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Abstract

Let f be a continuous function, and u a continuous linear function, from a Banach space
into an ordered Banach space, such that f — u satisfies a Lipschitz condition and u satisfies
an inequality implicit-function condition. Then f also satisfies an inequality implicit-function
condition. This extends some results of Flett, Craven and S. M. Robinson.
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Following Rockafellar [13], by a convex process is meant a map T of points in a
Banach space X into the subsets of another Banach space Y such that 0 € T0,
T(Az) = ATz and Tz + Tzy C T(z1 + z2) for all A > 0, z;, z2 and z in X.
This is the case if and only if the graph G(T') of T is a convex cone in X x Y.
T is a closed convex process if G(T) is a closed convex cone. If T is also onto
Y (in the sense that for each y € Y there exists z € X such that y € T'z) then
it is an open mapping (see [10, Theorem 2] and also [5, page 182], [8, Theorem
1]), that is, there exists a constant k& > 0 with the following property: for each
y €Y there is z € X with ||z|| < k||y|| such that y € Tz. (In this case we say
that T is k-open.)

Suppose K is a closed convex cone in Y. Then, for any continuous linear map
u from X into Y, we can associate a closed convex process U by putting

U(z)=u(z) + K (z € X).

Thus, if U is onto Y, then U is k-open for some &k > 0. The following Theorems 1
and 2 were proved by Flett [4, Lemmas 1 and 3] in the special case that K = {0}
(see also Craven [2], and [3, page 147]).
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THEOREM 1. Let U be k-open for some k > 0. Let f be a continuous (not
necessarily linear) map from a subset of D of X containing 0 into Y such that
f(0)=0 and

(1) I{f(21) — u(z1)} = {f(22) — w(z)}| < (n/E)|21 — 22l

for some n € (0,1) and all 21,29 € D. If z € X and D contains the ball B with
centre z and radius R with R > (n/(1 — n))||z[|, then there exists z € B such
that u(2) € f(z) + K.

The proof is based on the following contraction lemma, essentially due to
Robinson {11} who considerea Hausdorff distance py instead of unbalanced d
(our proof is also simpler then that given in [11]). See also {7]. For subsets A,
B of a metric space ({2, p) and z € 0, we define d(z, B) := inf{p(z,d): b € B},
d(A, B) := sup{d(a, B): a € A}, and py(A, B) := max{d(A, B),d(B, A)}.

LEMMA 1. Let (Q,p) be a complete metric (or semi-metric) space, and let
T: Q) — 29 satisfy

(2) d(T'z1, Tz2) < np(zy,72)

Jor some n € (0,1) and all z1, z2 in a subset D of 1. Suppose D contains a ball
B with centre 2o and radius R > d(zo,T29)/(1 —n). Then there ezists z € B
with z € Tx.

PROOF. Take € > 0 such that R > d(z0,Tz9)/(1 —n) + ¢, and let 0 =
d(zg,Tzo) + €(1 — n). Since d(zo,Tzo) < o, there exists z; € Ty such that

p(zo, 1) < 0. By (2),
d{z,,Tzy) < d(Tzo,Tz1) < np(20,21) < M0,

so there is 29 € Tz, such that p(z;,22) < no. Suppose that z,,...,z, from
B have been selected respectively from T'zp, ..., Tx,—; such that p(zg_1,2zx) <
n*~1¢ for all k < n. Then, since

d(znaTzn) S d(TIEn_l,T.'En) S np(zn—l) xn) < "7"0,

one can select z,41 € Tz, such that p(zn,Zn+1) < n™o. Note that p(zo, Tni1)
<o(l+n+--+n") < o/(1 —n) = d(zo,T20)/(1 — n) + &; in particular
Znt+1 € B. In this way, we have a Cauchy sequence, which converges, say to
v. Then d(zo,v) < d(z0,T0)/(1 —n) + € so v € B. The proof that v € Tv is
similar to [10]: take v > 0 and a positive integer n. Then there is y € Tv such
that p(zn,y) < d(zp,Tv) + 7 s0

P(Tn,y) < d(TTp-1,Tv) + v < 1p(Tn-1,v) +7
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and
d(’l), T’U) < p('U, y) < p(’U, xn) + p(znyy) < p(’U, zn) + np(xn—la ‘U) +.

Letting n — oo and v — 0, we see that v € Twv.

We now turn to the proof of Theorem 1. We shall apply Lemma 1 to @ = X
with p the usual metric induced by the norm. The inverse U~! of the multivalued
function U is defined by

Uly={zeX:yeUz} (yeY)
By assumption each U~y is non-empty. We will show that
(3) dU 'y, U ys) <kllys — w2l (1,32 €Y).

In fact, let z; € U~1y;. Since U is k-open, there is z € X with ||z|| < k||y2 —v1]]
such that y2 — y1 € Uz. Then

ye=(ye—-wn)+y€uz)+ K+u(z))+K=u(z+z1)+ K=U(z+24)
because K is a convex cone. Therefore z + z; € U~ ly,, and
d(z1,U'ya) < plz1, 2 + 21) = |lz|] < kilyz — w1l]-

Since z; is arbitrary in U™y, (3) is proved.
Now define T on D by Tw = U~1(g(w)) where g(w) := u(z) — f(w) + u(w).
By (1), we have, for all w,,ws € D, that
lg(ws) — glwa)ll = I{f(wa) = u(ws)} — {f(w1) — w(wi)}| < n/kllwy — walf;

it follows from (3) that d(Tw;, Tws) < n||w1 —w2||. Moreover, since g(0) = u(z),
z € U~ (u(z)) = TO, we have

d(z,Tz) < d(T0,Tz) < 1z — 0|| = nl|z||.

By the Contraction Lemma, there exists £ € B such that z € Tz. Take a
sequence {z,} in Tz convergent to z. Then g(z) € U(z,) = u(z,) + K, that is,
u(2) — f(z) + u(z) € u(z,) + K.

Since K is closed it follows that u(z) € f(z) + K.

THEOREM 2. Let C be a closed convez cone in Y, and QQ a subset of Y such
that Q+C C Q and \Q C Q for all A € [0,1]. Let f be a C-function at 0 from
an open set in X containing 0 into Y, with f(0) = 0 and f'(0) = u. Define U
by U(z) =u(z) —C for allz € X. IfU is onto Y, then U~1(Q) is contained in
the tangent cone of f~(Q) at 0.

PROOF. It is known that U is k-open for some k > 0 as noted before. Let h €
U~!(q) with ||h]| =1 and ¢ € Q. Thenq € U(h) = u(h)-Csou(h) e C+Q C Q
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and consequently u(Ah) € Q for all A € [0,1]. Take n € (0,1); then there exists
& > 0 such that ||f'(z) — u|| < n/k for all z in €Bx the &-ball with centre 0 in
X. By the Mean Value Theorem, (1) of Theorem 1 holds with D := {Bx. Take
A > 0, small enough that D contains the open ball with centre Ah and radius
2n)/(1-n). Applying Theorem 1 there is z € X with ||z—Ah|| < 2n||Ak||/(1—7n)
such that u(Ah) € f(z) — C, that is, f(z) eu(AR)+C CQ+C CQ.

Do the above for all # = 1/n with integers n > 3 and choose A = A,, > 0 such
that A, — 0 as n — o00; we write z,, for z accordingly constructed above. Note

that z, # 0, z,, € f~1(Q), zn» — 0 and

llznllznll ™! — AnhlIAnhl| "] < 2l|2a — Anhl] || Anh]| ™
<4n/(1-n) =0 asn — oo,

where we have used the elementary inequality [|alla||™! ~ B||b||7}|] <
2||a — b|| ||b||~?! for non-zero elements in a normed space, which is true because

|\(allbl| — allall — bllall + allall)(llall 161D =] < 2llal[ 1o - al|(llall [161) "
Therefore h is in the tangent cone of f~1(Q) at 0.

REMARK. A related result has been given by Robinson [12, Corollary 2]
where he considered the case @ = C. Applications of results of this type to
Optimization Theory, have been given in [1], [2], [3], [4], [6], [9], [12] and [14].
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