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PSEUDO HARMONIC MEASURES AND THE DIRICHLET 
PROBLEM 

MAYNARD ARSOVE AND HEINZ LEUTWILER 

1. Introduction. For the case of plane regions bounded by finitely many 
disjoint Jordan curves, the solution of the Dirichlet problem can be expressed 
in terms of the classical harmonic measure of boundary arcs. At an appropriate 
stage in the development it is, in fact, useful to observe that the existence of 
such harmonic measures is equivalent to solvability of the Dirichlet problem 
(although one subsequently proves that all such regions are Dirichlet regions). 
We propose here to carry over this order of ideas to a quite general setting, in 
which arbitrary regions and ideal boundary structures are allowed. The coun­
terparts of the classical harmonic measures of arcs are then harmonic functions 
with analogous boundary properties, but they no longer appear as measures 
in the boundary sets, in general. We shall refer to them as "pseudo harmonic 
measures". Our main result shows how pseudo harmonic measures can be used 
to solve the Dirichlet problem. 

Throughout the discussion, 12 will be taken as a region in Euclidean space or 
on a Riemann surface, and V will be assumed to be an ideal boundary which 
compactifies 12. That is, T is a set disjoint from 12 such that î î l j r , together 
with a specified topology, is a compact Hausdorff space in which 12 is dense and 
the induced topology on 12 is the same as its original topology. We shall be 
concerned with the Dirichlet problem for 12 relative to T, and a general dis­
cussion of this subject can be found in [2]. 

A function UK(Z), defined for all points z on 12 and all compact subsets K of 
T, will be called a strict pseudo harmonic measure for 12 relative to Y if it has the 
following properties: 

(1) œK(z) is a bounded harmonic function of z over 12 (for fixed K) and an 
increasing function of compact subsets K of T (for fixed z), 

(2) o)K(z) - ^ l a s s tends to any interior point of K relative to T, 
(3) wK(z) —-> 0 as z tends to any exterior point of K relative to T. 

Strict pseudo harmonic measures are obviously direct analogues of the classical 
harmonic measures of arcs. Although the latter are finitely additive, they are 
not measures in the usual sense, and the same is true of strict pseudo harmonic 
measures. Let us look briefly at the relationship between strict pseudo har­
monic measures and harmonic measures. 

Suppose that 12 is a Dirichlet region relative to V, so that the strict Dirichlet 
problem on 12 can be solved for arbitrary continuous functions / on T. The 
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solution Hf{z) defines a positive linear functional in/ , for fixed 2, and the Riesz 
theorem therefore yields a unique Borel measure mz on T such that 

(4) H,(z) = jjdmz. 

The resulting function mz{E) is a harmonic function of z over 0, (for fixed E) 
and a measure in E over the family of Borel subsets of Y (for fixed z). This is 
the definition of harmonic measure (or, more properly, strict harmonic measure, 
since we are dealing with Dirichlet regions for the moment). It is inherent in 
the definition that harmonic measure yields an integral representation for the 
solution of the Dirichlet problem. 

A strict harmonic measure mz{E) gives rise to a corresponding strict pseudo 
harmonic measure uK(z) = ^ ( X ) (K Q T compact). This has been noted in 
[1] for the case of a bounded plane region with Euclidean boundary, and it is 
easily proved in the general case. Indeed, property (1) follows in the usual way 
by using the fact that (4) defines Hfa,s a harmonic function for all measurable / 
and that it reduces to mz (K) when/ is taken as the characteristic function of K. 
(See, e.g., [2, pp. 85-88].) We know also that T, as a compact Hausdorff space, 
must be completely regular (see [3, p. 238]). Thus, if f0 is an interior point of 
K, then there exists a continuous function/ on T such that /(fo) = 1 and / is 
dominated by the characteristic function of K. Property (2) follows easily 
from this, and property (3) is established by a dual argument. 

Even in the setting of Dirichlet regions, however, there exist strict pseudo 
harmonic measures which are fundamentally different from harmonic measures. 
For example, fixing 0 < a < 1, we can define aiK(z) as the strict pseudo 
harmonic measure given by 

(5) <oK(z) = mz(K°) + amz(dK) (z £ Û), 

where K is any compact subset of V and the interior K° and boundary dK of K 
are taken relative to V. As evident here, it is readily seen in general that 

(6) mz(K°) £ œK(z) £ mz(K). 

Thus, in particular, 

(7) 0 g œK(z) £ 1, 

although this property is obvious directly in our original setting. 

2. Solution of the Dirichlet problem by means of strict pseudo har­
monic measures. There is plainly no hope in trying to devise an analogue 
of the integral representation (4) in terms of strict pseudo harmonic measures. 
The measure properties of mz are used in an essential way. Nevertheless, an 
integral representation can be formulated along different lines, as we proceed 
to show. 
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THEOREM 1. The existence of a strict pseudo harmonie measure uK(z) is 
necessary and sufficient for the region fi with boundary T to be a Dirichlet region. 
The solution of the Dirichlet problem on 0 for a given nonnegative continuous 
function f on T is then given by 

J»oo 

œ[f^](z)d\ (ze 0). 
o 

Proof. The infinite upper limit of integration in (8) can be replaced by M = 
max / , since the integrand clearly vanishes for X > M. Furthermore, the 
integrand is monotone decreasing, in view of the set-monotoneity hypothesis 
in (1). It follows that the right-hand member in (8) exists as a Riemann 
integral. Let us denote this integral by U(z), i.e. 

J*Af 

G>[/èX](s)dX ( * € 0 ) . 
0 

The resulting function U is bounded and harmonic on Q. Indeed, boundedness 
is clear from (7), and harmonicity can be deduced in the usual way, by using 
uniform boundedness of the Riemann sums to infer that these form a normal 
family of harmonic functions converging pointwise to U. 

Our objective is to prove that U tends t o / at all points of T, and this can be 
accomplished as follows. We fix f0 as any point of T and put Xo = /(fo). In 
terms of X0, we split up the integral for U as 

(z)d\. 
0 * /X 0 

Now, for 0 S X < Xo, the point f0 lies interior to [/ è X] relative to T, so 
co[f^\](z) —> 1 as z —> fo, by (2). An application of the Lebesgue bounded 
convergence theorem then shows that the first integral in (9) tends to X0 as 
z —> fo. In the same way, for X0 < X ̂  M, the point f 0 lies exterior to [/ ^ X] 
relative to F, forcing u[f>\] (z) —> 0 as z —* f0, and we conclude that the second 
integral in (9) tends to zero. It follows that U tends to / on T, i.e., that the 
solution of the Dirichlet problem is given by formula (8). 

Existence of a strict pseudo harmonic measure wK(z) is thus a sufficient 
condition for Q, to be a Dirichlet region relative to the boundary T. That this 
condition is also necessary has already been noted in § 1 (every Dirichlet 
region admits a strict harmonic measure), and the proof is complete. 

3. Some extensions. At least as important in modern potential theory as 
the Dirichlet problem, is the Wiener-Dirichlet problem. For the latter, the 
solution is only required to be a bounded harmonic function which tends to the 
given continuous boundary function at the regular boundary points. The 
prevalence of this more general viewpoint accounts for the terminology 
"strict" pseudo harmonic measure when the limiting behavior in (2) and (3) is 
required to hold at all points of T. We show here how these concepts and 
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results carry over to the setting of the Wiener-Dirichlet problem, and we 
indicate some extensions of the integral representation (8). 

The ideal boundary T will now be assumed to be equipped with a set R of 
regular boundary points. Axiomatically, all that is required of R is that it is a 
subset of r with the property that the only bounded harmonic function on 12 
which tends to zero on R is the function identically zero. We shall call 12 a 
Wiener-Dirichlet region relative to T and R provided that, for each continuous 
function/ on T, there exists a bounded harmonic function Hf on 12 such that 
Hf tends t o / at all regular points of T. (Uniqueness of Hf is a consequence of 
the hypothesis on the set R.) The resulting harmonic function Hf is referred 
to as the Wiener function for / relative to 12, r , and R. By a pseudo harmonic 
measure for 12 relative to the boundary T and regular points R we mean a 
function ooK(z) defined as before but with the limiting properties in (2) and (3) 
only required to hold at the regular boundary points. 

Exactly the same argument as for Theorem 1 serves to prove the following 
counterpart for the Wiener-Dirichlet setting. 

THEOREM 2. The existence of a pseudo harmonic measure uK(z) is necessary 
and sufficient for the region 12 with boundary V and regular points R to be a Wiener-
Dirichlet region. For any nonnegative continuous function f on Y, the Wiener 
function Hf is then given in terms of pseudo harmonic measure by the integral 
formula (8). 

We remark that the strict Dirichlet setting is contained in the Wiener-
Dirichlet setting, since one can always put R = T. It therefore suffices to deal 
with the Wiener-Dirichlet setting, and our concluding observations will apply 
to this case. 

L e t / be any nonnegative continuous function on V and X0 any positive real 
number. Then the least harmonic majorant of (Hf — \0)

+ has the integral 
representation 

(10) M(Hf - Ao)+(s) = P «[/fcxjOOdX (s € 12). 

The proof is essentially contained in that of the original theorem, and, alterna­
tively, (10) can be deduced as a corollary of (8). We omit the details. 

Our final observation concerns the behavior of the function 

(11) U(z) = r cc[m](z)d\ (2Ç12), 

when the function / is required only to be upper semicontinuous and non-
negative on T. Clearly, formula (11) defines U as a nonnegative bounded 
harmonic function on 12. Arguments of the sort used in proving Theorem 1 
show easily that the inequality 

(12) KmsupJ7(s) ^ / ( f o) 
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holds at all. regular boundary points f 0 and that 

(13) lim U(z) = /(f t) 

holds at all regular boundary points fo which are points of continuity of/. 
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