently well-behaved so as to lift to elements of a certain
completion H− of H, thus defining a map

φ1 : J ⊗CA→H−.

We therefore obtain two maps J ⊂ J⊗CA→H−: the inverse †(−)◦φ−1 of Lusztig’s map,

and our map φ1 induced by the construction in [11]. We prove in Proposition 3.18 that

these maps agree, at which point Theorem 3.21 and the first statement of Theorem 1.2
follow.

In particular, φ1 is injective. Using that the representation theory of J is sufficiently

independent of q, we then show in Corollary 3.20 that φ̃ is injective for any q > 1. This is
obviously equivalent to

Theorem 1.1 (Corollary 3.20). The map η is injective for any q > 1.

A weaker form of the following Theorem, which is the main result of this paper, was
conjectured by Kazhdan.

Theorem 1.2. Let Waff be an affine Weyl group, H its affine Hecke algebra over A, and
J its asymptotic Hecke algebra. Let φ : H ↪→ J ⊗CA be Lusztig’s map.

1. For all x,w ∈ Waff , ax,w is a rational function of q. The denominator of ax,w is

independent of x. As a function of w, it is constant on two-sided cells.

2. There exists NWaff
∈ N such that upon writing

†(−)◦φ−1(tw) =
∑

x∈Waff

ax,wTx,

we have

PW (q)NWaff ax,w ∈ A

for all x,w ∈Waff .

3. If d is a distinguished involution in the lowest two-sided cell, then a1,d = 1/PW (q)
exactly.

In [14], the author proved Theorem 1.2 in type Ã1, but with different conventions. To

translate to the conventions of this paper, the reader should replace j with the involution
†(−), and the completion of H with respect to the Cw basis and positive powers of q1/2

with the completion of H with respect to the basis {(−1)�(w)C ′
w}w∈Waff

and negative
powers of q1/2. Note also that we write ax,w instead of aw,x as in [14]. In [36], Neunhöffer

described the coefficients ax,w for finite Weyl groups.

In future, it would be desirable to also treat the case of unequal parameters, where a
result like that of [7] governing denominators is not yet available. On the other hand,

when G=GLn, we are able to be slightly more precise than Theorem 1.2, while also not

appealing to [7]. For this reason we treat the case G=GLn separately as Theorem 3.21
in Section 3.4.

Our main tool is Harish-Chandra’s Plancherel formula for the p-adic group G associated

to H and the surjection of cocentres induced by Lusztig’s map φ after inverting PW (q)
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proved in [7]1. We invoke [7] only at the very end of our argument, which, absent [7], still
proves that ax,w are rational functions with denominator depending only on the two-sided

cell containing w. We do so with an eye to future work dealing with Hecke algebras with

unequal parameters.
In [14], the author related a conjecture of Kazhdan concerning the positivity of

some coefficients related to the coefficients ax,w. Historically, proofs of such positivity

phenomena have also provided interpretations of the positive quantities in question. While

we cannot currently prove the conjecture in [14], our results in Section 4 hint at a possible
interpretation of a1,d for certain distinguished involutions d.

Remark 1.3. It is tempting to conjecture the following more precise version of
Theorem 1.2, based on the factorization PMP

(q)PG/P(q) = PG/B(q): for every Levi

subgroup MP of G and all ω ∈ E2(MP ), the formal degree d(ω) is a rational function

of q the denominator of which divides a power of PMP
(q). The integral over all induced

twists IndGP (ν⊗ω) is a rational function of q with denominator dividing a power of the

Poincaré polynomial of the partial flag variety (G/P)(C). For example, if G = GL6(F )

and M = GL3(F )×GL3(F ). In this case the integral itself (omitting the factor CM in
the notation of Section 2.5) is

1

2πi

1

2πi

∫
T

∫
T

(z1− z2)(z1− z2)

(z1− q3z2)(z1− q−3z2)

dz1
z1

dz2
z2

=
(1− q3)2

(1− q6)2q3
+1 =

(1− q3)q−3

1+ q3
+1,

and by [10] Proposition 23.1, (with q= t2) we have

PG/P(q) = PG(3,6)(q) = (1+q2)(1+q+q2+q3+q4)(1+q3).

In examples such as the above, this does indeed happen, but only after cancellation with
some terms in the numerator. In general, we will not track numerators precisely enough

to show this version of Theorem 1.2. We shall however see a limited demonstration of

this behaviour in Corollary 3.3.

1.1.2. Denominators in the affine Hecke and the Kazhdan-Lusztig classifica-
tion at roots of unity. The affine Hecke has a filtration by two-sided ideals

H≥i = span{Cw |a(w)≥ i},

where a is Lusztig’s a-function. As such, for any q ∈C× and any simpleH =H|q=q-module

M there is an integer a(M) such that H≥iM �= 0 but H≥i+1M = 0. Define a(M) = i to

be this integer. One can also define a(E) = a(c(E)) where E is a simple J -module and
Jc(E) is the unique two-sided ideal not annihilating E.

The algebra J linearizes the above filtration into an honest direct sum and implements

the almost-independence on q ∈C× of the representation theory of H =H|q=q as follows.

1In fact, as proved by Bezrukavnikov-Braverman-Kazhdan in the appendix of loc. cit., φq

induces an isomorphism whenever q is not a root of unity, but we will not need this.
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Theorem 1.4 [52].

1. Suppose that q is not a root of the Poincaré polynomial of G. Then for each simple
J-module E, the H module φqE has a unique simple quotient L such that a(E) = a(L).

For all other simple subquotients L′ of E, we have a(L′)< a(E).

Equivalently, for all admissible triples (u,s,ρ), the representation K(u,s,ρ,q) of H has
a unique nonzero simple quotient L = L(u,s,ρ,q) such that a(L) = a(c(u)). That is,

the Deligne-Langlands conjecture is true for H|q=q.

2. If q is a root of the Poincaré polynomial of G, then the Deligne-Langlands conjecture

is false for the lowest cell. That is, if u = {1}, then every simple subquotient L′ of
K(u,s,ρ,q) has a(L′)< a(c0).

By Theorem 1.2, the coefficients a1,d have poles at every root of PW , for all distinguished

involutions d in the lowest two-sided cell c0. On the other hand, as we show in
Example 3.10, there do exist cells c �= c0 such that the coefficients ax,w are nonsingular

at certain roots of PW , for all w ∈ c and x ∈ Waff . We encode the hope that this is no

accident as

Conjecture 1.5. Let W̃ be an affine Weyl group, and let q ∈ C× be a root of PW . Let
c be a two-sided cell such that if w ∈ c, then ax,w does not have a pole at q = q for

any x ∈ Waff . Let u = u(c). Let K(u,s,ρ) be a standard module in the notation of [25].

Then the module †∗K(u,s,ρ,q) (see Definition 1.6 (a), (b) and the discussion following
Theorem 2.7) has a unique simple quotient L= L(u,s,ρ,q) such that a(L) = a(E), where

E is the simple J module corresponding via φ to (u,s,ρ) under [17, Thm. 4.2]. Two such

simple modules are isomorphic if and only if their corresponding triples are conjugate.

Note that in type Ãn, the number of two-sided cells grows as e
√
n, whereas the number

of subsets of roots of PW is 2n(n+1)/2. For example in type Ã1, there is only one root

of PW = q+1, but there are two two-sided cells (and both are singular at q = −1.)

However, already in type Ã3, one can see from Theorem 3.2 that the two-sided cell
corresponding to the partition 4 = 2+2 is not singular at two of the roots of PA3

(q) =

(1+q)(1+q+q2)(1+q+q2+q3); see Example 3.10.

1.1.3. Application: representations with parahoric-fixed vectors. In Section 4,
we use the existence of the action of the asymptotic Hecke algebra on tempered G-

representations to give a simple criterion for the existence of vectors fixed under a

parahoric subgroup of G :

Theorem 4.1. Let π = K(u,s,ρ) be a simple tempered I-spherical representation of G.
Let P be a parahoric subgroup of G and let wP be the longest element in the corresponding

subgroup of Waff . Let B∨
u be the Springer fibre for u.

1. If 	(wP)> dimB∨
u , then πP = {0}.

2. Conversely, let uP be the unipotent conjugacy class corresponding to the two-sided cell

containing wP . Then there exists a semisimple element s∈ZG∨(uP), a Levi subgroup
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M∨ of G∨ minimal such that (uP,s) ∈ M∨, and a discrete series representation

ω ∈ E2(M) such that

πP = iGPM
(ω⊗ν)P �= {0}

for all ν non-strictly positive and the parameter of π is (uP,s).

Thus starting from the regular unipotent class, π(twP ) = 0 until reaching the unipotent
attached to wP . At this unipotent, P-fixed vectors are first encountered, and twP acts

by a nonzero projector with image contained in πP . For lower cells, it may still be

the case that πP �= 0, but twP will act by zero on such representations, too. Therefore
the nonzero action of twP detects precisely the ‘most regular’ unipotent attached to

P-spherical representations, in the sense that if a representation π such that πP �= 0

has the unipotent part of its parameter equal to u, then a(u) ≥ a(uP). In this way
the distinguished involutions twP are more exact versions of the corresponding indicator

functions 1P , at the expense of being more complicated to understand.

Remark 1.6. Recall from Section 1.1.2 that for every simple H -module M there is a
number a(M) such that H≥iM = 0 for all i > a(M). However, if (u,s,ρ) is the KL-

parameter of M, then without knowing that M extends to a simple J -module, it does not

follow that a(M) = dimB∨
u .

Remark 1.7. By [17, Theorem 4.8(d)] and the proof of [17, Lemma 5.5], every two-sided

cell contains a distinguished involution contained in a finite parabolic subgroup of Waff ,

but not every distinguished involution of a finite Coxeter group is the longest word of
a parabolic subgroup, i.e. is of the form wP ; approximately half of two-sided cells of

the finite Weyl group W ⊂Waff do not contain any distinguished involutions contained

in proper parabolic subgroups, because of the cell-preserving bijection w �→ w0w. For
example, this happens for the second-lowest cell for E8.

The existence of parahoric-fixed vectors is a rigid question, in the sense of the rigid

cocentre of Ciubotaru-He [13]. We investigate this connection further in forthcoming
work.

Some time after completing the present paper, we became aware of [19], which also

studies the connection between the asymptotic Hecke algebra and the Plancherel theorem
in type G̃2, for unequal parameters. In op. cit. the authors speculate that the ‘asymptotic

Plancherel measure’ of op. cit. should be related to the perspective of [11] on J. We defer

investigation of this to future work, but note that in light of both the classic work [35]

of Morris, and recent work [47] of Solleveld, the unequal parameters case is relevant even
to split p-adic groups. In particular, establishing results similar to those of the present

paper for unequal parameters may provide an effective way to study the algebra J of

Braverman and Kazhdan given in Definition 1.9 of [11].

1.2. Outline of the argument

This paper is organized according to our strategy for proving Theorems 1.2, Theorem 3.21,

and Corollary 3.20.
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These results are each simple corollaries of computations with the Plancherel formula
and some of Lusztig’s results on J. The remainder of this section will introduce H

and J precisely, and recall their basic representation theory. In Section 2, we introduce

Harish-Chandra’s Plancherel formula in detail, along with all the numerical constants
that appear in it. In Section 2.4, we recall the results of Braverman-Kazhdan from [11].

There is no original material in the first two sections. In Section 2.8, we prepare to

apply the Plancherel formula by proving that, if fw is the Schwartz function associated

by Braverman-Kazhdan to tw, and π is a tempered representation, then trace(π,fw) is
sufficiently regular so as not to complicate the denominators of ax,w. This section is also

mostly a recollection of standard material, the only original result being Lemma 2.17.

In Section 3, we prove most of our main results. As we are able to be more precise in
type Ãn, we perform each step in parallel for type Ãn and for other types: in Sections 3.1

and 3.2 we prove statements like those of Theorem 1.2 for the Schwartz functions fw. In

these sections q is specialized to a prime power q. In Section 3.3 we relate the functions
fw to the basis elements tw, turning statements that hold for all prime powers q into

statements that hold for the formal variable q. We are then able to prove our main

results.

In Section 4, we state our application about the existence of parahoric-fixed vectors.

1.3. The affine Hecke algebra

Let F be a non-archimedean local field, O its ring of integers and 
 be a uniformizer.

Let q be the cardinality of the residue field. Then q = pr is a prime power. We write | · |F
for the p-adic absolute value on F ; when necessary, | · |∞ will denote the archimedean

absolute value on C.
Let G be a connected reductive algebraic group defined and split over F, A a maximal

F -split torus of G, and X∗ =X∗(A) the cocharacter lattice of A. Let π1(G) =X∗/ZΦ∨

be the fundamental group, the quotient of the cocharacter lattice by the coroot lattice.
Let N be unipotent radical of a chosen Borel subgroup B, so that B =AN. Let W be

the finite Weyl group of G, and Waff =W �X∗(A) be the extended affine Weyl group.

Write S for the set of simple reflections in Waff . Let G∨ be the Langlands dual group
of G, taken over C. We write G = G(F ), A = A(F ), etc. Where there is no danger of

confusion, we also write G∨ for G∨(C), M∨ for M∨(C), etc. Let K be the maximal

compact subgroup G(O). Also let I be the Iwahori subgroup of G that is the preimage

of B(Fq) in K. We sometimes write PG/B for PW , as this polynomial is also the Poincaré
polynomial of the flag variety (G/B)(C).
We writeH for the affine Hecke algebra ofWaff . It is a unital associative algebra over the

ring A=C[q
1
2 ,q− 1

2 ] (in fact, it is defined over Z[q
1
2 ,q− 1

2 ] but we will work over C to avoid
having to introduce extra notation later), where q

1
2 is a formal variable. We will think of

C× as SpecA. The algebra H has the Coxeter presentation with standard basis {Tw}w∈W̃

with TwTw′ = Tww′ if 	(ww′) = 	(w)+ 	(w′) and quadratic relation (Ts+1)(Ts−q) = 0
for s ∈ S. We write θλ for the generators of the Bernstein subalgebra.

Recall from [24] the two Kazhdan-Lusztig bases {Cw}w∈Waff
and {C ′

w}w∈Waff
of H,

where
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C ′
w = q− �(w)

2

∑
x≤w

Px,w(q)Tx

for the Kazhdan-Lusztig polynomials Px,w. Write CxCy =
∑

z∈Waff
hx,y,zCz. The inverse

Kazhdan-Lusztig polynomials Qy,x are the unique family of polynomials satisfying

Tx =
∑
y≤x

(−1)�(x)−�(y)q
�(y)
2 Qy,x(q)C

′
y,

or equivalently, satisfying∑
z≤y≤x

(−1)�(x)−�(y)Qy,x(q)Pz,y(q) = δz,x

along with some restrictions on their degrees. For example, we shall use in Section 3.3.2

that degQy,x ≤ 1
2 (	(x)− 	(y)−1). See [9] for further exposition.

If

ϕ : (Waff,S)→ (Waff,S)

is a Coxeter group automorphism of Waff , then

Tw �→ Tϕ(w)

is an algebra automorphism of H commuting with the bar involution, and therefore given

equivalently by

C ′
w �→ C ′

ϕ(w)

and

Cw �→ Cϕ(w). (1.3)

It is well-known that there is an isomorphism of associative C-algebras

H|q=q :=H⊗AC→ C∞
c (G)I×I =:H,

where q acts on C by multiplication by q.

1.4. The asymptotic Hecke algebra

Definition 1.1. Lusztig’s a-function a : Waff → Z≥0 is defined such that a(w) is the

minimal value such that q
a(w)

2 hx,y,w ∈ A+ = C[q1/2] for all x,y ∈ W̃ .

The a-function is constant on two-sided cells of Waff . Obviously, a(1) = 0, and the a-
function obtains its maximum, equal to the number of positive roots, on the two-sided cell

containing the longest word w0 ∈W . In general, under the bijection between two-sided

cells c of Waff and unipotent conjugacy classes u= u(c) in G∨ of [17], we have

a(c) = dimC(B∨
u ),

where B∨
u is the Springer fibre of u. We have a(w)≤ 	(w) for all w ∈Waff .

In [28], Lusztig defined an associative algebra J over C equipped with an injection

φ : H ↪→ J ⊗CA which becomes an isomorphism after taking a certain completion, to be

https://doi.org/10.1017/S1474748025101321 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025101321


Denominators in Lusztig’s asymptotic Hecke algebra via the Plancherel formula 11

recalled in Section 3.3.1, of both sides. As a C-vector space, J has basis {tw}w∈Waff
. The

structure constants of J are obtained from those of H written in the {Cw}w∈Waff
-basis

under the following procedure: first, the integer γx,y,z is defined by the condition

q
a(z)
2 hx,y,z−1 −γx,y,z ∈ qA+.

One then defines

txty =
∑

z∈Waff

γx,y,ztz−1 .

Surprisingly, this defines a unital associative algebra with unit

1J =
∑
d∈D

td,

where D is the (finite) set of distinguished involutions [28]. The elements td are orthogonal

idempotents in J, which decomposes as a direct sum indexed by the two-sided cells of
Waff in the sense of [27]. Each left cell, again in the sense of op. cit., contains a single

distinguished involution which is the unit in the ring tdJtd. If c is a two-sided cell, then

Jc is a is a unital ring with unit

1Jc =
∑

d∈D∩c

td.

Lusztig further defined a map of algebras

φ : H→ J ⊗CA

given by

φ(Cw) =
∑

z∈W, d∈D, a(z)=a(d)

hw,d,ztz.

Write φq for the specialization of this map when q= q. It is known [29, Proposition 1.7]
that φq is injective for all q ∈ C×.

Lemma 1.8. Let

ϕ : (Waff,S)→ (Waff,S)

be a Coxeter group automorphism. Then

1. The map tw �→ tϕ(w) defines a based ring automorphism of J, which we also denote
ϕ.

2. The map φ is ϕ-linear, in the sense that it commutes with the automorphism from

the first statement and the automorphism (1.3).

Proof. The first statement is [32, 2.2(g)].
For the second statement, note that ϕ acts on D and that

φ(Cϕ(w)) =
∑

d1∼Lz1

hϕ(w),d1,z1tz1
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and

ϕ(φ(Cw)) =
∑

d2∼Lz2

hw,d2,z2tϕ(z2).

Now if z1 = ϕ(z2), then d1 = ϕ(d2), and

hϕ(w),d1,z1 = hϕ(w),ϕ(d2),ϕ(d2) = hw,d2,z2

by (1.3).

1.4.1. Deformations of the group ring. Upon setting q= 1, H|q=1 is isomorphic

to C[Waff ], and so H is a deformation of the group algebra of Waff .

Let, temporarily, W be any finite Coxeter group. Then one can define its Hecke algebra
H, an algebra over Z[q

1
2 ,q− 1

2 ] which deforms the group ring Z[W ]. Let q ∈ C×. For all

but finitely many values of q, all roots of unity, the algebras Hq=q are trivial deformations

of C[W ], and hence are all isomorphic. However, this isomorphism requires choosing a
square root of q. The affine Hecke algebra provides a canonical isomorphism: away from

finitely many q, we have that H|q=q is isomorphic to J, and J is defined over Z (although,

as stated above, we will view it as a C- algebra to unburden notation), see [31, Section
20.1 (e)].

Example 1.9. Let W =
〈
1,s

∣∣s2 = 1
〉
be the Weyl group of type A1. The Kazhdan-

Lusztig Cw-basis elements are C1 = T1 and Cs = q− 1
2Ts−q

1
2T1, and D =W in this case.

There are two two-sided cells in W, and one can easily check that

φ : C1 �→ t1+ ts

and

φ : Cs �→ −
(
q

1
2 +q− 1

2

)
ts.

Specializing q= q, we see that φ becomes an isomorphism whenever
(
q

1
2 + q−

1
2

)
�=0, that

is, whenever q �=−1.

1.5. Representation theory of H and J

Recall the classification of finite-dimensional H-modules given in [25]. For an extended

exposition with slightly different conventions, we refer the reader to [12]. The primary
difference between the setup we require and that of [12] is that we must be able to defer

specializing q until the last possible moment, whereas specializing q is the first step of

the construction as given in [12]. In particular, let u ∈ G∨(C) be a unipotent element,
and s ∈ G∨(C) be a semisimple element such that us = su. Let ρ be an irreducible

representation of the simultaneous centralizer ZG∨(s,u). The standard H -module K(s,u,ρ)

is a certain, and in general reducible, H -module defined using the geometry of the flag
variety of the Langlands dual group. It may be the zero module; we say that (u,s,ρ) is

admissible when this does not happen. Having fixed s and u, we say that ρ is admissible

if (u,s,ρ) is.
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We now recall an algebraic version of the Langlands classification. As we do not have
access to the notion of absolute value of q, the classical definitions of tempered and

discrete-series representations of the corresponding p-adic group G are not available

to us. However, Kazhdan-Lusztig provide the following algebraic generalization. Let
K = C(q− 1

2 ) and K̄ be the algebraic closure of K. We write HK̄ for H⊗A K̄ and recall

another definition of Lusztig’s from [17].

Definition 1.2. Let M be a HK̄-module finite-dimensional over K̄. Say that m ∈M is

an eigenvector if θx ·m = χm(x)m for all dominant x in X∗. As χm is a character of

the coweight lattice, it corresponds to an element σm ∈A∨(K̄) in the sense that, for all
cocharacters x of A, we have

χm(x) = x(σm)

where x is viewed as a character of A∨. Then M is of constant type if there is a semisimple

element s′ ∈G∨(C) and a morphism of algebraic groups

φ′ : SL2(C)→ Z0
G∨(s′)

such that for all eigenvectors m of M, the element σm is G∨(K̄)-conjugate to

φ′(diag(q1/2,q−1/2))s′,

where by abuse of notation we have written φ′ again for the base-change to K̄.

The idea of the name of the definition is that s′ ∈G∨(C) is a ‘constant element’ not
depending on q.

Next is a generalization of Casselman’s criterion, which as such, requires a choice

of dominant weights. Following [25] (see the proof of Prop. 1.6 of loc. cit.) and
[17, Section 1.6], we choose the positive roots to be those occurring in g/b.

Following [17], we choose a morphism of groups V : K̄× → R such that V (q
1
2 ) = 1 and

V (aq
1
2 + b) = 0 for all a ∈ C, b ∈ C×.

Definition 1.3 [17], c.f. [25]. Let M be any finite-dimensional HK̄-module. We say that
M is V -tempered if all eigenvalues ν of θλ for all dominant λ ∈X∗(A) satisfy V (ν)≤ 0.

The representation theory of J is very well understood. We shall recall some notation

and then state some major classification results of Lusztig, which relate the representation

theory of J to certain H-modules defined by Kazhdan-Lusztig.

Definition 1.4. Let E be a J -module. Then E⊗CK is a J⊗CK-module. Hence HK acts

on E via φ. Denote the resulting HK module by φE.

1.5.1. Involutions on H. For x ∈Waff , let ω(x) ∈ π1(G) label the W �ZΦ∨-coset of
Waff containing x, and write ω(x) = ω(x)fω(x)t ∈ W �X∗. Then every y ≤ x is also in

the coset of ω(x).
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Definition 1.5. Let j : H→H be the ring (and not A-algebra) involution of H defined

by j(
∑

w awTw) =
∑

w āw(−1)�(w)q−�(w)Tw.

The j -involution exchanges the {Cw} and {C ′
w}-bases [24].

The reason for our choice of conventions, which differ slightly from those of [29] and [17],

is the presence of the involution † and its exchange of temperedness and anti-temperedness

in the relationship between H -modules and J -modules; see Theorem 1.13 and Lemma 1.10
below.

Definition 1.6.

(a) Define the A-algebra involution †(−) of H by setting

†Tw = (−1)�(wf )q�(w)T−1
w−1, w = wfλ ∈Waff .

Note that the sign factor depends only on wf .

(b) Let h �→ ∗h be the A-involution defined in terms of the Bernstein presentation of

H: by

∗Tw = (−1)�(w)q�(w)T−1
w−1, w ∈W

and

∗θλ = θ−1
λ , λ ∈X∗.

(c) ([40, Section 5.a].) Let κ̄ be the A-linear involution defined by

κ̄(Tw) = Tκ̄(w)

induced by the Coxeter group automorphism given by κ̄(s) =w0sw0 for s ∈ S \{s0}
and κ̄(s0) = s0, so that κ̄(λ) =−w0(λ) for λ ∈X∗; equivalently

κ̄(Tw) = Tw0ww−1
0
, w ∈W, κ̄(θλ) = θ−w0(λ), λ ∈X∗.

(d) ([5, Section 5].) Let h �→ •h be the A-linear anti-involution defined by

•Tw = Tw−1, w ∈W, •θλ = θλ, λ ∈X∗.

(e) ([5, Section 5].) Let h �→ �h be the A-linear anti-involution defined by

�Tw = Tw−1, w ∈W, �θλ = Tw0
θκ̄(λ)T

−1
w0

, λ ∈X∗.

By [38, Prop. 2.9], �Tw = Tw−1 for w ∈Waff . When G is simply connected, the involution
† agrees with the Goldman involution of H. Now we have

Lemma 1.10. We have

(a) We have †Cx = (−1)�(ω(x)f )j(Cw) = (−1)�(x)+�(ω(x)f )C ′
x for all x ∈Waff .

(b) We have †θλ = Tw0
θ−κ̄(λ)T

−1
w0

= Tw0
θ−1
κ̄(λ)T

−1
w0

.

(c) We have •�†(−) = ∗(−) as involutions on H.

(d) We have •(−)◦ �(−) = T−1
w0

κ̄(−)Tw0
as automorphisms of H.
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(e) We have the commutative diagram

H H J ⊗A

H H J ⊗A.

∗(−)

†(−)

T−1
w0

κ̄(−)Tw0

φ

φ(Tw0
)−1κ̄(−)φ(Tw0

)

id φ

Proof. By definition, if x= ωx′ for x′ ∈W �ZΦ∨ and ω ∈ π1(G), then C ′
x = TωC

′
x′ and

Cx = TωCx′ . Further, if ω = ωfωt ∈Waff has 	(ω) = 0, then †Tω = (−1)�(ωf )Tω. Therefore

it suffices to show that

†h= † (h̄)= j(h)

as A-antilinear automorphisms of H for G simply connected. In this case, 	(λ) ∈ 2Z for
any dominant λ ∈X∗, whence

†(−) agrees with the involution Tw �→ (−1)�(w)q�(w)T−1
w−1 ,

w ∈W �ZΦ∨. Therefore we compute

∑
x

bx†Tx =
∑
x

b̄x(−1)�(x)q�(x)T̄x =
∑
x

b̄x(−1)�(x)q−�(x)Tx = j

(∑
x

bxTx

)

whereas

†

(∑
x

bxTx

)
= †

(∑
x

b̄x(−1)�(x)q−�(x)†Tx

)
.

Thus we have †Cw = (−1)�(w)C ′
w for G simply connected, whence (a).

It suffices to prove (b) for λ dominant, in which case

†θλ = q− �(λ)
2 †Tλ = q

�(λ)
2 T−1

−λ = q
�(λ)
2 (�Tλ)

−1

= (�θλ)
−1

=
(
Tw0

θκ̄(λ)T
−1
w0

)−1
= Tw0

θ−1
κ̄(λ)T

−1
w0

,

where we used the equivalence of the definitions in Definition 1.6 (e). This shows (b).

For (c), we again compute, for λ dominant, that

•�†θλ = •� (Tw0
θ−κ̄(λ)T

−1
w0

)
= •θ−λ = θ−λ.

Agreement on Tw for w ∈W follows from the fact that •�(−) is the identity on the finite

Hecke algebra. This shows (c).

On the Bernstein subalgebra, part (d) follows from the definitions. On the finite Hecke
algebra, we must show that the right hand side is the identity automorphism. For s a

finite reflection, write w0sw0 = κ̄(s), again a finite reflection, so that κ̄(s)w0s= w0, and

Tw0
TsT

−1
w0

= Tw0
TsT

−1
s T−1

w0s = Tw0
T−1
w0s = Tκ̄(s)Tw0sT

−1
w0s = Tκ̄(s).

Therefore on the finite Hecke algebra, κ̄ is given by conjugation by Tw0
.

Commutativity of the right square in (e) follows from Lemma 1.8, and commutativity

of the left square follows from (c) and (d).
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Given an H (or HK)-module M, define †M to be the same vector space with the
H-action twisted by this involution, and likewise for other automorphisms.

Corollary 1.11. Twisting by †(−) exchanges tempered and anti-tempered H-modules.

Proof. Immediate from Lemma 1.10 (b).

In fact, more is true: by [23, Thm. 2], †M is the Aubert-Zelevinski dual of M.

Remark 1.12. There is another natural auto-equivalence of the category of admissible

representations of G which exchanges tempered and anti-tempered representations,

namely Bernstein’s cohomological duality. This functor differs from Aubert-Zelevinski
duality by the contragredient [43] (c.f. [37]). On semisimple H -modules π, we have
κ̄π = π̃, by [40, Prop. 6.3]. Therefore twist by the involution ∗(−), which manifestly

exchanges tempered and anti-tempered representations, induces on semisimple modules
the cohomological duality. However, it does not do so in general, because κ̄ does not

induce the contragredient in general. Indeed, for G = SL2(F ), κ̄ = id but not all non-

unitary principal series of G are self-dual. Therefore the operation ∗(−) is less natural
than †(−); this is perhaps reflected by the fact that the formulas in Theorem 1.2 are

nicer than those for (φ ◦ ∗(−))−1(tw), which are related to those of the Theorem by

Lemma 1.10 (e).

We now summarize the relationship between representations of H and of J.

Theorem 1.13 ([17], Prop. 2.11, Thm. 4.2, Prop. 4.4). There are bijections of sets

(u,s,ρ) {(u,s,ρ) |ρ admissible, us= su}/G∨(C)

∗K(s,u,ρ)⊗AK
{
M ∈HK−Mod | ∗M ⊗K K̄ simple, V − tempered

φE = E⊗CK ∈HK−Mod HK̄−module of constant type}

E {E ∈ J −Mod |E is simple},

where K(u,s,ρ) is a standard module as in [25]. Moreover, for a simple J-module E,

1. E is finite-dimensional over C;

2. There is a unique two-sided cell c= c(E) of Waff such that trace(E,tw) �= 0 implies
w ∈ c.

3. trace(E,tw) is the constant term of the polynomial

(−q1/2)a(c(E))trace(M,Cw) ∈ C[q
1
2 ]

where M � φE.
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In particular, trace(E,tw) is independent of q, and upon specializing q = q a prime

power, will be a regular function in the twisting character in the setting of the Paley-

Wiener theorem for the Iwahori-Hecke algebra of the p-adic group G, as we will explain
in greater detail below.

We will comment even further in Section 2.4 on the necessity of twisting by some

H-involution exchanging tempered and anti-tempered modules, and how it is sufficient
to twist φ by either ∗(−) or †(−), respectively but that the latter twist leads to nicer

formulas.

2. Harish-Chandra’s Plancherel formula

We recall the notation and classical results we will need about the Plancherel formula.

For Iwahori-biinvariant Schwartz functions, the Plancherel formula is known explicitly for
all connected reductive groups, and is due to Opdam in [38]. In the case of G=GLn(F ),

we shall refer instead to [4] (where in fact the Plancherel formula is computed explicitly

in its entirety for GLn). In the case G= Sp4, we shall refer to the unpublished work [3]
of Aubert and Kim. For G=G2, we will refer to Parkinson [39].

In this section q is a prime power (or at least a real number of absolute value strictly

greater than 1). The formal variable q will not appear in this section.

2.1. Tempered and discrete series representations

We take our definitions of discrete series and tempered representations from [48, III.1]
and [48, III.2] respectively. By parabolic induction we always understand normalized

induction.

Definition 2.1. A smooth admissible representation ω of G belongs to the discrete

series if ω admits a unitary central character and all matrix coefficients of ω are square-
integrable modulo Z(G). We write E2(G) for the space of irreducible discrete series, and

E2(G)I for the space of irreducible discrete series with nontrivial Iwahori-fixed vectors.

Let v be the K -fixed vector in the self-contragredient representation IndGB(triv)
K such

that v(1) = 1. Define Ξ(g) = 〈π(g)v,v〉 to be the corresponding matrix coefficient.

Definition 2.2. A smooth function f on G is tempered if there is C > 0 and r ∈ R such
that

|f(g)| ≤ CΞ(g)(1+ log‖g‖)r ,

where ‖g‖ ≥ 1 is defined as in [48, p.242].

Definition 2.3. A smooth admissible representation π of G is tempered if all its matrix

coefficients are tempered functions in the sense above.

We write Mt(G) for the category of tempered representations of G. If a tempered

representation admits a central character, the central character takes values in the circle

group T⊂ C×.
The tempered representations are built from the discrete series according to the

following theorem of Harish-Chandra, as related in [48, Prop. III.4.1].
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Theorem 2.1 (Harish-Chandra). Let P be a parabolic subgroup of G with Levi subgroup

M, and let ω ∈ E2(M). Let ν be a unitary character of M. Then π = IndGP (ω⊗ ν) is a

tempered representation. Every simple tempered representation is a direct summand of a
representation of this form.

2.1.1. Formal degrees of discrete series representations. We will soon study

the Plancherel decomposition f =
∑

M fM of the Schwartz function f determined by an

element of J as explained in Section 2.4. As will be explained below, each function fM
is given by an integral formula that involves several constants that depend on the Levi

subgroup M, or are functions on the discrete series of M. These constants are rational

functions of q, the most sensitive of which is the formal degree d(ω) of ω ∈ E2(M)I . Much

is known about formal degrees for I -spherical ω; the most general current result seems
to be

Theorem 2.2 ([46], [16], Theorem 5.1 (b), [18] Proposition 4.1). Let G be connected
reductive over F. Let ω be any unipotent – in particular, any Iwahori-spherical – discrete

series representation of G=G(F ). Then d(ω) is a rational function of q, the numerator

and denominator of which are products of factors of the form qm/2 with m∈Z and (qn−1)
with n ∈ N. Moreover, there is a polynomial ΔG depending only on G and F such that

ΔGd(ω) is a polynomial in q.

This result is proven by first proving that the Hiraga-Ichino-Ikeda conjecture [22] holds
for unipotent discrete series representations. Note that [46], [16] and [22] all use the

normalization of the Haar measure on G defined in [22]. This normalization gives in our

setting μHII(K) = qdimG#G(Fq). Hence, noting that #G(Fq) = PG/B(q) ·#B(Fq) and
that, as Fq is perfect, #B(Fq) is a polynomial in q, we have

μI =
1

qdimG#B(Fq)
μHII,

and so this question of normalization cannot affect the denominators of d(ω), for any Levi
subgroup.

In the Iwahori-spherical case, Opdam showed the above result in [38, Proposition 3.27

(v)], although with less control over the possible factors appearing in the numerator and
denominator of d(ω). We emphasize that op. cit. does not make the splitness assumption

we allow ourselves.

Remark 2.3. Proposition 4.1 of [18] studies not the γ-factor we are interested in, but

rather its quotient by the γ-factor for the Steinberg representation. However, accounting

for the use of the Euler-Poincaré measure μHII on G, and known formula for the formal
degree of the Steinberg representation, one may recover our desired statement about

formal degrees from the main theorem and equation (61) of [18].

2.2. Harish-Chandra’s canonical measure

In this section, we recall the standard coordinates used in [4], and [48]. We follow both

references closely. These conventions differ slightly from the original [21]. Everything in
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this section is standard, but we include details because we do require explicit measures
with which to compute. We state the below for generalG, for application to each standard

Levi subgroup of G.

2.2.1. Unramified characters. Let X∗(G) = Hom(G,Gm) denote the rational

characters of G defined over F. Let aG := (X∗(A)⊗Z R)∗ = (X∗(G)⊗Z R)∗ be the

real Lie algebra of the maximal split central torus A = AG of G and let aGC be its

complexification. We have a map

X∗(G)→Hom(G/G1,C×) =: X (G)

given by χ �→ |χ|F , where |χ|F (g) = |χ(g)|F and G1 =
⋂

χ∈X∗(G) ker |χ|F . This gives
the unramified characters X (G) a complex manifold structure under which X (G) �
(C×)dimR aG . For indeed, we have

aG
∗
C

X (G) 1

given by

χ⊗s �→ (g �→ |χ(g)|sF = q−sval(χ(g))).

The kernel is spanned by all χ⊗ s such that sval(χ(g)) ∈ 2πi
logqZ for all g ∈G. Hence the

kernel is 2πi
logqR, where R ⊂X∗(A)⊗ZQ is a lattice. In this way the quotient X (G) is a

complex manifold.

2.2.2. Unitary unramified characters. Denote by ImX (G) the set of unitary
unramified characters taking values in the unit circle T⊂ C×. This notation is justified,

as if |χ|F = |χ′|F , then Re(χ) = Re(χ′) ∈ a∗G. Hence we can define ImX (G) to be the

unramified characters coming from pure imaginary elements of aG
∗
C
.

The surjection ImX (G) → ImX (A) has finite kernel, and ImX (A) is compact. We
choose the Haar measure on it with volume one.

2.2.3. Action by twisting and the canonical measure. The group X (G) acts on
admissible representations of G by twisting: ω �→ ω⊗ν for ν ∈ X (G). This restricts to an

action of ImX (G) on E2(G).

Pulling this action back to ia∗G, and given a representation ω, let L∗ be its stabilizer
in ia∗G, so that the orbit o of ω is identified as iaG

∗/L∗. This gives o = ImX (G) ·ω the

structure of a real submanifold of the larger orbit oC = aG
∗
C
/L∗ = X (G) ·ω.

Definition 2.4. Given an orbit o⊂ E2(G), the Harish-Chandra canonical measure on o

is the Euclidean measure on o whose pullback to ImX (G) agrees with the pullback of the

Haar measure on ImX (A).

Hence even though the construction of the canonical measure is slightly involved, in

practice it will be easy to recognize as being essentially the Haar measure on the compact

torus ImX (A).
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Example 2.4. If G = SL2(F ) and M = A is the diagonal torus, we have a∗G � R and

R = Z so that a fundamental domain for a∗G/
2π
logqR is

[
− π

logq ,
π

logq

)
and the canonical

measure dν = logq
2π dx, where dx is the Lebesgue measure. To obtain quasicharacters of G,

we associate to ν ∈ aG
∗
C
the quasicharacter χν(g) = q〈ν,HG(g)〉 = |ν(g)|F , where the second

equality defines HG : G→ aG.

Therefore to compute the integral of a function f on E2(G) supported on the unramified

unitary characters of A, we compute∫
E2(A)

f(ω)dω =

∫
f(χν)dν =

logq

2π

∫ π
logq

−π
logq

f(eit logq)dt=
1

2πi

∫
T

f(z)

z
dz

if t �→ eit logq = qs =: z (here s= it) parameterizes the unit circle T.

In general, E2(MP ) is a disjoint union of compact tori, and the Plancherel density

descends to the quotients of these compact tori by certain finite groups, namely, the Weyl
groups of (P,AP ). The set E2(MP )

I is finite up to twists by unramified characters, by a

result of Harish-Chandra [48].

2.3. The Harish-Chandra Schwartz algebra

Let C = C(G) be the Harish-Chandra Schwartz algebra of G ; see [20], [48], or [11] for the

definition and associated notation. In particular, we will record for future comparison

with the argument in the proof of Proposition 3.13 that

q
�(w)

2 q−#W ≤Δ(IwI)≤ q
�(w)

2 .

Let CI×I be the subalgebra of Iwahori-biinvariant functions. As explained in [48], the

Fourier transform f �→ π(f) defines an endomorphism of π for every f ∈ C and every

tempered representation π.

The Plancherel theorem is the statement (see [48, Thm. VIII.1.1]) that this assignment
defines an isomorphism of rings

C → Et(G),

where Et(G) is the subring of the endomorphism ring of the forgetful functor Mt(G)→
VectC defined by the following conditions:

1. For all π = IndGP (ν⊗ω), the endomorphism ηπ = ην,ω is a smooth function of the

unramified unitary character ν and ω ∈ E2(MP );

2. The endomorphism ηπ is biinvariant with respect to some open compact subgroup
of G.

We have the obvious inclusion ι : H ↪→CI×I .
Define the subring E(G) of the endomorphism ring of the forgetful functor M(G) →

VectC from the category of all smooth representations, by replacing, in (1) above, unitary

characters with all unramified characters, and ‘smooth’ with ‘algebraic’, and adding

https://doi.org/10.1017/S1474748025101321 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025101321


Denominators in Lusztig’s asymptotic Hecke algebra via the Plancherel formula 21

3. The endomorphisms ηπ are compatible with supercuspidal support, i.e. if (M1,σ1)

is the supercuspidal support of π, so that

π = iGP (ω⊗ν) ↪→ π1 = iGP1
(σ1⊗ν1),

then ηπ1
preserves π and ηπ1

|π = ηπ.

The matrix Paley-Wiener theorem of Bernstein [6] says that f �→ π(f) is an isomorphism

from the full Hecke algebra of G onto E(G). Denote by EI and Et the subrings of
I -invariant endomorphisms.

Remark 2.5. Property 3 means that unlike Schwartz functions, the Fourier transform

of a compactly supported function may be freely specified only on inductions of

supercuspidal representations. In particular, an algebraic family of endomorphisms

defined for all unramified characters may fail to come from a compactly supported
function. An example of a non-compactly supported function with regular Fourier

transform is the element of J given in Corollary 3.19, because π(t1) = 0 except if π

is the Steinberg representation of G.

For computational purposes such as ours, we require that these isomorphisms be
explicit. In the Iwahori-spherical case, harmonic analysis on CI×I can be phrased

internally to H and various completions of H. In this setting Opdam gave an explicit

Plancherel formula in [38]. In more general settings there are explicit formulas for GLn(F ),

Sp4(F ), and G2(F ), which we will also make use of.

2.4. The algebra J as a subalgebra of the Schwartz algebra

In [11], Braverman and Kazhdan constructed a map of C-algebras J → CI×I . We shall

review this construction now.

Definition 2.5 ([11], Section 1.7). Let P = MPNP . A character χ : MP → C× of MP

is non-strictly positive if for all root subgroups Uα ⊂ NP , we have |χ(α∨(x))|∞ ≥ 1 for

|x|F ≥ 1.

We say a non-strictly positive character χ is strictly positive if for all root subgroups
Uα ⊂NP , we have |χ(α∨(x))|∞ > 1 for |x|F > 1.

Of course, it suffices to test this for x=
−1.

Example 2.6. For G = SL2, in the conventions fixed in Example 2.4, an unramified
character χ of A is non-strictly positive if it corresponds to z such that |z| ≥ 1.

If G=GLn and ν corresponds to the vector (z1, . . . ,zn) ∈Cn, then the condition that ν

is non-strictly positive translates to |z1| ≥ |z2| ≥ · · · ≥ |zn|. Such conditions divide Cn into
chambers, on which the Weyl group Sn clearly acts simply transitively. Interior points

correspond to strictly positive ν.

Following op. cit., let EI
J(G) denote the subring of Et(G) defined by the following

conditions on the endomorphisms ηπ:
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1. For all π = IndGP (ν ⊗ω), the endomorphism ηπ = ην,ω is a rational function of ν,

regular on the set of non-strictly positive ν.

2. The endomorphism ηπ is I× I-biinvariant.

Theorem 2.7 ([11], Theorem 1.8). Let G be a connected reductive group defined and

split over F. Then the following statements hold:

1. Let π be a tempered representation of G. Then the action of H on πI extends uniquely

to J via φ◦ †(−).

2. Let P = MN be a parabolic subgroup of G with Levi subgroup M and let ω be an

irreducible tempered representation of M. Let ν be a non-strictly positive character
of M and let π = IndGP (ω⊗ν). Then the action of H(G,I) on πI extends uniquely to

an action of J.

3. The action of J on the representations πI in (2) extends rationally in ν to define a
homomorphism

η : J →EI
J (G).

denoted

tw �→ (ηπ(w))π∈Mt(G).

The proof of Theorem 2.7 (1) and (2) in [11] uses Theorem 1.13 and [52], to show that,

in the notation of Section 1.5.1,

E(u,s,ρ)|H � ∗K(u,s,ρ,q) = ∗iGP (σ⊗ν)

where the restriction is via φ, and hence that

E(u,s,ρ)H,φ◦∗(−) �K(u,s,ρ,q) = iGP (σ⊗ν),

where the restriction is now via φ◦ ∗(−).

By Lemma 1.8, the map φ is κ̄-linear, where κ̄ is as in Definition 1.6. Of course, φ also
intertwines conjugation by Tw0

and φ(Tw0
).

As noted in Section 1.5.1, if π =K(u,s,ρ) is simple tempered (or more generally, is any

semisimple module), then by [40, Prop. 6.3],

E(u,s,ρ)|φ◦†(−) =
†∗K(u,s,ρ)� ˜K(u,s,ρ) (2.1)

is simple tempered. Moreover, by Lemma 1.10 (e) and (2.1), we have, if Ψw0
(h) =

Tw0
hT−1

w0
, that

κ̄◦φ(Ψ−1
w0

)E(u,s,ρ)|φ◦†(−) =
φ(Ψ−1

w0
)E(u,s,ρ)|κ̄◦φ◦†(−)

= E(u,s,ρ)|φ(Ψ−1
w0

)◦κ̄◦φ◦†(−)

= E(u,s,ρ)|φ◦Ψ−1
w0

◦κ̄◦†(−)

= E(u,s,ρ)|φ◦∗(−)

=K(u,s,ρ)
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for any standard H -module K(u,s,ρ). Therefore any standard H -module extends to a

simple J -module via φ◦ †(−).

Composing the morphism η with the inverse Fourier transform, Braverman and
Kazhdan define an algebra map

φ̃ : J →CI×I

sending

tw �→ (ηπ(w))π∈Mt(G) �→ fw =
∑

x∈Waff

Ax,wTx ∈ CI×I,

where Ax,w = fw(IxI). By definition, ηπ(w) = π(fw) as endomorphisms of π. We will
show later that φ̃ is essentially the map φ−1.

Remark 2.8. There are gaps in the proofs of injectivity and, as pointed out to us by R.

Bezrukavnikov and I. Karpov after an early version of the present paper was completed,
of surjectivity of the map η in [11]. In the present paper we prove injectivity by proving

injectivity of φ̃ in Corollary 3.20. We prove surjectivity in [15] for all but a small number

of cells for exceptional groups; [8] proves that η is an isomorphism for all two-sided cells.

Implicit in [11] is

Lemma 2.9. We have the commutative diagram (1.2).

Proof. Let π be a tempered representation of G. By Theorem 2.7 and (2.1), the H -action

on it extends to a J -action via φ◦† (−), such that

ηπ(φq(
†f)) = π(f)

in EI
t for any f ∈H. Therefore φ̃◦φq(

†f) = f by the Plancherel theorem.

2.5. The Plancherel formula for GLn

For G = GLn(F ), we have access to an explicit Plancherel measure and its Bernstein

decomposition, thanks to [4].

Recall that for G=GLn(F ), we have bijections

{partitions of n}↔ {Standard Levi subgroups M of GLn(F )} (2.2)

↔{unipotent conjugacy classes in GLn(C)} (2.3)

↔N/GLn(C)

↔{2− sided cells c in W̃} (2.4)

↔{direct summands Jc of J}

where (2.2) ↔ (2.3) sends a unipotent conjugacy class u to the standard Levi M such that
a member of u is distinguished in M∨, and (2.3) ↔ (2.4) is Lusztig’s bijection from [17].

Definition 2.6. Let u be a unipotent element of a semisimple group S over the complex

numbers. Then u is distinguished in S if ZS(u) contains no nontrivial torus.
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Let P =MPNP be a parabolic subgroup of G and let o be an orbit in E2(MP ) under

the action of the unitary unramified characters of MP as explained in Section 2.2. Write

WMP
⊂W for the finite Weyl group of (MP ,AP ). Let StabWM

(o) be the stabilizer of o.
Recall that a parabolic subgroup of G is said to be semistandard if it contains A. Then

the Plancherel decomposition reads

f =
∑

(P=MPNP ,o)/association

fMP ,o

where f ∈ C(G), the sum is taken over semistandard parabolic subgroups P up to

association, and

fMP ,o(g) = c(G/M)−2γ(G/M)−1#StabWM
(o)−1

∫
o

μG/M (ω)d(ω)trace(π,Rg(f))dω,

where Rgf(x) = f(xg) is the right translation of f and π = IndGP (ν⊗ω) is the normalized

parabolic induction of the twist of ω by a unitary unramified character ν of M. In [4],
each term above is explicitly calculated as a rational function of q.

Lemma 2.10. There is a finite set S =
{
(M,ω)

∣∣ω ∈ E2(M)I
}

such that

trace
(
IndGP (ω⊗ν),f

)
is nonzero only for ω ∈ S, for all I-biinvaraiant Schwartz

functions f.

Proof. This is entirely standard. As E2(M)IM is finite for every M, and there are finitely

many standard parabolics of G, we need only show that IndGP (ω⊗ν)I �= 0 only if ωIM �= 0,

where IM is the Iwahori subgroup of the reductive group M relative to the Borel subgroup
M(Fq)∩B(Fq) ofM(Fq). Note that IM is naturally a subgroup of I. For any representation

σ of M, if f ∈ IndGP (σ) is I -fixed, then for iM ∈ IM , we have

f(iM ) = σ(iM )δ
1
2

P (iM )f(1) = f(1).

As δP = 1 on every compact subgroup of P, we have δ
1
2

P (iM ) = 1, and f(1) ∈ σIM .

Let π= IndGP (ω⊗ν) be a tempered representation and let (u,s) be the KL-parameter of

its discrete support. Then by [25, Theorem 8.3], M∨
P is minimal such that (u,s)∈M∨

P . By
op. cit., this condition is equivalent to ZM (s) being semisimple and u being distinguished

in ZM (s).

Proposition 2.11 (c.f. [38] Proposition 8.3). The Plancherel decomposition is compatible

with the decomposition J =
⊕

cJc in the sense that if w ∈ c, f = fw and u= u(c) under
Lusztig’s bijection, then fM �= 0 only for those M such that there exists s ∈M∨(C) such

that ZM∨(s) is semisimple and ZM∨(s)∩ZM∨(u) contains no nontrivial torus.

Proof. Let π := IndGP (ν ⊗ ω) be a tempered irreducible representation of G induced

as usual from a standard parabolic subgroup P with Levi subgroup M. Then πI is a
tempered irreducible H -module, and is of the form K(u,s,ρ,q) for u,s ∈G∨(C) and ρ a

representation of π0(ZG∨(u,s)) with s compact. By Theorem 2.7, K(u,s,ρ,q) extends to

a J -module. By definition of Lusztig’s bijection, π(fw) �= 0 only if w is in the two-sided
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cell c= c(u) of Waff corresponding to u. On the other hand, K(u,s,ρ,q) is induced from

a square-integrable standard module KM (u,s,ρ̃,q) of H(M,IM ). But now [25, Theorem

8.3] says that (u,s) must be precisely as in the statement of the proposition. Thus only
such summands (fw)M in the Plancherel decomposition of fw are nonzero.

Of course, when G = GLn, the bijections (2.2), (2.3), and (2.4), imply that there is a
unique nonzero summand (fw)M for each w.

2.6. Plancherel measure for GLn

We refer to [4, Section 5], for a summary of the Bernstein decomposition of the tempered

irreducible representations of GLn, in particular we use the description in loc. cit. of the

Bernstein component parameterizing the I -spherical representations of G.
As we shall be applying the Plancherel formula only to Iwahori-biinvariant functions, it

suffices to consider only irreducible tempered representations with Iwahori-fixed vectors.

For GLn, the only such representations are of the form

π = IndGP (ν1St1 � · · ·�νkStk)

where Sti is the Steinberg representation of GLi, and P ⊃M =GLl1 ×·· ·×GLlk .
These representations are parameterized as follows. Let M be a Levi subgroup

corresponding to the partition l1 + · · ·+ lk = n, and recall that we write T for the

circle group. Define γ ∈Sn by γ = (1. . . l1)(1. . . l2) · · ·(1. . . lk), so that the fixed-point set
(Tn)γ = {(z1, . . . ,z1, . . . ,zk, . . . ,zk)} � Tk. Then the irreducible tempered representations

with Iwahori-fixed vectors induced from M are parameterized by the compact orbifold

(Tn)γ/ZSn
(γ).

Theorem 2.12 ([4], Remark 5.6). Let G = GLn and M = GLl1 × ·· · ×GLlk be a Levi

subgroup. Then the Plancherel measure of H on (Tn)γ/ZSn
(γ) is

dνH(ω) =

k∏
i=1

ql
2
i−li(q−1)li

li(qli −1)
· q n−n2

2 ·
∏

(i,j,g)

q2g+1(zi− zjq
g)(zi− q−gzj)

(zi− zjq−g−1)(zi− qg+1zj)
,

where the tuples (i,j,g) ∈ Z×Z× 1
2Z are tuples such that 1≤ i < j ≤ k and |gi−gj | ≤ g ≤

gi+gj, where gi =
li−1
2 .

This is the measure that we will integrate against, by successively applying the residue

theorem. When carrying out explicit calculations, we will usually elide the constant

k∏
i=1

ql
2
i−li(q−1)li

li(qli −1)
· q n−n2

2

as it depends only on M. We shall abbreviate

Γi,j,g := q−2g−1

∣∣∣∣ΓF

(
q−g zi

zj

)∣∣∣∣
2

=
(zi− qgzj)(zi− q−gzj)

(zi− zjq−g−1)(zi− qg+1zj)
,

and recall that, as noted in the proof of Theorem 5.1 in [4], the function (z1, . . . ,zk) �→∏
(i,j,g)Γi,j,g is ZSn

(γ)-invariant. Hence for the purposes of integration, we may allow
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ourselves to integrate simply over Tk. Moreover, there are many cancellations between
the Γi,j,g for a fixed pair i < j as g varies. Indeed, putting qij = q|gi−gj |, qij = qgi+gj+1,

and

Γij :=
(zi− qijzj)(zi− (qij)

−1zj)

(zi− qijzj)(zi− (qij)−1zj)

we have ∏
Γi,j,g = Γij,

where the product is taken over all integers g appearing in triples (i,j,g) for i < j fixed.

We set

cM :=
∏

(i,j,g)

q2g+1 ·
k∏

i=1

ql
2
i−li(q−1)li

li(qli −1)
· q n−n2

2 ,

where the first product is taken over (i,j,g) such that 1 ≤ i < j ≤ k and |gi− gj | ≤ g ≤
gi+gj .

2.7. Beyond type A: the Plancherel formula following Opdam

Beyond type A, we still have available Opdam’s explicit Plancherel formula for the

Iwahori-Hecke algebra [38]. Let G be a connected reductive algebraic group defined and

split over F, of Dynkin type other than type A (to avoid redundancy). Let f be an
Iwahori-biinvariant Schwartz function on G and let M be a Levi subgroup of G. Given

a parabolic subgroup P of G, let R1,+ and RP,1,+ be defined as in [38], Section 2.3.

Recall that the group of unramified characters of a Levi subgroup M has the structure

of a complex torus, and is in fact a maximal torus of M∨(C). In particular, if P is a
parabolic subgroup and α is a root of (MP ,AP ), then it makes sense to write α(ν) for any

unramified character ν of M. Then, altering Opdam’s notation to match our own from

Section 2.5, the Plancherel formula reads

Theorem 2.13. ([38] Thm. 4.43).

fM,o(1) =
q−�(wP )

#StabWM
(o)

∫
o

d(ω)

·
∏

α∨∈R1,+\RP,1,+

|1−α∨(ν)|2

|1+ q
1
2
αα∨(ν)1/2|2|1− q

1
2
α q2αα∨(ν)1/2|2

trace(π,f) dω, (2.5)

where π = IndGP (ω⊗ ν), P ⊃ M , and where qα and q2α are powers of q, and wP is the

longest element in the complement WP to the parabolic subgroup WP of W.

Note that whenever q2α =1, which holds whenever α∨ �∈ 2X∗, the factor for α reduces to

|1−α∨(ν)|2
|1− qαα∨(ν)|2 . (2.6)
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In types A (as we have used above) and D, this simplification always occurs. In types B

and C, it happens for all roots except α= 2εi ∈R1,+(Bn) and α= 4εi ∈R1,+(Cn), where

εi is the character diag(a, . . . ,an) �→ ai.
For explicit evaluation we rewrite (2.5) in coordinates as follows. Recalling the setup

of Section 2.2.1, a chosen basis {β∨
i } of the coweight lattice of G. Then we obtain

coordinates zi, such that if α∨ =
∑

i eiβ
∨
i , then the factor in (2.5) labelled by α∨ is

|1− ze11 · · ·zenn |2

|1+ q
1
2
α (z

e1
1 · · ·zenn )1/2|2|1− q

1
2
α q2α(z

e1
1 · · ·zenn )1/2|2

. (2.7)

When integrating, the coordinates zi are restricted to the residual coset corresponding

to o, in the sense of [38]. For G=GLn, we used the basis afforded by the characters εi.

2.8. Regularity of the trace

In order to extract information about the expansion of the elements tw in terms of the

Tx-basis via the Plancherel formula, we must establish a regularity property of

trace(π,fw) where π is an irreducible tempered representation of G. The needed property
follows trivially from Theorem 2.7.

2.8.1. Intertwining operators. The goal is to use the property that elements of

EI
J (G) commute with all intertwining operators in Mt(G), and regularity of the trace for

unitary and non-strictly positive characters of M to deduce regularity of the trace at all

characters of M.
Let ω be a discrete series representation of a Levi subgroup M of G, and let ν be any

unramified character of M, not necessarily unitary. Then we may form the representation

π= IndBP (ν⊗ω) of G, where P is a parabolic with Levi factor M. We will now recall some
well-known facts about the action of the Weyl group of M on such representations π. Let

θ and θ′ be two subsets of Δ corresponding to Levi subgroups M and M ′. Let w ∈W be

such that wθ = θ′. Then there is an intertwining operator

JP |P ′(ω,ν) : IndBP (ν⊗ω)→ IndBP ′(ν⊗ω)

for each w ∈W (θ,θ′) = {w ∈W |w(θ) = θ′}. For G=GLn, this set is nonempty only if

Mθ =GLl1 ×·· ·×GLlN Mθ′ =GLl′1
×·· ·×GLl′N

and {l1, . . . ,lN}= {l′1 . . . ,l′N} are equal multisets. In this case,W (θ,θ′)�SN can be viewed

as acting by permuting the blocks of M. It is well-known that JP |P ′(ω,ν) is a meromorphic

function of ν with simple poles. The poles of these operators have been studied by Shahidi

in [44], and in the language of modules over the full Hecke algebra by Arthur in [1]. The
results will be stated for certain renormalizations A(ν,ω,w) of the operators JP |P ′(ω,ν)

as explained in equation (2.2.1) of [44].

2.8.2. Conventions on parabolic subgroups. We now recall the notation of

Shahidi [44]. Given a subset θ, we set Σθ = spanR θ, and Σ+
θ = Ψ+ ∩Σθ and likewise

https://doi.org/10.1017/S1474748025101321 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025101321


28 S. Dawydiak

define Σ−
θ . Let Σ(θ) be the roots of (P,AP ). Define the positive roots Σ+(θ) to be the

roots obtained by restriction of an element of Ψ+ \Σ−
θ .

Given two subsets θ,θ′ ⊂Δ, following [44] we set

W (θ,θ′) = {w ∈W |w(θ) = θ′},

and then for w ∈W (θ,θ′), we define

Σ(θ,θ′,w) =
{
[β] ∈ Σ+(θ)

∣∣β ∈Ψ+−Σ+
θ and w(β) ∈Ψ−},

and then

Σ◦(θ,θ′,w) :=
{
[β] ∈ Σ(θ,θ′,w)

∣∣w[β] ∈W (AP )
}
.

Remark 2.14. In [44] additional care about the relative case is taken in the notation.

In our simple case this is of course unnecessary, and we omit it.

In the case G=GLn, this specializes as follows. Let αij : diag(ti) �→ tit
−1
j be characters

of T. The αij for j > i are the positive roots of (B,A) and βi := αii+1 are our chosen

simple roots. If P corresponds to the partition n1+ · · ·+np of n and subset θ ⊂Δ, then

Σ(θ) = span{βn1
,βn1+n2

, . . . },

where we view βi as restricted to aP ↪→ aG. Note that all the positive roots Σ+(θ) of

(Pθ,Nθ) are in NP . Denoting by [α] the coset representing a root α of G restricted to P,

the positive roots in NP are the αij such that [αij ] = [βn1+···+nk
].

Example 2.15. If G=GL6 and P be the parabolic subgroup of block upper-triangular

matrices corresponding to the partition 6 = 2+2+1+1 and θ = {α12,α34}, then we have

AP = {diag(t1,t1,t2,t2,t3,t4)} .

The positive simple roots are Σ+(θ) = {[β2],[β4],[β5]}. The Weyl group W (AP )�S2×S2

acts by permuting the blocks. Note that the simple reflection sending β4 �→ −β4 does
not arise by permuting the blocks (i.e.

(
4 5

)
does not send blocks to blocks), hence

w[β4] �∈W (AP ). Hence for any w ∈W (θ,θ′) we have Σ◦(θ,θ′,w)⊆ {[β2],[β5]}.

2.8.3. Regularity of the trace. We have the following information about the poles
of intertwining operators, due, according to [44], to Harish-Chandra:

Theorem 2.16 ([44], Theorem 2.2.1). Let ω be an irreducible unitary representation

of M. Say that ω is a subrepresentation of IndMP∗(ω∗) for a parabolic subgroup P∗ =M∗N∗
and ω∗ is an irreducible supercuspidal representation of M∗. Let θ∗ ⊂ Δ be such that

P∗ = Pθ∗ as parabolic subgroups of M∗.
Then the operator ∏

α∈Σ0
r(θ∗,wθ∗,w)

(1−χ2
ω,ν(hα))A(ν,ω,w)

is holomorphic on aθC∗ . Here χω,ν is the central character of the twisted representation

ω⊗ q〈ν,Hθ(−)〉.

https://doi.org/10.1017/S1474748025101321 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025101321


Denominators in Lusztig’s asymptotic Hecke algebra via the Plancherel formula 29

In particular for the purposes of the Plancherel formula, the only relevant ω are
unitary, hence have unitary central characters. Therefore A(ν,ω,w) is holomorphic at

ν if |q〈ν,Hθ(−)〉| �= 1, or equivalently if

�(〈ν,Hθ(−)〉) �= 0.

In particular, there is a finite union of hyperplanes away from which each operator

A(ν,π,w) is holomorphic, for any w ∈W .

Lemma 2.17. Let M be a Levi subgroup of G = G(F ) and let ω be a discrete series

representation of M. Let P = MPAPNP be the standard parabolic subgroup containing
M =MP and let k = rkAP . Let z1, . . . ,zk ∈ (C×)k =X∗(AP )⊗ZC define an unramified

quasicharacter ν = ν(z1, . . . ,zk) of AP as in Section 2.2. Let π = IndGP (ω⊗ν). Let f ∈ J .

Then

trace(π,f) ∈ C[z1, . . . ,zk,z
−1
1 , . . . ,z−1

k ].

That is, the trace is a regular function on (C×)k.

Proof. We know a priori that

trace(π,f) ∈ C(z1, . . . ,zk)

is a rational function of ν, as the operator π(f) itself depends rationally on the variables

zi by Theorem 2.7. Therefore

trace(π,f) =
p(ν)

h(ν)
∈ C(z1, . . . ,zk).

By Theorem 2.16 and the discussion following it, there is an open subset U of the unitary

characters, such that for all ν ∈ U , and all w ∈W we have

p(ν)

h(ν)
=

p(w(ν))

h(w(ν))
. (2.8)

Holding z2, . . . ,zn constant and in U, (2.8) becomes an equality of meromorphic functions

of z1 that holds on a set with an accumulation point, and hence (2.8) holds for all z1 ∈C×.
Now holding z1 ∈C× constant and arbitrary, and z3, . . . ,zk constant and in U, we see that

(2.8) holds also for all z2 ∈C×. Therefore (2.8) actually holds for all ν, i.e. trace(π,f) is

a W -invariant rational function of ν.

When ν is non-strictly positive with respect to M, by Theorem 2.7, trace(π,f) has
poles only of the form zni

i = 0. The claim now follows from the W -invariance, and thus

trace(π,f) is a regular function on (C×)k.

We will therefore allow ourselves to write trace(π,f) for functions f ∈ J even for ν such
that the operator π(f) itself is not defined.

Lemma 2.18. Let d ∈Waff be a distinguished involution and π be a tempered represen-
tation induced from one of the Levi subgroups attached to the two-sided cell containing d

in the sense of Proposition 2.11. Then trace(π,fd) is constant and a natural number. In

fact, the same is true for any idempotent in J.
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Proof. Let j be an idempotent in J. We have trace(π,fj) = rank(π(fj)). The trace is

continuous in ν by Lemma 2.17, and the present lemma follows as T is connected.

3. Proof of Theorem 1.2 for general G and the case of GLn

3.1. The functions fw for GLn

In this section, q > 1.

To compute with the Plancherel formula, we will need to apply the residue theorem
successively in each variable zi, and in doing so will we will need to sum over a certain

tree that will track, for each variable, at which residues we evaluated. Upon integrating

with respect to each variable zi, we will have poles of the form zi = 0 or zi = (qij)−1zj .

For example, if we have 4 variables z1,z2,z3,z4 corresponding to a Levi subgroup GLl1 ×
GLl2 ×GLl3 ×GLl4 , then some of the summands obtained by successively applying the

residue theorem are labelled by paths on the tree

z1 = 0

z2 = 0

z3 = 0 z3 = (q34)−1z4

z2 = (q23)−1z3

z3 = 0 z3 = (q34)−1z4

z2 = (q24)−1z4

z4 = 0 z4 = (q43)−1z3

Of course, to evaluate the entire integral for M, we would also need to consider trees
whose roots are decorated with z1 = (q12)−1z2, and so on, for a total of four trees.

Definition 3.1. Given a Levi subgroup M with N +1 blocks, a bookkeeping tree T for
M is a rooted tree with N levels such that the vertices on the i -th level below the root

each have N − i child vertices, and each vertex is decorated with an equation of the form

zi = 0 or zi = (qij)−1zj , where the index j does not appear along the path from the vertex
to the root, and the parent root is decorated with an equation zk = (qki)−1zi for some k.

Moreover, we require that the root be decorated with an equation of the form zi = 0 or

zi = (qij)−1zj for i minimal. A branch of T is a simple path in T from the root to one of
the leaves.

Definition 3.2. Given a branch B of a bookkeeping tree, a clump in B is an ordered
subset of indices i appearing in the decorations of successive parent-child vertices, such

that no decoration of the form zi = 0 occurs along the path from the closest index to the

root to the farthest index from the root. We write C ≺B if C is a clump of B.

Example 3.1. The sets of indices {3,4}, {2,3,4}, {2,3}, {2,4}, and {2,4,3} (note the
ordering) are all the clumps of the above tree. The sets {1,2,3} and {1,2,4} are not

clumps.

Theorem 3.2. Let G = GLn(F ) and let d be a distinguished involution such that the

two-sided cell containing d corresponds to the Levi subgroup M. Let N +1 be the number
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of blocks in M such that the i-th block has size li. Let mj be the number li that are equal
to j. Define for r ≤ k

Qrk = qikik+1qik−1ik · · ·qirir+1

in the notation of 2.6. Then if fd is as in Section 2.4,

fd(1) =
rank(π(fd))

m1! · · ·mn!
cM

∑
trees T

∑
branches B of T

∏
C≺B

C={i0,...,it}

(1− qli0 )(1− qli1 )

1− qli0+li1

·
t−1∏
k=1

(1− qlik+1 )

(1− qlik+lik+1 )

k−1∏
r=0

Rrk

1−Qrkqirik+1
, (3.1)

where

Rrk =

{
1−Qrkq

gir−gik if k < t−1

(1−Qr,t−1q
gir−git−1)(1−Qr,t−1q

gik−gir ) if k = t−1
.

Corollary 3.3. The denominator of fd(1) divides a power of the Poincaré polynomial

PG/B(q) = PSn
(q) of G. Moreover, when d is in the lowest two-sided cell, corresponding

to M = T , fd(1) = rank(π(fd))/PG/B(q) exactly.

Proof of Corollary 3.3. We will show that each of the three forms of denominators that
appear in the conclusion of Theorem 3.2 divide PG/B(q), and thus that their product

divides a power of PG/B(q). The denominators of cM are all of the form 1+ q+ · · ·+
qli−1, and so divide PG/B(q) as li ≤ n for all i. Note that as lik + lik+1

≤ n, the leftmost

denominators in (3.1) satisfy the conclusion of the corollary also. Finally, Qrkq
irik+1 =

qlik+1
+lik+···+lir , and Rrk is likewise always a polynomial in q (as opposed to q−1) divisible

by 1− q. Again using that lik+1
+ lik + · · ·+ lir ≤ n, we are done with the first statement.

We now take up the second statement, the proof2 of which does not require any
computations at all and which holds for any w ∈ c0. Recalling that the only K -spherical

tempered representations of G are principal series representations [33], let μK be the

Haar measure on G such that μK(K) = 1, μI be the Haar measure such that μI(I) = 1,
and denote temporarily dπμ the Plancherel measure normalized according to a chosen

Haar measure μ on G. Likewise write πK(f) for the Fourier transform with respect to

μK and πI(f) for the Fourier transform with respect to μI .

As we have

μI = PG/B(q)μK,

and formal degrees scale inversely to the Haar measure, we have

dπμI
=

1

PG/B(q)
dπμK

(3.2)

2We thank A. Braverman for explaining to us the observation whose obvious generalization we
present below.
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for tempered principal series. Now let w ∈ c0 and consider fw = φ̃(tw). By Lemma 2.17

and the Satake isomorphism, there is a function hw in the spherical Hecke algebra such

that for all principal series π,

trace(πI(fw)) = trace(πK(hw))

as regular Weyl-invariant functions of the Satake parameter. By the Plancherel formula

and (3.2),

fw(1) =

∫
trace(πI(fw))dπμI

=

∫
trace(πK(hw))dπμI

=
1

PG/B(q)

∫
trace(πK(hw))dπμK

=
hw(1)

PG/B(q)
, (3.3)

In particular, if w = d is a distinguished involution in the lowest two-sided cell, then

trace(πI(fd)) = rank(πI(fd)) = rank(πI(fd)) · trace(πK(1K)),

and (3.3) becomes

fd(1) =
rank(π(fd))

PG/B(q)
=

1

PG/B(q)
. (3.4)

Here the rank is given by [49], Proposition 5.5. (In op. cit. there is the assumption

of simple-connectedness, but it is easy to see that the distinguished involutions for

the extended affine Weyl group Waff(G̃(F )) of the universal cover G̃ are distinguished
involutions for Waff using the definition in [28] and uniqueness of the {Cw}-basis, and
that the lowest cell is just the lowest cell of Waff(G̃(F )) intersected with Waff .)

Once we have established injectivity of φ̃, we will show by a counting argument that

rank(π(td)) = 1 for any distinguished involution d, in the case G=GLn, see Theorem 3.21.

Note that (3.4) is an example of the behaviour conjectured in Remark 1.3.

Remark 3.4. It would be interesting to find I -biinvariant Schwartz functions h playing

the role of hw for the other two-sided cells, namely such that trace(π,h) was regular,

nonzero only for a single pair (M,ω), and the value h(1) was known as a function of q1/2.

Remark 3.5. If P is a maximal parahoric subgroup of G, then the longest word wP is

a distinguished involution in the lowest two-sided cell. As above, and as we will explain

again in Section 4, π(fwP ) is nonzero only for the principal series representations, and
its image is contained in πP . Thus after we will have shown injectivity, [26] gives another

proof that rank(π(fwP )) = 1, and more generally that π(td) has rank 1 on the principal

series for any distinguished involution d ∈ c0.

Lemma 3.6. Let e0, . . . ,en ∈ Z. Then∫
T

· · ·
∫
T

ze00 · · ·zeNN
∏
i<j

Γijdz0 · · ·dzN = 0 (3.5)

unless e0+ · · ·+ eN =−N .
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Although we do not use the Lemma in the sequel, we include it because it illustrates
an efficient way to compute the functions fw in practice, as we explain after its proof.

Corollary 3.7. Let w ∈Waff . Then fw(1) is a rational function of q with denominator
dividing a power of the Poincaré polynomial of G. The numerator is a Laurent polynomial

p1(q
1/2)+p2(q

−1/2) in q1/2, where the degree of p1 is bounded uniformly in terms of Waff .

The denominator of fw(1) depends only on the two-sided cell containing w.

Remark 3.8. In light of Lemma 2.17, Lemma 3.6 and Corollary 3.7 have the following

interpretation. Let Γ be a left cell in a two-sided cell c. Then in [51], Xi shows that

all the rings JΓ∩Γ−1 are isomorphic to the representation ring of the associated Levi
subgroup Mc, and Jc is a matrix algebra over JΓ∩Γ−1 . Therefore w ∈ Γ∩Γ−1 are labelled

by dominant weights of Mc, and if tλ is such an element, Xi’s results show that if q= q

and π = IndGB(ν) is an irreducible representation of Jc, then

trace(π,tλ) = trace(V (λ),ν),

where we view ν as a semisimple conjugacy class in Mc, and V (λ) is the irreducible

representation of Mc of highest weight λ. Then we have that fλ(1) �= 0 only if λ is of

height 0 with respect to the basis εi : diag(a1, . . . ,an) �→ ai.

The proofs of Lemma 3.6 and Corollary 3.7 will use the notation of the proof of

Theorem 3.2, and we defer them until after the proof of the theorem.

3.1.1. Example computations and a less singular cell. In this section we provide

two example computations to elucidate the coming proof of Theorem 3.2.

Example 3.9. Let G = GL2 and M = A. Then l1 = l2 = 1 and g1 = g2 = 0. Let d = s0
or s1. Then

fd(1) =
1

2

1

2πi

1

2πi
q−1

∫
T

∫
T

q
(z1− z2)(z1− z2)

(z1− q−1z2)(z1− qz2)

dz1
z1

dz2
z2

=
1

2

1

2πi

∫
T

Resz1=q−1z2

(z1− z2)(z1− z2)

(z1− q−1z2)(z1− qz2)

1

z1

+Resz1=0
(z1− z2)(z1− z2)

(z1− q−1z2)(z1− qz2)

1

z1

dz2
z2

=
1

2

1

2πi

∫
T

(q−1z2− z2)(q
−1z2− z2)

(q−1z2− qz2)q−1z2
+

z22
z22

dz2
z2

=
1

2

1

2πi

∫
T

(q−1−1)2

q−2−1
+1

dz2
z2

=
1

q+1
.

The factor 1
2 reflects the fact that we integrate with the respect to the pushforward of

the above S2-invariant measure to the quotient T×T/S2.

This agrees with the theorem, which instructs us to calculate fd(1) as follows: There are

two trees, each of which has one vertex and no edges. The trees are z1 = 0 and z1 = q−1z2.
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Each has one branch. The first has no clumps, so the entire product is empty. The second
tree has one clump C = {1,2} for which t= 1, and we obtain

fd(1) =
1

2

(
1+

1− q

1+ q

)
=

1

2

2

1+ q
=

1

1+ q
.

Now we give an example of a less singular cell.

Example 3.10. Let G = GL4, and let c be the two-sided cell corresponding to the

partition 4 = 2+2. Then PW (q) = (1+q)(1+q+q2)(1+q+q2 +q3) has five distinct
roots q=−1,± i,ζ1,ζ2, where ζi are primitive third roots of unity. We compute Pc using

the Plancherel formula. We have

We have l1 = l2 = 2, q12 = 1, q12 = q2,

cM =
q4(q−1)2

2(q+1)2
,

and (
1

2πi

)2∫∫
T2

Γ12 dz1
z1

dz2
z2

=

(
1

2πi

)2∫∫
T2

(z1− z2)(z1− z2)

(z1− q2z2)(z1− q−2z2)

dz1
z1

dz2
z2

=
1

2πi

∫
T

Resz1=0
Γ12

z1
+Resz1=q−2z2

Γ12

z1

dz2
z2

= 1+
1

2πi

∫
T

(q−2−1)2q2

(q−2− q2)

dz2
z2

= 1+
(1+ q)(1− q2)

1+ q+ q2+ q3

=
2

1+ q2
.

Accounting for cM , we see that Jc is regular at q= ζ1,ζ2.

3.1.2. Proofs of Theorem 3.2, Lemma 3.6, and Corollary 3.7.

Proof of Theorem 3.2. Let n= l0+ · · ·+ lN . We may assume that l0 ≤ l2 ≤ ·· · ≤ lN . It
suffices to evaluate the integral(

1

2πi

)N+1∫
T

· · ·
∫
T

∏
Γi,j,g

dz0
z0

· · · dzN
zN

=

(
1

2πi

)N+1∫
T

· · ·
∫
T

∏
i<j

Γij dz0
z0

· · · dzN
zN

.

We claim that the value of this integral is

cM
∑

trees T

∑
branches B of T

∏
C≺B

C={i0,...,it}

t−1∏
k=0

(1− qikik+1qikik+1
)(1− qikik+1(qikik+1

)−1)

1− (qikik+1)2

·
k−1∏
r=0

(1−Qrkqirik+1
)(1−Qrk(qirik+1

)−1)

(1−Qrkqirik+1)(1−Qrk(qirik+1)−1)
, (3.6)
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where the sum over trees is taken over all bookkeeping trees for the integral. When k= 0,
we interpret the product over r as being empty.

First we explain how (3.6) simplifies to (3.1). All cancellations will take place within

the same clump C of some branch B, which we now fix. We have

1−Qrk(q
irik+1)−1 = 1− qgik+gik+1

+1qikik+1 · · ·qirir+1q−gir−gik+1
−1 = 1−Qr,k−1q

gik−gir ,

which is one of the factors in the product (1−Qr,k−1qirik)(Qr,k−1(qirik)
−1). The surviving

factor in the numerator at index (k−1,r) is then equal to (1−Qr,k−1q
gir−gik ). In short,

the above factors in the denominator cancel with a numerator occurring with the same

r -index but k -index one lower. Such a factor occurs whenever r < k− 1 (note that this

inequality does not hold when k = 1 and r = 0). When r = k−1, we have

1−Qk−1,k(q
ikii+1)−1 = 1− qikik+1qik−1ik(qik−1ik+1)−1

= qgik+gik+1
+1qgik−1

−gik+1 = 1− q2gik+1,

which is one of the factors in (1−qik+1ikqikik+1
)(1−qikik+1(qik ik+1)

−1). The cancellation

leaves behind the factor 1− qlik+1 in the numerator, except for k = 0; this term keeps

both its denominators. At this point we have shown that the factor corresponding to C
in (3.6) simplifies to

(1− qli0 )(1− qli1 )

1− qli0+li1

t−1∏
k=1

(1− qlik+1 )

(1− qlik+lik+1 )

k−1∏
r=0

Rrk

1−Qrkqirik+1
,

where

Rrk =

{
1−Qrkq

gir−gik if k < t−1

(1−Qr,t−1q
gir−git−1)(1−Qr,t−1q

gik−gir ) if k = t−1
.

This means that (3.6) simplifies to (3.1).
To prove (3.6), we will use the residue theorem for each variable consecutively, keeping

track of the constant expressions in q that we extract after integrating with respect

to each variable zi. More precisely, we will track what happens in a single summand

corresponding to some set of successive choices of poles to take residues at. Note that all
the rational functions that will appear, namely the Γij or the rational functions that result

from substitutions into the Γij , become equal to 1 once zi or zj is set to zero. Therefore

poles at zi = 0 serve simply to remove all factors involving zi from inside the integrand
(we will see what these rational functions are below). It follows that the summand whose

branch we are computing is a product over clumps in the corresponding branch, so it

suffices to compute the value of a given clump for some ordered subsets {i0,i1, . . . ,il} of
the indices {0, . . . ,N}. As we are inside a clump, we will consider only poles occurring

at nonzero complex numbers. Thus we are left only to determine what happens within a

single clump.
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We first integrate with respect to the variable zi0 . The residue theorem gives

(
1

2πi

)l+1∫
T

· · ·
∫
T

∏
i<j

Γij dzi0
zi0

· · · dzil
zil

=

(
1

2πi

)l∫
T

· · ·
∫
T

∑
l �=i0

Reszi0=(qi0l)−1zl

1

zi0

∏
i<j

Γij dzi1
zi1

· · · dzil
zil

+

(
1

2πi

)l∫
T

· · ·
∫
T

∏
i<j

i,j �=i0

Γij dzi1
zi1

· · · dzil
zil

.

As noted above, the second integral belongs to a different branch (in fact, in the case of

i0, to a different tree); our procedure will deal with it separately, and we will now consider
what happens with the first integral.

For the first integral, consider one of the summands corresponding to zi0 = (qi0i1)−1zi1
for some i1. We have

(
1

2πi

)l∫
T

· · ·
∫
T

Reszi0=(qi0i1 )−1zi1

1

zi0

∏
i<j

Γij dzi1
zi1

· · · dzil
zil

=
(1− qi0i1qi0i1)(1− qi0i1(qi0i1)

−1)

1− (qi0i1)2

(
1

2πi

)l∫
T

· · ·
∫
T

·

∏
j �=i1,i0

(zi1 − qi0i1qi0jzj)(zi1 − qi0i1(qi0j)
−1zj)

(zi1 − qi0i1qi0jzj)(zi1 − qi0i1(qi0j)−1zj)

∏
i<j

i,j �=i0

Γij dzi1
zi1

dzi2
zi2

· · · dzil
zil

.

Recall that, if i1 > 2, even though formally we have defined the symbols qij and qij only

for i < j, the symmetry of the factors allows us to write qij even if i > j, thanks to the

factor with (qij)
−1 also present in the numerator.

Now we integrate with respect to zi1 . Observe that the leftmost product over j �= i1,i0
does not contribute poles. Indeed, the first factor in each denominator does not have

its zero contained in T, and the second factor in each denominator has its zero at zi1 =
qi0i1(qi0i2)−1zi2 . The power of q appearing is

gi0 +gi1 +1− (gi0 +gi2 +1) = gi1 −gi2,

and so qi0i1(qi0i2)−1 is equal to qi1i2 or (qi2i1)
−1, whichever is defined. Thus this zero

cancels with a zero in the numerator of Γi1i2 or Γi2i1 , whichever is defined. Therefore we

need only consider the simple poles at zi1 = (qi1i2)−1zi2 for i1 < i2 and zi1 = (qi2i1)−1zi2
for i2 < i1. Observe that the residues will be the same for either inequality. In the case

i2 < i1, for example, Γi2i1 needs to be rewritten so that its simple pole inside T is in the

correct format to calculate the residue by substitution:

https://doi.org/10.1017/S1474748025101321 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025101321


Denominators in Lusztig’s asymptotic Hecke algebra via the Plancherel formula 37

Reszi1=(qi2i1 )−1zi2

(zi2 − qi2i1zi1)(zi2 − (qi2i1)
−1zi1)

(zi2 − qi2i1zi1)(zi2 − (qi2i1)−1zi1)

1

zi1

=Reszi1=(qi2i1 )−1zi2

−(qi2i1)−1(zi2 − qi2i1zi1)(zi2 − (qi2i1)
−1zi1)

(zi2 − qi2i1zi1)(zi2 − (qi2i1)−1zi1)

1

zi1

=
(1− qi2i1qi2i1)(1− qi2i1(qi2i1)

−1)

1− (qi2i1)2
.

Therefore after integrating within the clump at hand with respect to zi0 and then zi1 , we
have the expression

(1− qi0i1qi0i1)(1− qi0i1(qi0i1)
−1)

1− (qi0i1)2
(1− qi2i1qi0i1qi0i2)(1− qi1i2qi0i1(qi0i2)

−1)

(1− qi2i1qi0i1qi0i2)(1− qi2i1qi0i1(qi0i2)−1)
(3.7)

· (1− qi2i1qi2i1)(1− qi2i1(qi2i1)
−1)

(1− (qi2i1)2)

·
(

1

2πi

)l−1∫
T

· · ·
∫
T

∏
j �=i0,i1,i2

(zi2 − qi1i2qi0i1qi0jzj)(zi2 − qi1i2qi0i1(qi0j)
−1zj)

(zi2 − qi1i2qi0i1qi0jzj)(zi2 − qi1i2qi0i1(qi0j)−1zj)

·
∏

j �=i0,i1,i2

(zi2 − qi1i2qi1jzj)(zi2 − qi1i2(qi1j)
−1zj)

(zi2 − qi1i2qi1jzj)(zi2 − qi1i2(qi1j)−1zj)

∏
i<j

i,j �=i0,i1

Γij dzi2
zi2

· · · dzil
zil

.

Now we integrate with respect to zi2 . Again, only poles from the product of Γij ’s occur

with nonzero residues: in total we have simple poles contained in T possibly at zi2 =

qi1i2qi0i1(qi0j)−1zj , at zi2 = qi1i2(qi1j)−1zj and at zi2 = (qi2,j)−1zj for j �= i0,i1,i2. It may

happen that these poles are not all distinct, but all zeros in the denominator of the former
two types are in fact cancelled by zeros of denominator anyway. The necessary factors

occur in the product immediately adjacent on the right. Indeed, we have

gi1 +gi2 +1+gi0 +gi1 +1−gi0 −gj −1 = gi1 +gi2 +1+gi1 −gj

and so either qi1i2qi0i1(qi0j)
−1 = qi1i2qi1j or qi1i2qi0i1(qi0j)

−1 = qi1i2(qi1j)
−1 (or qji1 or

(qji1)
−1).

Likewise we have

gi1 +gi2 +1−gi1 −gj −1 = gi2 −gj

as happened when we integrated with respect to zi0 .

Now we see the following pattern: At each stage, we integrate with respect to the

variable we took a residue at in the previous step. When integrating with respect to
zir , there will be r+1 products of rational functions, and each rational function in the

leftmost r products will contribute a pole, in addition to the pole contributed by Γirir+1

or Γir+1ir , whichever is defined. However, each is nullified by having zero residue thanks
to a denominator in the product immediately to the right. Integrating with respect to

zir will result in extracting r+1 new rational factors, each of the form claimed in the

theorem. When it comes to integrating with respect to zil , all variables zil will cancel
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from the remains of the Gamma functions by homogeneity, and the factor 1
zil

will result

in the final integral contributing just the remaining l+1 rational factors.

Lemma 3.6 is a porism of the preceding proof.

Proof of Lemma 3.6. We will evaluate the integral (3.5) by applying the residue
theorem successively for each variable as in the proof of Theorem 3.2. Note that as

functions of any variable zk, the functions
∏

i<j Γ
ij and all the other products, for example

those appearing in (3.7), have numerator and denominator with equal degrees. Thus the
overall sum of powers of all zi in the integrand of (3.5) is e0+ · · ·+ eN , and in general,

the sum of powers of all zi in the integrand of an expression like (3.7) is the sum of the

degrees of the monomial zij terms.
When evaluating (3.5) along a single branch, we find again that the only poles that

appear are of the form zi = (qij)−1zj , or z
ei
i = 0 for ei < 0. We will track the effect that

evaluating each successive residue has on the total degree of the integrand, and then

conclude using the fact that
∫
T
zr dz = 2πiδr,−1. First, observe that evaluating a residue

of the form zi = (qij)−1zj increases the sum of all powers by 1; a factor zj is contributed to

the resulting integrand. The sum of all powers is likewise increased by 1 when evaluating

the residue at a simple pole of z−1
i at 0. To compute the residue at a pole of z−ei

i at 0 for
ei > 1, consider the Taylor expansion at 0 of Γij . We have

1

zi− qijzj
=− 1

qijzj
− zi

(qijzj)2
− z2i

(qijzj)3
−·· ·

and

1

zi− (qij)−1zj
=−qij

zj
−
(
qij

zj

)2

zi−
(
qij

zj

)3

z2i −·· · .

Multiplying these series and further multiplying by the denominator z2i −(qij+q−1
ij )zizj+

zj , it follows that the Taylor expansion of Γij is

1+
qij +(qij)−1− qij − q−1

ij

zj
zi+

(qij)2+2+(qij)−2− (qij + q−1
ij )(qij + q−ij)

z2j
z2i + · · ·

+

−(qij + q−1
ij )((qij)n−1+ · · ·+(qij)−n+1)+

(qij)n−2+ · · ·+(qij)−n+2+(qij)n+ · · ·+(qij)−n

znj
zni + · · · . (3.8)

It is clear that the salient point of (3.8), that zni appears with a coefficient proportional
to z−n

j , holds also for the all the products like those in (3.7). Thus computing a residue at

the pole of z−ei
i at 0 will result in a new integrand, the total degree of which has increased

by ei−ei+1= 1. It now follows that after integrating with respect to N−1 variables, the
final integral to be computed will be a constant times (2πi)−1

∫
T
ze0+···+eN+N−1
N dzN . This

is nonzero if and only if e0+ · · ·+eN =−N . Summing over all branches of a bookkeeping

tree, we see that (3.5) is nonzero only if e0+ · · ·+ eN =−N .
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The lemma is helpful for computing explicit examples, as it points out that one can
always avoid dealing with higher-order poles. Indeed, given an integral of the form (3.5),

we may assume by Lemma 3.6 that e0 + · · ·+ eN = −N . If ei = −1 for all i then the

integral (3.5) is just the integral from Theorem 3.2. Otherwise there is some ei0 ≥ 0. We
may assume that i0 = 0. Then the only poles in z0 are of the form z0 = (q0i1)−1zi1 for

indices i1 > 0. Therefore we compute that (3.5) is equal to a sum of terms of the form

(1− q0i1q0i1)(1− q0i1(q0i1)
−1)

1− (q0i1)2
(q0i1)−e0−1

(
1

2πi

)N−1∫
T

· · ·
∫
T

z
ei1+1+e0
i1

z
ei2
i2

· · ·zeiNiN

·
∏

j �=i1,0

(zi1 − q0i1q0jzj)(zi1 − q0i1(q0j)
−1zj)

(zi1 − q0i1q0jzj)(zi1 − q0i1(q0j)−1zj)

∏
i<j
i,j �=0

Γijdzi1 · · ·dziN . (3.9)

The total degree of the integrand is now e0+ · · ·+ eN +1 = −(N − 1). Therefore either

ei0 +ei1 +1= ei2 = · · ·= e−N =−1, or we may again assume without loss of generality that

the exponent of some zij is nonnegative, and proceed with evaluating (3.9) by integrating
with respect to zij . We may continue in this way, never having to deal with more than a

simple pole at 0. (Of course, the resulting order of integration need not be the same as

the order used in the proofs of Theorem 3.2 and Corollary 3.7.)
We can now prove Corollary 3.7.

Proof of Corollary 3.7. In light of Lemma 2.17, it is enough to prove that the

conclusions of the present corollary hold for integrals of the form (3.5). We again follow
the algorithm from the proof of Theorem 3.2, so it is sufficient to consider a single branch,

and for this it suffices to observe that, given, for example, a variant(
1

2πi

)l−1∫
T

· · ·
∫
T

∏
j �=i0,i1,i2

(zi2 − qi1i2qi0i1qi0jzj)(zi2 − qi1i2qi0i1(qi0j)
−1zj)

(zi2 − qi1i2qi0i1qi0jzj)(zi2 − qi1i2qi0i1(qi0j)−1zj)

·
∏

j �=i0,i1,i2

(zi2 − qi1i2qi1jzj)(zi2 − qi1i2(qi1j)
−1zj)

(zi2 − qi1i2qi1jzj)(zi2 − qi1i2(qi1j)−1zj)

∏
i<j

i,j �=i0,i1

Γijz
ei2
i2

· · · · ·zeilil
dzi2 · · ·dzil

of (3.7) in which ei2 <−1, the quotient rule gives that the residue at zi2 = 0 is equal to

a linear combination over Q[q
1
2 ,q−

1
2 ] of integrals of the form(

1

2πi

)l−2∫
T

· · ·
∫
T

∏
i<j

i,j �=i0,i1,i2

Γijz
e′i3
i3

· · · · ·ze
′
il

il
dzi3 · · ·dzil

for new exponents e′ik . This and the calculations in the proof of Theorem 3.2 make clear

that the only positive powers of q1/2 that appear in the any denominator are those that

appeared as in Theorem 3.2. These are controlled by the possible block sizes of M, and
hence are bounded in terms of Waff . Throughout this procedure, the denominator has

been contributed to only by the Plancherel density itself, which depends only on M. The

last claim of the corollary now follows from Proposition 2.11.
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3.2. The functions fw for general G

For general G, we will follow the same plan as for G=GLn. The only difference is that

we have less control over which denominators can appear. Indeed, this is true even for

formal degrees, but complications are also introduced by residual coset we integrate over,

or equivalently, by lack of explicit control of the Satake parameter of π = iGP (ω⊗ ν) for
arbitrary discrete series representations ω ∈ EI

2 (M).

Theorem 3.11. Let w ∈Waff . Then fw(1) is a rational function of q with poles drawn
from a finite set of roots of unity depending only on Waff . The numerator is a Laurent

polynomial in q1/2. The denominator depends only on the two-sided cell containing w. If

w is in the lowest two-sided cell, then the denominator divides the Poincaré polynomial
of G.

In the proof, we do not attempt to record any information about degrees of the
numerators. It will therefore be necessary to control the possible numerators of fw(1)

in a different manner than for G=GLn in order to prove Proposition 3.13 below.

Proof of Theorem 3.11. First, we note that the reasoning for the lowest cell used in

the proof of Corollary 3.3 holds for arbitrary G. Therefore (3.3) proves the last claim just
as for GLn.

More generally, let w ∈Waff and MP be a Levi subgroup corresponding to the two-sided

cell containing w. Let N = rkAP . Given a coroot α∨ and a basis of the cocharacter lattice

as explained in Section 2.7, we write α∨ = ze11 · · ·zenn for integers ei = ei(α).
By Lemma 2.17 and Theorem 2.2, it suffices to show the conclusions of the theorem

hold for integrals of the form(
1

2πi

)n∫
T

· · ·
∫
T

∏
α∈R1,+\RP,1,+

· qα(z
e1
1 ze22 · · ·zenn − qω)(z

e1
1 ze22 · · ·zenn − q−1

ω )(
z

e1
2

1 z
e2
2

2 · · ·z
en
2

n + q
1/2
ω q

1/2
α

)(
z

e1
2

1 z
e2
2

2 · · ·z
en
2

n + q
−1/2
ω q

−1/2
α

)
· 1(

z
e1
2

1 z
e2
2

2 · · ·z
en
2

n − q
1/2
ω q

1/2
α q2α

)(
z

e1
2

1 z
e2
2

2 · · ·z
en
2

n − q
1/2
ω q

1/2
α q2α

)zf11 · · ·zfnn
dz1
z1

· · · dzn
zn

,

(3.10)

where fi ∈ Z and qω = qω,α is the value of α∨ on the Satake parameter of ω – this is a
positive power of q1/2 (of q if α∨/2 is a coroot) by Sections 7 and 8 of [38]. We have

q2α = 1 and the resulting simplification (2.6) whenever α∨/2 is not a coroot.

With notation fixed, the theorem is essentially an observation. Indeed, suppose that we
integrate with respect to z1, and wish to compute the contribution to the residue at a

pole

z1 = ξq
− 1

e1
ω q

− 1
e1

α z
e2
e1
2 · · ·z

en
e1
n
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arising from the factor

qα(z
e1
1 ze22 · · ·zenn − qω)(z

e1
1 ze22 · · ·zenn − q−1

ω )

(ze11 ze22 · · ·zenn − qωqα)(z
e1
1 ze22 · · ·zenn − q−1

ω q−1
α )

1

z1

=
qα(z

e1
1 − qωz

−e2
2 · · · ,z−en

n )(ze11 − q−1
ω z−e2

2 · · · ,z−en
n )

(ze11 − qωqαz
−e2
2 · · · ,z−en

n )
∏

ζ(z1− ζq
− 1

e1
ω q

− 1
e1

α z
e2
e1
2 · · ·z

en
e1
n )

1

z1
,

where ξ and the ζ are primitive e1-st roots of unity. The contribution is then

qα(q
−1
ω q−1

α z−e2
2 · · ·z−en

n − qωz
−e2
2 · · ·z−en

n )

(q−1
ω q−1

α z−e2
2 · · ·z−en

n − qωqαz
−e2
2 · · ·z−en

n )

· (q−1
ω q−1

α z−e2
2 · · ·z−en

n − q−1
ω z−e2

2 · · ·z−en
n )∏

ζ �=ξ(ξq
−1
e1
ω q

−1
e1
α z

−e2
e1

2 · · ·z
−en
e1

n − ζq
−1
e1
ω z

−e2
e1

2 · · ·z
−en
e1

n )

· 1

ξq
− 1

e1
ω q

− 1
e1

α z
e2
e1
2 · · ·z

en
e1
n

, (3.11)

which simplifies to

(1− qαq
2
ω)(1− qα)

(1− q2αq
2
ω)

∏
ζ �=ξ(1− ξ−1ζ)

. (3.12)

We have used no special properties of the integers ei or fj , and thus after integrating with
respect to z1, (3.10) is equal to a sum of integrals with respect to z2, . . . ,zn again of the

form (3.10), except the factors in the denominator will now involve powers qω(α)qω(α
′)1/2

and qω(α)qω(α
′)−1/2, as for G=GLn. The coefficients of this sum are the form

Q

(1± qr1)c1 · · ·(1± qrk)ck
,

where Q is a Laurent polynomial in q
1
2 , ri ∈ 1

2N with, a priori, complex coefficients, and

ci ∈ N. Indeed, as we never required any cancellations with the numerator to extract

rational functions of q of the required form, it is clear that the simplification of (3.11)

to (3.12) works essentially the same way for any higher order poles that appear – again
thanks to the quotient rule – and that when integrating with respect to subsequent

variables, the additional rational functions of q appearing have the same shape as in the

proof of Theorem 3.2. It is also clear that the factors corresponding to non-reduced roots
behave similarly.

Therefore (3.10) has poles in q only at a finite number of roots of unity. Again by the

quotient rule, exponents ri and ci depend only on M. Clearly there are only finitely many
exponents ri that appear for any M. The theorem now follows.

3.3. Relating tw and fw

We will now relate the Schwartz functions fw on G to the elements φ−1(tw) of a

completion H− of H, whose definition we will now recall. In this section G is general.
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3.3.1. Completions of H and J ⊗C A. Let Â = C((q−1/2)) and Â− = C[[q−1/2]].

Write H− for the Â-algebra

H− :=

{ ∑
x∈Waff

bxTx

∣∣∣∣∣bx ∈ Â, bx → 0 as 	(x)→∞
}
,

where we say that bx → 0 as 	(x) → ∞ if for all N > 0, bx ∈ (q−1/2)N Â− for all x
sufficiently long.

Consider also the completions

H−
C′ :=

{ ∑
x∈Waff

bxC
′
x

∣∣∣∣∣bx ∈ Â, bx → 0 as 	(x)→∞
}

and

H−
C :=

{ ∑
x∈Waff

bxCx

∣∣∣∣∣bx ∈ Â, bx → 0 as 	(x)→∞
}

of H (note the difference between C ′
x and Cx), as well as the completion

J :=

{ ∑
x∈Waff

bxtx

∣∣∣∣∣bx ∈ Â, bx → 0 as 	(x)→∞
}

of J ⊗CA.

In [28], Lusztig shows that φ extends to an isomorphism of Â-algebras H−
C → J . In

this way the elements tw ∈ J ⊂J may be identified with elements of H−
C via φ.

Lemma 3.12. We have H−
C′ ⊂H−. The inclusion is continuous.

Proof. Given an infinite sum
∑

x bxC
′
x, upon rewriting this sum in the standard basis,

the coefficient of some Ty is

ay :=
∑
x≥y

bxq
− �(x)

2 Py,x(q).

As degPy,x ≤ 1
2 (	(x)− 	(y)− 1), we have that q− �(x)

2 Py,x(q) is a polynomial in q−1/2.
Therefore the above sum defines a formal Laurent series. Moreover, as 	(y) → ∞, it is

clear that ay → 0. Continuity of the inclusion is clear from the formula for ay.

3.3.2. The functions fw and the basis elements tw. We shall now explain how

the map φ̃ : J →C(G)I induces a map of A-algebras φ̂ : J ⊗CA→H−.

Proposition 3.13. There is a map of A-algebras φ̂ : J⊗CA→H− such that if φ̂(tw) =∑
x ax,wTx, then ax,w(q) = fw(x). Moreover, there is a constant N depending only on Waff

such that ax,w ∈ (q1/2)N Â− for all x,w ∈Waff .

The most difficult part of the proof of the proposition is showing that ax,w → 0 as

	(x)→∞. To this end we have
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Lemma 3.14. Let w ∈Waff . Then the degree in q of the numerator of fw(1) is bounded

uniformly in w by some N depending only on Waff , and hence in the notation of

Proposition 3.13 above, we have a1,w ∈ (q1/2)N Â− for all w ∈Waff .

Remark 3.15. In type A, the Lemma follows immediately from the order of integration
given after the proof of Lemma 3.6.

Proof of Lemma 3.14. Let πω = IndGP (ν⊗ω) be a tempered I -spherical representation

of G arising by induction from a parabolic P such that rankAP = k. Let Tk
ω be the

compact torus parametrizing twists of ω, and let tw be given. By Lemma 2.17, trace(π,fw)
is a regular function on Tk, i.e. a Laurent polynomial in the coordinates z1, . . . ,zk on

Tk. The coefficients of this Laurent polynomial are independent of q, as J and its

representation theory are independent of q. As we have

|1− qr| ≤ |zi− qrze11 · · ·zekk | ≤ |1+ qr|

for all zi ∈ T and r, we may bound, for large q, the absolute value |μMP
(z)| of the

Plancherel density for MP by a rational function UMP ,ω(q). By Theorem 2.2, we may do
the same for formal degrees d(ω), bounding |d(ω)| by a rational function Dω(q). Thus we

define a rational function of q by

h1(q)+h2(q
−1)

k1(q)+k2(q−1)
=
∑
ω

UMP ,ω(q)Dω(q)max
z∈Tk

ω

|trace(πω ,fw) |,

where h1,k1 ∈ C[q] and h2,k2 ∈ q−1C[q−1], and the sum is over the finitely many, up to

unitary twist, pairs (M,ω), for ω ∈ E2(M), such that trace(πω ,fw) �= 0.

Fix w ∈Waff . Then

|fw(1)|=

∣∣∣∣∣∣
∑
(P,ω)

∫
O(ω)

trace(πω ,fw)d(ω)dμMP
(z)

∣∣∣∣∣∣≤
h1(q)+h2(q

−1)

k1(q)+k2(q−1)
.

Crucially, this expression holds for all q � 1.
On the other hand, by Corollary 3.7 and Theorem 3.11, fw(1) is a rational function

of q, and for q sufficiently large, we may write

|fw(1)|=
f1(q)+f2(q

−1)

d1(q)+d2(q−1)

where f1,d1 ∈ C[q] and f2,d2 ∈ q−1C[q−1]. Therefore for all q � 1 we have

|(f1(q)+f2(q
−1))||(k1(q)+k2(q

−1))| ≤ |(d1(q)+d2(q
−1)||(h1(q)+h2(q

−1))|. (3.13)

We claim that this implies

|f1(q)k1(q)| ≤ |d1(q)h1(q)| (3.14)

for q sufficiently large. Indeed, let ε > 0 be given and choose q � 1 such that∣∣|(f1(q)+f2(q
−1))||(k1(q)+k2(q

−1))|− |f1(q)k1(q)|
∣∣≤ ε
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and ∣∣|(d1(q)+d2(q
−1))||(h1(q)+h2(q

−1))|− |d1(q)h1(q)|
∣∣≤ ε,

and (3.13) holds. Then we have

|f1(q)||k1(q)| ≤ |(f1(q)+f2(q
−1))||(k1(q)+k2(q

−1))|+ ε

≤ |(d1(q)+d2(q
−1))||(h1(q)+h2(q

−1))|+ ε

≤ |d1(q)||h1(q)|+2ε,

which proves (3.14).

Therefore

degf1 ≤ degf1+degk1 ≤ degd1+degh1.

Now, the denominator of fw(1), and hence degd1, depends only on the two-sided cell
containing w, again by Corollary 3.7 and Theorem 3.11. We can also bound degh1

uniformly in terms of Waff , as it depends only on the Plancherel measure and the finitely

many possible formal degrees appearing in the parametrization of the I -spherical part of
the tempered dual of G. This proves the lemma.

If tw ∈ tdJtd′ for d �= d′, then tw is a commutator. We record this observation as

Lemma 3.16. We have that fw(1) = 0 unless fd � fw � fd �= 0 for some distinguished

involution d.

Now we can prove the proposition.

Proof of Proposition 3.13. Let w ∈Waff . Write φ̃(tw) = fw =
∑

xAx,wTx as Schwartz

functions on G so that Ax,w = fw(x). We must show that there is a unique element

ax,w ∈ Â such that ax,w(q) =Ax,w as complex numbers. We will then check that ax,w → 0

rapidly enough as 	(x)→∞ for
∑

x ax,wTx to define an element of H−.
By Corollary 3.7 and Theorem 3.11, there is a formal power series in Â− with constant

term equal to 1 that specializes to the denominator of A1,w when q= q. Moreover, there

is a unique formal Laurent series a1,w ∈ Â such that a1,w(q) =A1,w for all prime powers.
Indeed, a1,w is convergent for q = q, and the difference of any two such series defines

a meromorphic function of q−1/2 outside the unit disk with zeros at q = pr for every

r ∈ N. As these prime powers accumulate at ∞, such a meromorphic function must be
identically zero.

If f ∈ CI×I is a Harish-Chandra Schwartz function, then

q−�(x)(f �Tx−1)(1) = q−�(x)

∫
G

f(g)Tx−1(g−1)dμI(g)

= q−�(x)

∫
IxI

f(g)dμI(g) = q−�(x)μI(IxI)f(x) = f(x).

By definition, fw(x) =Ax,w.
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On the other hand, according to Lemma 2.9, we have, for ω(x−1)f as defined above

Lemma 1.10,

q−�(x)(fw �Tx−1)(1)

= q−�(x)
(
φ̃(tw)� φ̃

(
φq(

†Tx−1)
))

(1)

= q−�(x)φ̃
(
twφq(

†Tx−1)
)
(1)

= q−�(x)φ̃

⎛
⎝twφq

⎛
⎝ ∑

y≤x−1

q
�(y)
2 (−1)�(x

−1)−�(y)Qy,x−1(q)†C ′
y

⎞
⎠
⎞
⎠(1) (3.15)

= q−�(x)φ̃

⎛
⎝twφq

⎛
⎝ ∑

y≤x−1

q
�(y)
2 (−1)�(x

−1)(−1)�(ω(x−1)f )Qy,x−1(q)(Cy)

⎞
⎠
⎞
⎠(1) (3.16)

= (−1)�(x
−1)(−1)�(ω(x−1)f )q−�(x)φ̃

⎛
⎜⎜⎜⎝tw

∑
y≤x−1

q
�(y)
2 Qy,x−1(q)

∑
r

d∈D
a(d)=a(r)

hy,d,rtr

⎞
⎟⎟⎟⎠(1)

(3.17)

= (−1)�(x
−1)+�(ω(x−1)f )q−�(x)φ̃

⎛
⎜⎜⎜⎜⎝

∑
y≤x−1

q
�(y)
2 Qy,x−1(q)

∑
r∼Ld
d∈D

a(d)=a(r)=a(w)

hy,d,rtwtr

⎞
⎟⎟⎟⎟⎠(1)

= (−1)�(x
−1)+�(ω(x−1)f )q−�(x)

∑
y≤x−1

q
�(y)
2 Qy,x−1(q)

∑
r∼Ldw

a(r)=a(w)

hy,dw,r(fw �fr)(1), (3.18)

where dw is the unique distinguished involution in the right cell containing w.

In line (3.15), we rewrote Tx−1 in terms of the C ′-basis of H, using the inverse

Kazhdan-Lusztig polynomials Qy,x−1 . In line (3.16), we applied the involution †(−) (see
Lemma 1.10). In line (3.17) we applied Lusztig’s map φq, and then in line (3.18), we

applied the map φ̃. Also in line (3.18), we used that left (respectively right) cells give left

(respectively right) ideals of J, and so twtr is an integral linear combination of tz−1 , with

d∼L z−1 ∼R dw. By lemma 3.16, fz−1(1) �= 0 only if d= dw, that is, z
−1 ∼L dw.

We use (3.18) to define ax,w ∈ Â. By the same arguments as above, ax,w is unique and

defines a meromorphic function of q−1/2. It remains to show that as 	(x)→∞, ax,w → 0

in the (q−1/2)-adic topology. This follows in fact from (3.18). Indeed, the product fw �fr
is an N-linear combination of functions fz, and the values fz(1) are rational functions

of q, the numerators of which have uniformly bounded degree in q by Lemma 3.14. The

polynomials hy,dw,r have bounded degree in q (for example in terms of the a-function).
Finally, the degree in q of

q−�(x)q
�(y)
2 Qy,x−1(q)
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is at most

q−�(x)q
�(y)
2 q

�(x−1)−�(y)−1
2 = q−�(x)q

�(y)
2 q

�(x)−�(y)−1
2 = q

−�(x)−1
2 → 0 (3.19)

as 	(x)→∞. This completes the definition of φ̂ as a map of A-modules.

It is easy to see that φ̂ is a morphism of rings, essentially because φ̃ is. Indeed, we have

φ̂(twtw′) =
∑
z

γw,w′,z−1

∑
x

ax,zTx (3.20)

while on the other hand

φ̂(tw)φ̂(tw′) =
∑
x

ax,wTx ·
∑
y

ay,w′Ty (3.21)

and when q= q, we have that (3.21) becomes by definition

φ̃(tw)� φ̃(tw′) = φ̃

(∑
z

γw,w′,z−1tz

)
=
∑
z

∑
x

γw,w′,z−1Ax,zTx.

Hence for infinitely many prime powers we have that the specializations of (3.20) agrees

with those of (3.21), and hence (3.20) is equal to (3.21) in H−. A similar argument shows

that φ̂ preserves units.

Remark 3.17. The proof, specifically (3.19), gives a necessary condition for an element

of H− to belong to the image of φ̂: the coefficients must decay asymptotically at least as

fast as q− �(x)
2 .

Proposition 3.18. There is a commutative diagram

H J ⊗CA H−

H−
C H−

C′,

φ φ̂

φ−1

†(−)

and we have φ̂ = †(−) ◦φ−1 as morphisms of A-algebras J ⊗C A → H−. In particular,

ax,w has integer coefficients for all x,w ∈Waff .

Proof. The second claim follows from the first if we show that φ̂ extends to a continuous

morphism J → H−, by density of φ(H) in J � H−
C , and the third claim follows from

the second and the fact that the completions we consider are actually defined over Z
[28, Thm. 2.8].

Note that as φ̃ ◦φq =
†(−) on H for all q, we have that φ̂ = †(−) ◦φ−1 on φ(H). This

says that the diagram commutes.

https://doi.org/10.1017/S1474748025101321 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025101321


Denominators in Lusztig’s asymptotic Hecke algebra via the Plancherel formula 47

We now show that φ̂ extends to a continuous map J →H−
C . Let

∑
w bwtw define an

element of J and define

φ̂

(∑
w

bwtw

)
=
∑
y

b′yTy,

where

b′y =
∑
w

bway,w.

We must first show that this infinite sum of elements of Â is well-defined. By Lemma 3.14

and (3.18), we have that there is M ∈N such that ay,w ∈ (q1/2)M Â− for all y,w. Therefore

b′y is well-defined, and as ay,w → 0 as 	(y)→∞, we have b′y → 0 as 	(y)→∞. Therefore

φ̂ extends to J .

To show continuity, it suffices to show that if {
∑

w bw,ntw}n is a sequence of elements

of J tending to 0 as n→∞, then∑
w

bw,nφ̂(tw) =
∑
y

b′y,nTy → 0

as n → ∞ in H−, where b′y,n =
∑

w bw,nay,w. For all R > 0, there is N > 0 such that

n >N implies bx,n ∈ (q−1/2)RÂ− for all x. We have seen that there is M depending only

on Waff such that ay,w ∈ (q1/2)M Â− for all w,y. Therefore b′y,n → 0 as n→∞, because
bw,n → 0 as n→∞.

Note that Proposition 3.18 means in particular that φ̂(J)⊂H−
C′ .

Corollary 3.19. We have

(φ◦† (−))−1(t1) = f1(1)
∑

w∈Waff

(−1)�(w)q−�(w)Tw.

Proof. If w = 1, everything in (3.18) reduces to r = dw = y = 1, and we need only recall
thatQ1,x(q)= 1 for any x∈Waff . This follows from unicity of the inverse Kazhdan-Lusztig

polynomials and the identity
∑

x≤w(−1)�(x)Px,w(q) = 0 for w �= 1 [9, Exercise 5.17].

Corollary 3.20. The map φ̃ defined in [11] and recalled in diagram (1.2) is injective.

Proof. Let q > 1 and let j �= 0 be an element of J. We must show that φ̃(j) �= 0. By
injectivity of φ̂, we have φ̂(j) �= 0. By definition of the map φ̂, this means that there

exists q0 > 1, u,s ∈ G∨ such that us = su with s compact, and a representation ρ of

π0(ZG∨(u,s)) such that jK(u,s,ρ,q0) �= 0. But then jK(u,s,ρ,q) �= 0, K(u,s,ρ,q) being a

different specialization of the restriction of the same J -module E(u,s,ρ) as forK(u,s,ρ,q0),
and K(u,s,ρ,q) is also tempered. It follows that φ̃(j) �= 0.

3.4. The case of GLn

Theorem 3.21. Let Waff be of type Ãn. Then statements 1 and 2 in the statement of

Theorem 1.2 are true, together with a stronger version of statement 3: Let u= (r1, . . . ,rk)
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be a unipotent conjugacy class in GLn(C). Let d be a distinguished involution in the two-

sided cell c(u) ⊂Waff(GLn) corresponding to u. Let π be the unique family of parabolic

inductions that td does not annihilate. Then rankπ(td) = 1.

Proof. By Corollary 3.7 and Propositions 3.13 and 3.18, a1,x is a rational function of

q for all w. Then equation (3.18) implies that ax,w, being a sum of rational functions
with Laurent polynomial coefficients, is a rational function of q for all x. The same

equation, together with the fact that Jc is a two-sided ideal for each cell c shows that

the denominator of ax,w depends only on the two-sided cell containing w. This proves the
first claim. The second claim now follows from the first claim and the first statement of

Corollary 3.7 and the fact that Waff has finitely many two-sided cells.

Finally, let u= (r1, . . . ,rk). We have π = IndGP (StMP
⊗ν), for the unique Levi MP such

that u is distinguished in M∨
P , and as dimStIMP

= 1, clearly we have

dimπI =
n!

r1! · · ·rk!
.

This is also the number of distinguished involutions in c(u), by [45]. The claim follows
from Corollary 3.20.

3.5. Proof of Theorem 1.2

Proof of Theorem 1.2. Theorem 3.11 together with Propositions 3.13 and 3.18 show

that a1,w is a rational function of q with denominator depending only on the two-sided

cell containing w. Equation (3.18) again shows that ax,w is a rational function of q with
denominator depending only on the two-sided cell containing w ; up to twists the set

E2(M)I is finite for every Levi subgroup M, so we may multiply through to include the

denominators of all required formal degrees, which are in fact rational of the correct form
by Theorem 2.2. Therefore there is a polynomial P 1

G(q) that clears denominators of all

ax,w. This proves the first statement of the Theorem.

Now, by Proposition 9 and Remark 2 of [7], φ induces a surjection

φ̄ : H/[H,H]

[
1

PW (q)

]
� J/[J,J ]⊗A.

Therefore for every j ∈ J , there is N =N(j) ∈ N and h ∈H such that

j ≡ h
1

PW (q)N

in J/[J,J ]⊗A. Considering traces and invoking Proposition 3.18, we see that the
denominator of every ax,w divides a power of PW (q). Therefore there is N = NWaff

depending only Waff such that we can take P 1
G(q) = PW (q)N . This proves the second

statement of the Theorem. The third statement was proven in Corollary 3.3.
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4. Representations with fixed vectors under parahoric subgroups

In this section we will give an application of the J -action on the tempered H -modules.
The first statement is an immediate corollary of the existence of this action, but the

second statement relies on Corollary 3.20.

Theorem 4.1. Let P be a parahoric subgroup of G. Let π be a simple tempered

representation of G with I-fixed vectors with Kazhdan-Lusztig parameter (u,s,ρ). Let wP
be the longest element in the parabolic subgroup of Waff defined by P and B∨

u be the

Springer fibre for u.

1. If

	(wP)> a(u) = dimCB∨
u ,

then

πP = {0}.

2. Conversely, let uP be the unipotent conjugacy class corresponding to the two-sided cell

containing wP . Then there exists s ∈ ZG∨(uP), a Levi subgroup M∨ of G∨ minimal

such that (uP,s) ∈M∨, and a discrete series representation ω ∈ E2(M) such that

πP = iGPM
(ω⊗ν)P �= {0}

for all ν non-strictly positive and the parameter of π is (uP,s).

Proof. Let P and wP be as in the statement. Then C ′
wP is proportional by a power

of q to the indicator function 1P in H. Moreover, wP is a distinguished involution, with

a(wP) = 	(wP). By Proposition 3.18 and the fact that φ is ‘upper-triangular’ with respect

to the a-function, we have (φ◦†(−))(C ′
wP )Jc =0 for c corresponding to u if a(wP)>a(u).

For the second statement, by Corollary 3.20, there is a tempered representation

π= IndGP (ω⊗ν) with π(twP ) �= 0; the unipotent part of its parameter is uP . In particular,

there is a vector v ∈ π such that π(twP )v = v. We have(
φ◦† (−)

)
(C ′

wP )twP
= (−1)�(wP )

∑
d∈D
z∼Ld

hwP,d,ztztwP

= (−1)�(wP )
∑
z

hwP,wP,ztz = vol(P)twP
,

as tztwP �= 0 only if z ∼L wP , and CwPCwP = (−1)�(wP ) vol(P)CwP . Thus v ∈ πP . As
trace(π,td) is constant with respect to ν, the last part of the claim follows.

A version of this statement for enhanced parameters in the case P =G(O) appears in

[2, Prop. 10.1].

Example 4.2. The principal series representations have u= {1}, maximal a-value, and
fixed vectors under every maximal compact subgroup of G. On the other extreme, the

Steinberg representation has u regular, and does not have fixed vectors under any proper

parahoric.
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Table 1. Tempered Iwahori-spherical representation of G =

SO5(F ) = PGSp4(F ).

Table 2. Parahoric fixed vectors for G= SO5(F ) = PGSp4(F ).

In addition to the interpretation given in Section 1.1.3, in the examples below,

the J -action also detects which direct summands of a reducible P-spherical tempered

representation are themselves P-spherical.

Example 4.3. Let G = SL2(F ). As remarked in [14], the distinguished involutions in
the lowest two-sided cell are the simple reflections s0 and s1, and each tsi is invariant

under one of the two conjugacy classes of maximal parahoric subgroup of G. For

unitary principal series representations π, one has trace(π,ts0) = trace(π,ts1) = 1. At

the quadratic character, the corresponding principal series representation is reducible,
and each summand contains fixed vectors under precisely one of the maximal parahorics.

Indeed, in [14] this computation is carried out at the level of the Schwartz space of the

basic affine space.

Example 4.4. Let G= SO5(F ) = PGSp4(F ), with affine Dynkin diagram labelled as

0 1 2
.

There are five conjugacy classes of parahoric subgroups, each obtained by projection

from GSp4(F ): the maximal parahoric PGSp4(O), the image of the paramodular group
K corresponding to {0,2}, the image of the Siegel parahoric subgroup Si corresponding
to {1}, the image of the Klingen parahoric Kl corresponding to {0}, and the Iwahori

subgroup.
The columns of table 1 give all the I -spherical tempered representations of G by

denoting the representation IndGP (ω) by ω. We recall the few cases of reducibility of these

inductions immediately below. The rows list unipotent conjugacy classes in G∨ = Sp4(C)
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such that all tempered standard modules K(u,s,ρ) are in row u. That is, the rows record

which summand of J acts on each representation.

The discrete series are as in [41]. The only reducibility, by [34, Prop. 3.3], is the
reducibility

IndGP (ξStGL2
) = τtriv⊕ τsgn

for ξ2 = 1.

We can now compute the traces of some elements td using the description of the simple
J -modules given in [50]. For the cells (1, . . . ,1), (2,1,1), and (4), we have trace(π,td) = 1

for all π. We have

trace(τtriv ,ts0) = trace(τ2 ,ts0) = 1 = trace(τsgn ,ts1) = trace(τtriv ,ts1) .

In table 2, trace(π,td) is recorded in bold face, whereas the dimension of πP , taken
from [42, Table A.15], is recorded in normal face. Representations attached to the same
cell but belonging to different packets are separated with a dotted line.
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