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Abstract

Let / be a continuous function, and u a continuous linear function, from a Banach space
into an ordered Banach space, such that / — u satisfies a Lipschitz condition and u satisfies
an inequality implicit-function condition. Then / also satisfies an inequality implicit-function
condition. This extends some results of Flett, Craven and S. M. Robinson.
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Following Rockafellar [13], by a convex process is meant a map T of points in a
Banach space X into the subsets of another Banach space Y such that 0 E TO,
T(Xx) = XTx and Txx + Tx2 Q T(xi + x2) for all A > 0, xu x2 and x in X.
This is the case if and only if the graph Q(T) of T is a convex cone in X x Y.
T is a closed convex process if Q{T) is a closed convex cone. If T is also onto
Y (in the sense that for each y EY there exists x E X such that y E Tx) then
it is an open mapping (see [10, Theorem 2] and also [5, page 182], [8, Theorem
1]), that is, there exists a constant k > 0 with the following property: for each
y E Y there is a; € X with ||x|| < k\\y\\ such that y E Tx. (In this case we say
that T is fc-open.)

Suppose K is a closed convex cone in Y. Then, for any continuous linear map
u from X into Y, we can associate a closed convex process U by putting

U(x) = u(x) + K (xEX).

Thus, if U is onto Y, then U is A;-open for some k > 0. The following Theorems 1
and 2 were proved by Flett [4, Lemmas 1 and 3] in the special case that K = {0}
(see also Craven [2], and [3, page 147]).
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THEOREM 1. Let U be k-open for some k > 0. Let f be a continuous (not
necessarily linear) map from a subset of D of X containing 0 into Y such that
/(0) = 0 and

(1) \\{f(Xl) - u(Xl)} - {/(x2) - «(xa)}|| < fa/*)||*i - za| |

for some rj G (0,1) and all X\, x2 G D. If z G X and D contains the ball B with
centre z and radius R with R > (r}/(\ — ri))\\z\\, then there exists i e B such
thatu(z)ef(x) + K.

The proof is based on the following contraction lemma, essentially due to
Robinson [11] who considered Hausdorff distance pn instead of unbalanced d
(our proof is also simpler then that given in [11]). See also [7]. For subsets A,
B of a metric space (fi,p) and x G fi, we define d(x, B) :— inf{p(x, b): b G B},
d{A, B) := sup{d(a, B): a € A}, and pH{A, B) := max{d(A, B),d(B, A)}.

LEMMA 1. Let {Q,p) be a complete metric (or semi-metric) space, and let
T: fi->2n satisfy

(2) d(TxuTx2)<rlp(x1,x2)

for some r\ G (0,1) and all xi, x2 in a subset D ofQ. Suppose D contains a ball
B with centre XQ and radius R > d(xo,Txo)/(l — r)). Then there exists i g B
with x E Tx.

PROOF. Take e > 0 such that R > d(xo,Txo)/(l - r/) + e, and let a =
d(xo,Txo) + e(l - ri). Since d(xo,Txo) < o, there exists x\ G Tx$ such that
p(xo,xi)<<7. By (2),

d(xi,TXl) < d(Txo,Tx!) < r)p(xo,xi) < W,

so there is x<i G Tx\ such that p(xi,X2) < Va- Suppose that x\,...,xn from
B have been selected respectively from TXQ, . . . ,Tx n - i such that p(xic-i,xit) <
nk~lo for all k < n. Then, since

d(xn,Txn) < d(Txn-UTxn) < r)p(xn-1,xn) < r)na,

one can select xn+i € Txn such that p(xn,xn+i) < r\na. Note that p(xo,xn+i)
< a(l + n + • • • + r?n) < <r/(l - r)) = d(xo,Txo)/(l - r)) + e; in particular
xn+i G B. In this way, we have a Cauchy sequence, which converges, say to
v. Then d(x0, v) < d(xo,Txo)/(l -r/) + esoveB. The proof that v G Tv is
similar to [10]: take 7 > 0 and a positive integer n. Then there is y G Tv such
that p(xn,y) < d(xn,Tv) + 7 so

P(xn, y) < d(Txn-1, Tv) + 7 < rip(xn-1, v) + 7

https://doi.org/10.1017/S1446788700029736 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029736


148 Kung-Fu Ng [3]

and

d(v,Tv) <p(v,y) <p(v,xn) + p{xn,y) < p{v,xn) + r]p(xn-1,v) + 7.

Letting n -* 00 and 7 —> 0, we see that v E Tv.
We now turn to the proof of Theorem 1. We shall apply Lemma 1 to fi = X

with p the usual metric induced by the norm. The inverse U~l of the multivalued
function U is defined by

{y EY).

By assumption each U~1y is non-empty. We will show that

(3) d{u-1yuu-1y2)<k\\y1-y2\\ (yi,y2EY).

In fact, let x\ E U~1yi. Since U is A;-open, there is x E X with ||a;|| < k\\y2 — j/i | |
such that y2 — yi E E/E- Then

V2 = (j/2 - J/i) + ! / i 6 u(x) + A" + u{xi) + K = u{x + n) + K = U(x + Xi)

because A" is a convex cone. Therefore x + xi € U~1y2, and

dixuU-^Kpixux + Xi) = \\x\\ < k\\y2-yi\\.

Since X\ is arbitrary in U~lyi, (3) is proved.

Now define T on D by Tw = U~1{g{w)) where ff(w) := u(z) - f(w) + u(w).
By (1), we have, for all wi,W2 € D, that

Mwx) - g(w2)\\ = \\{f(w2) - u(w2)} - {fM - u(Wl)}\\ < v/kWw, - wall;

it follows from (3) that d(Twi,Tw2) < r)\\wi — u^H- Moreover, since ^(0) = u(z),
z € U~1(u(z)) = TO, we have

d(z,Tz) < d(T0,Tz) < v\\z - 0|| = v\\z\\.

By the Contraction Lemma, there exists x E B such that x e Tx. Take a
sequence {a;,,} in Tx convergent to x. Then g(x) € U(xn) = u(xn) + K, that is,

u(z) - f(x) + u(x) € u(xn) + K.

Since K is closed it follows that u{z) € f(x) + K.

THEOREM 2. Let C be a closed convex cone in Y, and Q a subset ofY such
that Q + CCQ andXQCQ for all A e [0,1]. Let f be a C1-function at 0 from
an open set in X containing 0 into Y, with /(0) = 0 and /'(0) = u. Define U
by U(x) = u(x) — C for all x EX. IfU is onto Y, then U~1(Q) is contained in
the tangent cone of f~1{Q) at 0.

PROOF. It is known that U is A;-open for some k > 0 as noted before. Let h E
U~l{q) with 11A|| = 1 and q E Q. Then q E U{h) = u(h)-C so u(h) E C+Q C Q
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and consequently u(Xh) € Q for all A € [0,1]. Take r\ € (0,1); then there exists

i > 0 such that | | / ' (x) - u\\ < r)/k for all x in £BX the £-ball with centre 0 in

X. By the Mean Value Theorem, (1) of Theorem 1 holds with D := £,BX- Take

A > 0, small enough that D contains the open ball with centre Xh and radius

2r)X/(l-ri). Applying Theorem 1 there is xGX with | |z-A/i | | < 2r)\\Xh\\/{l-r))

such that u(Xh) <= f{x) - C, that is, f{x) G u{Xh) + CCQ + CCQ.
Do the above for all 77 = 1/n with integers n > 3 and choose A = An > 0 such

that An —> 0 as n —» 00; we write xn for x accordingly constructed above. Note

that xn ^ 0, xn e f~1{Q), i n - » 0 and

W-'W < 2\\xn - Xnh\\ \\Kh\\~1

< 4r / / ( l — 77) —* 0 as n —> 00,

where we have used the elementary inequality HallaH"1

2||o — 6|| II^H"1 for non-zero elements in a normed space, which is true because

||(o||6|| - a\\a\\ - b\\a\\ + a\\a\\)(\\a\\ M^W < 2\\a\\ \\b - a||(| |a|| \\b\\)-1

Therefore h is in the tangent cone of f~1{Q) at 0.

REMARK. A related result has been given by Robinson [12, Corollary 2]

where he considered the case Q = C. Applications of results of this type to

Optimization Theory, have been given in [1], [2], [3], [4], [6], [9], [12] and [14].
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