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Abstract

Vibration-based structural health monitoring (SHM) of (large) infrastructure through operational modal analysis
(OMA) is a commonly adopted strategy. This is typically a four-step process, comprising estimation, tracking, data
normalization, and decision-making. These steps are essential to ensure structural modes are correctly identified, and
results are normalized for environmental and operational variability (EOV). Other challenges, such as nonstructural
modes in the OMA, for example, rotor harmonics in (offshore) wind turbines (OWTs), further complicate the process.
Typically, these four steps are considered independently, making the method simple and robust, but rather limited in
challenging applications, such as OWTs. Therefore, this study aims to combine tracking, data normalization, and
decision-making through a singlemachine learning (ML)model. The presented SHM framework starts by identifying
a “healthy” training dataset, representative of all relevant EOV, for all structural modes. Subsequently, operational and
weather data are used for feature selection and a comparative analysis of MLmodels, leading to the selection of tree-
based learners for natural frequency prediction. Uncertainty quantification (UQ) is introduced to identify out-of-
distribution instances, crucial to guarantee low modeling error and ensure only high-fidelity structural modes are
tracked. This study uses virtual ensembles for UQ through the variance between multiple truncated submodel
predictions. Practical application to monopile-supported OWT data demonstrates the tracking abilities, separating
structural modes from rotor dynamics. Control charts show improved decision-making compared to traditional
reference-based methods. A synthetic dataset further confirms the approach’s robustness in identifying relevant
natural frequency shifts. This study presents a comprehensive data-driven approach for vibration-based SHM.

Impact Statement

This paper introduces a novel approach to vibration-based structural health monitoring (SHM). By integrating
machine learning (ML) and uncertainty quantification (UQ), the study addresses significant challenges in the
field, notably environmental and operational variability (EOV) and reliable observability of structural modes for
offshore wind turbines (OWTs). The core innovation lies in the deeper embedding of ML models, trained on
“healthy” data, and UQ, for improved mode tracking, through out-of-distribution detection, and EOV
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normalization. This dual approach enhances the reliability and accuracy of SHM systems and enables distin-
guishing structural changes from operational noise. The methodology provides a more reliable and automated
tool for decision-making in SHM strategies, especially for OWT operators.

1. Introduction

Vibration-based structural health monitoring (SHM) has emerged as a pivotal method for ensuring the
structural integrity and optimizing the lifespan of various structures, ranging frombuildings to bridges and
offshore wind turbines (OWTs; Doebling et al., 1998; Peeters et al., 2001; Salawu, 1997; Weijtjens et al.,
2016). Vibration-based SHM fundamentally relies on the observation and analysis of a structure’s
vibration characteristics, in this case, its modal parameters, which include natural frequencies, mode
shapes, and damping ratios. These modal parameters, estimated through an operational modal analysis
(OMA), are key indicators of a structure’s health, as changes in them can imply damage or degradation
(Magalhães et al., 2012). Numerous studies have linked frequency shifts in key structural modes to
specific damage types, including scour depth in OWTs, underscoring the practical significance of such
monitoring (Fallais et al., 2022; Prendergast et al., 2015;Weijtjens and Devriendt, 2017;Weil et al., 2023;
Weinert et al., 2015).

Traditionally, vibration-based SHM that relies on modal parameter estimation (MPE) from an OMA
consists of four consecutive steps (Bel-Hadj et al., 2024; Devriendt et al., 2014; Magalhães et al., 2012):

1. Automated OMA: Automatically extracts the modal parameters, such as frequency and damping
ratios from ambient vibration data, as detailed in the study by Devriendt et al. (2014).

2. Tracking: Labels the identified structural modes within the large number of automated OMA
results over time.

3. Data normalization: Adjusts tracked modal parameters, accounting for environmental and
operational variability (EOV), such as temperature changes, enhancing accuracy, and reducing
hidden damage states, often involving ML methods.

4. Decision-making: Analyzes normalized modal parameters against a healthy baseline to detect
significant changes or anomalies, indicating potential damage.

This article builds upon these steps while revising several concepts. In particular, it explores how
information from the data normalization process (step 3) can be integrated to improve both the tracking
(step 2) and the decision-making (step 4).The goal of this research is to automate and enhance steps 2–4 by
integrating recent data-driven methods, enabling vibration-based SHM to scale across numerous struc-
tures without requiring continuous expert oversight of all data.

The tracking step is usually performed through a reference-based strategy, involving manually
selecting frequency limits for the modes of interest on an initialization dataset (Magalhães et al., 2012;
Martins et al., 2014; Oliveira et al., 2018; Ubertini et al., 2016; Verboven et al., 2002). However, for
OWTs, a challenge arises from the significant influence of EOVon the structural response. The EOV
encompasses various factors, such as varying wind and wave conditions, operational states (parked,
idling, rated, etc.), and temperature fluctuations, which can introduce significant variability in the
measured natural frequencies (Farrar and Worden, 2012). Because of the large EOV of natural
frequencies, a fixed set of selected limits are not adequate for reliable tracking of the structural modes
over the entire operational window. Therefore, Weijtjens et al. (2016) suggested tracking the physical
modes on a case-by-case basis, where different reference values are set for the different operational
states (or cases) of the OWT. However, this method is subjective and requires time-consuming manual
reference settings for each operational state. Alternatively, Pereira et al. (2023) introduced an
automatic reference determination method using an extended modal assurance criterion (MACX).
However, MACX requires mode shape estimation, impossible for single-sensor setups, as considered
in Section 2.
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Data normalization is crucial for reliable damage detection as it accounts for the EOVof the modal
parameters, which can otherwise obscure variations caused by structural anomalies. Typically, this
requires additional features to describe the environmental and operational conditions during which
the OMA result is collected. For instance, in the context of OWTs, relevant features are typically
obtained from the turbine’s supervisory control and data acquisition (SCADA) data and meteoro-
logical (METEO) data (Weijtjens et al., 2016). Once these data are collected, various models can be
used for the actual normalization, often linear regression (LR) suffices (Oliveira et al., 2018; Peeters
and De Roeck, 2001b; Winkler et al., 2023). However, in particular for OWTs, the EOV can be
nonlinear and discontinuous. The best example is the strong difference in structural dynamics
between a parked and operational wind turbine, leading to the need for an ensemble of LR models
(Weijtjens et al., 2016). To mitigate this, ML techniques, such as autoencoders (Weil et al., 2022),
affinity propagation (Häckell and Rolfes, 2013), and ML regression models (Xiang et al., 2024), have
been used for EOV normalization of natural frequencies. In this paper, several ML models are
compared to predict natural frequencies under varying operational and environmental conditions
for application to offshore wind.

In addition, recent experience with OWT data shows that several structural modes cannot be reliably
tracked over the entire range of EOV (Oliveira et al., 2018; Xiang et al., 2024), for example, due to the
presence of a rotor harmonic (cf. Section 2.1), an unfavorable sensor position, limited modal excitation or
high values of damping. Often this concern is mitigated in the decision-making step by only considering
modes that are available over the entire EOV window or by only considering the performance in a
particular operational state, such as parked. However, this can lead to a loss of information as fewermodes
will be considered for fewer timestamps.

It is proposed to leverage the ML model required for the data normalization step for model-based
tracking. However, this leads to a chicken-and-egg problem as training anMLmodel requires a training
dataset encompassing all relevant EOV, but creating this dataset through the smart tracking method-
ology requires an ML model. For this reason, an initialization step is introduced to construct an initial
structural modes dataset through unsupervised clustering, subsequently corrected using physical
knowledge of the structure and a human-in-the-loop. This initial structural modes dataset serves as
the foundation for training various ML regression models to predict each structural mode for tracking
and data normalization.

This research leverages the strengths of ML to better understand the complex interactions between
SCADA data, METEO conditions, and modal parameters and bake engineering judgment into the
selection of the training set. As such, after a human-in-the-loop initialization, a more reliable tracking
of structural modes is achieved. Furthermore, recent advances in UQ within ML models (Maddox et al.,
2019; Malinin, 2019; Mondal, 2021; Poggi et al., 2020) have been employed for out-of-distribution
(OOD) detection. This approach ensures that the tracking is confined to periods where the operational and
environmental conditions of the OWTare within the scope of the training data, thereby excluding modes
that might be affected by non-structural components such as rotor dynamics. Consequently, this method
enhances the coverage and reliability of tracking across all relevant structural modes, ensuring that the
initial expert knowledge is effectively transferred to the model-based tracking process.

This paper is structured to explore the potential of ML and UQ to automate and improve vibration-
based SHM strategies. Following this introduction, Section 2 presents the instrumented OWT setup and
other data sources, encapsulating the available data and observed challenges. Subsequently, Section 3
gives an overview of the methodology separated into three parts. First, the creation of the initial structural
modes dataset is discussed in Section 3.1. Second, these data, combined with operational and weather
data, are used for feature selection, ML model training, comparison, and selection, as detailed in
Section 3.2, along with a detailed overview of the UQ principles. Third, Section 3.3 discusses the
implementation of ML and UQ in the SHM process for smart tracking, data normalization, and decision-
making. Following the methodology, Section 4 details the results obtained by applying the novel SHM
strategy to both empirical and synthetic data from an instrumented OWT. In Section 5, observed
limitations and potential future works are identified. Finally, Section 6 gives the conclusion and
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encapsulates the findings and their implications for SHM practices, with a particular emphasis on their
application to OWTs.

2. Instrumented OWT

The developed vibration-based SHM methodology is applied to an instrumented monopile-supported
OWTin the Belgian North Sea for a proof of concept. TheOWT features a high-end accelerometer (ACC)
placed in the rotor-nacelle assembly (RNA), as shown in Figure 1, crucial to capture high-fidelity
vibration data that are key to accurate natural frequency analysis.

A comprehensive 15-month dataset comprising both SCADA and automated OMA results serves as
the foundation for this study. The SCADA data detail the OWT’s operational conditions, essential for
EOV normalization. Further, external METEO data sources, obtained from the “Meetnet Vlaamse
Banken” (MVBC) (Flemish government, Agency for Maritime Services and Coast, 2023), complement
the dataset with additional weather measurements, enhancing the environmental context for the SHM
framework. Data synchronization poses a unique challenge due to varying sampling intervals across data
sources. To align the 10-minute interval SCADA data with the 30-minute interval METEO data, a linear
interpolation approach is employed for its simplicity and effectiveness inmaintaining data continuity. The
ACC vibration data are used to calculate the natural frequencies every 10 minutes through automated
OMA as described in Section 3.1.1.

2.1. Observability of structural modes

The damage-sensitive structural modes that are crucial for SHM purposes are not always observable
within the results of the automated OMA applied to an OWT. Under certain environmental and
operational conditions, these structural modes may be obscured by other structural modes, such as
whirling modes (Hansen, 2007), or nonstructural modes, such as wave frequencies or rotor harmonics
from rotor dynamics (Weijtjens et al., 2014a). Additionally, it is possible that these modes are insuffi-
ciently excited under specific conditions, making them difficult to detect. In such cases, the OMA results
for these damage-sensitive structural modes are considered unreliable for SHM decision-making and are
therefore excluded from the proposed monitoring strategy.

This is illustrated below through the example of second-order modes in modern OWTs, where
interactions occur between structural modes and those induced by the rotor, such as the 6P harmonic.

Figure 1. Monopile-supported OWT monitoring setup with one ACC at tower top.
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These harmonic frequencies depend on the rotor’s rotational speed expressed in rotations per minute
(RPM) and are defined by Equation (1).

f harmonic ¼P∗
RPM

60
; P∈ 1,3,6,9,…½ �: (1)

Figure 2 demonstrates the perturbation of the second-order side-side (SS2) and second-order fore-aft
(FA2) modes due to 6P harmonic by comparing periods when the OWTwas parked (left) and operational
under rated conditions (right). In the parked state, the harmonic mode is at 0 Hz as the rotor is stationary.
The SS1 and FA1 modes, visible at approximately 0.2 Hz, exhibit minimal variability, whereas the
frequencies primarily below SS1 and FA1 correspond to wave frequencies. The SS2 and FA2modes, just
above 1 Hz, show the expected cyclic behavior due to changing tides for a monopile-supported OWT
(Weijtjens et al., 2016).

Under rated conditions, SS1 remains consistent; however, FA1 is observed at a slightly higher
frequency when rated and exhibits increased variability as expected from the literature (Song et al.,
2023; van Vondelen et al., 2023; Weijtjens et al., 2014b). Additionally, a whirling mode is apparent
between 0.6 and 0.8 Hz in the SS direction. The interaction between the 6P harmonic and second-order
modes disrupts the expected cyclic pattern. It is, therefore, essential to differentiate periods with and
without harmonic influence.Moreover, an automated process withminimalmanual intervention is crucial
considering the growing volume of monitored structures. In Song et al. (2023), second-order modes are
evaluated solely during parked conditions, a state that persists for merely 1 week in an annual monitoring
period. Given that second-order modes are more sensitive to some damages, such as scouring
(Prendergast et al., 2015), implementing an automated strategy to consistently track these modes with
high fidelity is desirable. Moreover, only intermittent evaluation raises questions on the variability with
environmental conditions, assuming there are little other data available: Can one truly compare data, for
example, from a few parked days in summer with some isolated days in winter?

The interaction between the 6P harmonic and second-order modes underscores the significant
influence nonstructural modes can have on the observed structural modes. Harmonic perturbation in
OMA has been extensively studied, and recent approaches have attempted to incorporate the harmonics
directly into the models to mitigate their impact. Notably, van der Veen et al. (2013) and Greś et al. (2021)
have built upon the foundational work ofMohanty andRixen (2003) by integrating harmonic components
into OMA models. However, these methods face challenges in a continuous monitoring context,
particularly due to uncertainties in rotor speed data, the presence of slowly varying rotor speeds, and

Figure 2. SS (blue) and FA (orange) detected modes through automated OMA for both the parked
(left) and rated (right) operational conditions, highlighting the interference of rotor harmonics for

SS2 and FA2.
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the highly damped nature of these harmonics, as discussed in a previous study within our research group
(Motte et al., 2015).

Further advancements weremade by vanVondelen et al. (2023), who introduced an extension aimed at
better localizing these harmonics. Despite this progress, these solutions remain limited to harmonic
perturbations that can be explicitlymodeled. However, perturbations in structural modes are not limited to
harmonics alone; they can also arise from other factors such as changes in environmental conditions,
operational states, or wave-induced forces.

If the structural modes used as damage-sensitive parameters in SHM strategies are not observed
without perturbations, this can potentially lead to erroneous conclusions and decision-making based
on faulty data. To address these challenges, this research proposes a methodology for reliably tracking
structural modes under high-fidelity conditions only, ensuring that these modes are monitored in
scenarios where perturbations are minimized. This approach aims to establish a robust SHM frame-
work without the need for exhaustive characterization of every environmental and operational
condition.

3. Methodology

This section outlines themethodology proposed in this research to automate and enhance the OMA-based
SHM. The approach is illustrated through the flowchart in Figure 3, with the main novelty being the smart
tracking approach, to automate the tracking of structural modes under high-fidelity conditions only. The
methodology starts from the automated OMA, introduced by Devriendt et al. (2014). This three-step
process incorporates vibration data preprocessing,MPE, and finallymode selection from theMPE output.
Typically, the physical modes resulting from the mode selection are characterized by their natural
frequency, damping ratio, cluster size (in the stabilization diagram), and mode shape (in multisensor
setups). However, as previously detailed, obtaining reliable modes can be challenging for operational
OWTs showing high EOV. Therefore, the new smart tracking method is introduced, involving the
following main steps:

1. Initialization: On a selected initialization dataset, all the modes resulting from the MPE are stored
in a database and used for the initialization process to identify the relevant structural modes.
Additionally, engineering judgment is baked into the selection of the training set through a human-
in-the-loop process, as detailed in Section 3.1.

2. MLmodel preparation: The identified initial structural modes are used in combination with data
describing the environmental and operational conditions to train the ML model, after model and
data selection. Section 3.2 describes the ML model preparation and UQ methods, required for the
smart tracking process.

Figure 3.Flowchart showing the implemented natural frequency predictions combinedwith measures for
uncertainty on the predictions, for enhanced tracking, data normalization and decision-making in the

OMA-based SHM workflow.
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3. Smart tracking and decision-making: The natural frequency predicted by the ML model and the
uncertainty of the prediction are used to track the relevant structural modes identified in the
initialization. As the ML model is used to make an a priori expected value, which is then used for
tracking, we refer to the process as “smart tracking.” This results in a reliable mode tracking as
shown in Section 3.3.1. The averaged residual betweenMLmodel prediction and automated OMA
output for low uncertainty predictions is used as a normalized, damage-sensitive feature in the
control charts, as described in Section 3.3.2.

The following paragraphs give a detailed overview of the initialization, the necessary steps for ML
model preparation, and of all the steps involved in the SHM methodology.

3.1. Initial structural mode detection

To overcome the rigidity of reference-based tracking when dealing with the EOV of OWT natural
frequencies, an alternative model-based tracking methodology is introduced. However, as previously
mentioned, a chicken-or-the-egg problem emerges. For smart tracking, a trained ML model is required,
which in turn requires an appropriate training dataset, typically only available after tracking. In light of
these challenges, an initialization process, as illustrated in Figure 4, is formulated and implemented. This
workflow uses the density-based spatial clustering of applicationswith noise (DBSCAN) algorithm (Ester
et al., 1996) to cluster all modes, identified by the automated OMA, across multiple dimensions and show
the evolution ofmodal parameters over time for an initialization dataset. Next, leveraging system physical
knowledge and an interpreter’s expertise, the parameters of DBSCAN are fine-tuned in a human-in-the-
loop approach (Wu et al., 2022) to achieve optimal cluster formation, as detailed in Section 3.1.2.

Interference from extraneous modes may necessitate manual data selection within the DBSCAN
identified clusters. This step is critical to guarantee that the initial set of structural modes contains only
high-quality data based on engineering judgment, suitable for effective ML model training. Finally, the
resulting clusters are labeled as the initial structural modes, serving as training data forMLmodels and, in
turn, used for long-term mode tracking. This process of cleaning up the data and highlighting the
automatically identified clusters of interest replaces the traditional manual setting of reference-based
tracking. Note that this action serves a dual purpose as it provides the training dataset for the data
normalization.

The following paragraphs give a detailed overview of all steps involved in the generation process of the
initial structural modes.

3.1.1. Automated OMA
Modal parameters are essential for vibration-based SHM and are determined through the automated
OMA, a process that is executed on discrete segments of ACC data, specifically 10-minute intervals for

Figure 4. Flowchart illustrating the construction of the initial physical modes used for training the
normalization and tracking models, as shown in Figure 5.
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this study. Multiple algorithms exist for MPE, including frequency domain decomposition (FDD), least
squares complex frequency domain (LSCF), and covariance-driven stochastic subspace identification
(SSI-COV; Magalhães and Álvaro Cunha, 2011; Reynders, 2012). For this study, the methodology
developed by Devriendt et al. (2014), utilizing the LSCF algorithm forMPE, is implemented to identify
all modes from the vibrations in the initialization dataset (cf. Figure 4). As previously mentioned, all
clusters identified in the MPE are kept for delayed DBSCAN tracking, as detailed in the subsequent
section. This results in the natural frequency, damping ratio, and cluster size for every cluster of the
stabilization diagram of 10-minute vibration data. Mode shapes are not considered, as the method
applies to a single-sensor SHM setup. The calculated modal parameters form the basis for the next
section, consisting of clustering the structural modes and removing spurious modes and non-structural
effects.

3.1.2. DBSCAN-based unsupervised clustering
The initialization process builds an initial structural modes dataset through unsupervised clustering. As
previously mentioned, this is achieved through the DBSCAN algorithm (Ester et al., 1996) on an
initialization dataset. The relevant clusters are then used to train ML models for the smart tracking
methodology detailed in Section 3.3.1. The novel insight in this method is to add the time dimension to
allow for slow variations of the natural frequency over time. This is done by adding the time difference
between the different identifiedmodal parameters as an additional feature to theDBSCAN algorithm. The
clustering can thus be done on the frequency and time difference only, as done in a previous SHM research
on a high-voltage transition tower (Bel-Hadj et al., 2024). However, due to EOVof natural frequencies in
OWTs, this process required corrections to the cluster through physical knowledge of the structure and the
supervision of an interpreter, as detailed in Section 3.1.3.

Before clustering, the search space must be transformed to allow for the correct clustering of the
structural modes. This is done by scaling every dimension to transform the hyperspace on which the
DBSCAN algorithm clusters the data. In this case, the input dimensions are the frequency (f ), cluster size
from the automated OMA (size), and time (t). Although new scaling parameters (γ • to scale the parameter
• ) are introduced, this enables the DBSCAN algorithm to accurately cluster the modes. Together with the
inherent DBSCAN parameters: ϵ (maximum distance between two points for them to be considered
neighbors) and minPts (minimum number of neighbors a point needs to have to be considered a core
point), these new parameters should be optimized through the corrections process detailed below.
However, this optimization only needs to be run once for a population of similar structures, such as
OWTs in an offshore wind farm, as the same parameters can be used. This methodology is implemented in
a separate Python package (Weil, 2024c). The previous work on transmission towers contains an in-depth
description of this approach (Bel-Hadj et al., 2024).

3.1.3. Cluster corrections
Following the initial mode clustering, corrections are made to ensure accurate mode labeling under the
supervision of an interpreter, in a human-in-the-loop fashion, to ensure engineering judgment is added to
the selection process. This involves both an optimization of the DBSCAN parameters and manual
correction for remaining confounded modes. By training ML models on this curated data and using
OOD detection through UQ (cf. Section 3.2.4), the engineering judgment is automatically transferred to
new data during the tracking process, as detailed in Section 3.3.1. This approach facilitates the optimiza-
tion of the clustering algorithm’s parameters and ensures that the resulting clusters exclude obfuscated
modes.

Interpreter and physical knowledge: Iterative adjustments are made to both the added parameters for
the hyperspace scaling (γ • ) and the inherent DBSCAN parameters (ϵ and minPts). Alternatively, the
optimization of the latter can be automated through the use of hierarchical DBSCAN (McInnes andHealy,
2017), but this is outside the scope of the current research. The obtained optimal parameters are given for
the FA and SS direction in Table 1.Using these parameters for the clustering yields a set of initial structural

e7-8 Maximillian Weil et al.

Downloaded from https://www.cambridge.org/core. 28 Jul 2025 at 08:58:44, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


mode clusters. However, these can still have non-structural components. Therefore a manual data
selection based on engineering judgment is performed on these clusters.

Manual data selection: There are instances wheremodes resulting from the automatedOMA cannot be
trusted, for example, due to nonstructural mode interference. In these scenarios, only the data representing
the mode’s expected behavior, as informed by prior knowledge of the engineer, can be manually isolated
from the clusters. Such a process can readily be implanted with a graphical user interface, reducing the
process to the engineer encircling the desirable results on the initialization dataset only. An implemen-
tation in Python is made available at Weil (2024a). When sufficient data are gathered to represent all
relevant EOV, the data are used to train theMLmodels for smart tracking, leveraging OOD and UQ of the
ML predictions to automatically remove modes with nonstructural interference on new arriving data
(cf. Section 3.3.1).

Reproducibility: While the human-in-the-loop approach ensures that expert engineering judgment is
incorporated into the mode selection process, it introduces a challenge to reproducibility. Although the
DBSCAN parameters can easily be transferred, different interpreters may make slightly different
decisions when selecting data, potentially leading to variations in the final outcome. Therefore, different
solutions are proposed to enhance reproducibility:

• Detailed guidelines and criteria for decision-making based on the monitored structure should be
established and documented, ensuring consistency across different users. In future research, this
could be incorporated within the graphical user interface for manual data selection. In the case of the
current research, different rules are outlined below:
– The clusters resulting from the DBSCAN implementation are used as an initial set fromwhich to

select the structural modes.
– Only modes identified with a damping ratio lower than 5% are considered (Van Der Tempel,

2006). This threshold can be set higher for FAmodes in the rated operational state (Devriendt and
Weijtjens, 2017).

– Only modes identified with a cluster size higher than 5 are considered (Devriendt et al., 2014).
– Modes from the rotor dynamics are known to have a one-on-one relationship with the RPM

(cf. Equation (1)) and are removed through the Campbell diagram (Jahani et al., 2022).
– It is known that the natural frequencies of structural modes do not jump abruptly over large

frequency ranges. Therefore, these jumps are probably caused by perturbations in the OMA
result and are not considered (Weijtjens et al., 2016).

– The selection performed on the SS2 mode is made only when the mode exhibits the expected
dependency to the tidal levels for monopile-supported OWTs (Weijtjens et al., 2016).

• Maintaining a detailed log of the human-in-the-loop adjustments, including the specific parameters
and data selections made, can help in tracking decisions and understanding their impact on the final
results.
– In the current research, only corrections based on damping ratio and cluster size are made on the

clusters identified for the FA1 and SS1 mode, while only five time periods exhibiting the
expected dependency to the tidal levels and have no perturbation from extraneous modes are

Table 1. DBSCAN parameters for unsupervised clustering in FA and SS directions

Parameter SS direction FA direction

ϵ 4 5
minPts 100 100
γf 200 200
γsize 2 2
γt

1
5000

1
5000
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used as the final SS2 cluster. The data selected for SS2 and the operational states represented in
the dataset are later described in the charts of Figure 8.

3.2. ML model for natural frequency prediction under changing conditions

This section focuses on the development and implementation of ML models to predict the natural
frequencies of the different structural modes under varying operational and environmental conditions, as
shown in Equation (2). TheMLmodels are then used to split the natural frequencies into a prediction based
on environmental and operational data and a residual, later used as damage-sensitive feature for SHM.

f m tð Þ¼ f̂ m x tð Þð Þþ ϵm tð Þ ∀m: (2)

In this equation, f m tð Þ represents the natural frequency for modem in a time interval t, f̂ m x tð Þð Þ denotes
the ML model’s prediction based on input features x tð Þ, and ϵm tð Þ is the residual. The initial structural
modes dataset, established in Section 3.1, is split into a train (80%) and test (20%) dataset through the
train–test–split method (Géron, 2019) and serves as the foundation for training the variousML regression
models, as illustrated in Figure 5. The following paragraphs detail the processes involved in data
preprocessing and synchronization, as well as the training, evaluation, and selection of optimal ML
models, and finally, the implementation of the models for natural frequency prediction and UQ.

3.2.1. Data preprocessing and synchronization
In the ML workflow, the data preparation step always precedes the ML model development (Géron,
2019). In this case, the data preparation step involves preprocessing and synchronizing the data collected
from the different sources.

The preprocessing step is crucial in theMLworkflow to ensure the model interprets the data accurately
(Al-jabery et al., 2020). The preprocessing involves encoding circular data, including angles with a 360°
range, such as yaw and wind direction, as well as temporal data (e.g., time of day, month of the year). The
challenge with these data is that, for example, an angle of 350° is closer to 10° than to an angle of 300°. To
enable MLmodels to understand circular relationships, the sine and cosine transformations are applied to
encode the circular data (VanWyk, 2022). In the studied case, this includes the wind direction and the yaw
angle or orientation of the OWT nacelle.

Additionally, preprocessing involves data scaling or normalization, such as standardization or min–
max normalization, to prevent the magnitude of the data from skewing theML predictions. However, this
step is model-dependent; tree-based learners, for instance, do not require data scaling due to their inherent
handling of feature scales (Hehn et al., 2020). The data normalization used in this research is the min–max
normalization, performed on the selected data during the model comparison on the input of certain
models. The used minimum and maximum values are given in Appendix A.

Data synchronization is then undertaken to align input and target data across corresponding time-
stamps and interpolate data with different sampling frequencies, resulting in a consolidated dataset ready
for ML training and testing.

Figure 5. Flowchart illustrating the MLmodel construction and selection process for smart tracking and
EOV normalization.
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3.2.2. Feature selection
The next step in theMLworkflow is feature selection, determining themost relevant features to predict the
natural frequencies. As stated in Guyon and Elisseeff (2003), the objective of the feature selection process
is three-fold: to improve the prediction performance of themodel, tomake themodel faster andmore cost-
effective, and to better understand the parameters influencing the natural frequencies.

Feature selection is performed using recursive feature elimination with cross-validation (RFECV) on
the training data for automatic tuning of the number of features selected. RFECV consists of fitting a
model and recursively removing the weakest feature, according to the model’s feature importance, until a
specified amount of features are obtained (Guyon et al., 2002; Sanz et al., 2018). The addition of cross-
validation (CV) identifies the best number of features within a k-fold CV loop.

In this case, the XGBoost regressionmodel (Chen andGuestrin, 2016) is selected for its execution speed,
good predictive performance, and its built-in feature importance metric. The RFECV is implemented using
the scikit-learn Python package (Pedregosa et al., 2011), with XGBRegressor as the estimator from the
XGBoost librarywith standard hyperparameters. TheRFECVis configuredwith the following parameters:
step¼ 1, cv¼ 5, stepscoring¼ }neg_mean_squared_error}, min_features_to_select¼ 1. The results of
applying this RFECV to the selected SS2 data are summarized in Table 2, where the last column
indicates whether each feature is selected.

Table 2 provides an overview of the feature selection from METEO and SCADA data, used as ML
model inputs for predicting natural frequencies of OWTs (i.e., the targets). Only input variables with over

Table 2. Overview of the available data with the source of the data, the measurement units, and
availability

Source Variable Unit Availability (%) Selected

Input METEO Wave height mm 100 Yes
Tide-TAW m 50! 99a Yes
Sea water temperature °C 94 Yes
Air pressure Pa 99 Yes
10% highest waves mm 100 Yes
Average wave period s 100 No
Air temperature °C 100 No
Height waves (period >10 s) mm 100 No
Average wind direction ° 100 No
Max 3 s wind gust (10 m) mm 99 No
Wind speed (10 m) m/s 99 No
Relative humidity % 78 No
1% wave height mm 13 No

SCADA Pitch ° 97 Yes
Power MW 97 Yes
Wind speed m/s 97 Yes
Yaw ° 97 Yes
Wind direction ° 97 Yes
RPM min�1 97 Yes

Target IoTACC SS1 Hz 87 —

SS2 (parked) Hz 4b —

SS2 (selected) Hz 7.4 —

FA1 Hz 41 —

Note: The last column states if the features are selected by the RFECV.
aPulled from a second source to increase availability.
bEven though 4% seems enough to detect slow evolving damages in SHM, this is concentrated in two regions of data for the entire monitoring period,
sometimes leading to months without accurate data to rely on.
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90% availability are considered to ensure adequate coverage of the ML model. However, the tidal-level
data were initially available only 50% of the time, this is problematic as tidal level is known to influence
higher order structural modes of OWTs (Weijtjens et al., 2016). By supplementing this with data from
another nearby weather station, availability was increased to 99%.

The data selected by RFECV include parameters that are known to affect the natural frequencies of
OWTs. First, all SCADA features are selected. Parameters such as pitch, power, RPM, and wind speed
describe the turbine’s operational condition, which directly influences its dynamics (Jahani et al., 2022).
Yaw and wind direction can impact dynamics, particularly in cases of misalignment (Song et al., 2023).
Not all features from the weather station are selected; however, the tidal level, wave height, and 10%
highest waves are included due to their significant influence onmodal frequencies. Sea water temperature
affects modal parameters, contributing to seasonal variability, while air pressure influences the interaction
between wind and structure, affecting dynamics (Weijtjens et al., 2016). Among the parameters not
selected, many are correlated with the selected features. However, average wave period, identified as
relevant by Xiang et al. (2024), is not included in the selected features in this case.

The SS1 and FA1modes show high (87%) andmoderate (41%) availability, but the SS2mode has high
interference from nonstructural modes and could only be considered when the OWT is parked. But this
translates into low availability (4%) concentrated in two regions of the year, leading to long periods
without reliable data. Therefore, a manual data selection, as detailed in Section 3.1.3, is implemented to
train a model on structural modal data only for predicting the SS2 frequency. The ML model can then be
used for smart tracking, normalization, and anomaly detection.

3.2.3. Model optimization, comparison, and selection
Once the features are selected, a model comparison is performed to guide the MLmodel selection. Model
performance is evaluated on the test data using two key metrics: the mean squared error (MSE) and the
coefficient of determination (R2), as defined in Equations (3) and (4), respectively. These metrics provide
insights into the accuracy and goodness of fit for each model.

MSEm ¼ 1
n

Xn
t¼1

f m tð Þ� f̂ m x tð Þð Þ2 ∀m,
�

(3)

R2
m ¼ 1�

Pn
t¼1

f m tð Þ� f̂ m x tð Þð Þ2
�

Pn
t¼1

f m tð Þ� f m
� �2 ∀m: (4)

In these equations, n denotes the number of samples considered, f m tð Þ is the target value, the natural
frequency of mode m in this case, for timestamp t, while f̂ m x tð Þð Þ represents the ML model prediction
based on input x tð Þ, and f m the average value of f m tð Þ over the n considered samples. For this study, eight
MLmodels, categorized into three distinct types, are considered to provide a comprehensive comparison
of their predictive capabilities.

LRmodels are first considered, as these were previously used byMagalhães and Álvaro Cunha (2011)
and Peeters and De Roeck (2001a). Both a traditional and multiple linear regression (MLR) are
implemented. In the case of MLR, one LR is trained for each operational condition of the OWT (e.g.,
parked, idling, etc.) based on SCADA data (Weijtjens et al., 2016). TheMLR extension reducesMSE and
increases R2 for all three modes considered, when compared to LR, as shown in Table 3. However, it
requires manually splitting the data according to operational conditions, which other ML models do not
require. Despite their limitations, LRs are useful as benchmarks for more advanced ML models due to
their simplicity and interpretability.

Next, tree-based learners are implemented, including random forest (RF), which uses the Bagging
principle (Altman and Krzywinski, 2017), and gradient boosting methods (Friedman, 2001) such as
eXtreme gradient boosting (XGB; Chen and Guestrin, 2016) and categorical boosting (CB; Prokhorenkova
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et al., 2018). These models capture complex, nonlinear relationships in the data, with XGB focusing on
regularization, efficient tree-building, and pruning to enhance performance,whileCBemphasizes efficiency
and accuracy through ordered boosting and symmetric trees.

Finally, artificial neural networks (ANNs) with one, two, and three hidden layers are explored for
predicting natural frequencies. Data and target normalization are applied to improve training efficiency
and model performance (Arnekvist et al., 2020).

Hyperparameter optimization is crucial for enhancing the performance of tree-based learners and
ANNs. Bayesian hyperParameter optimization (BHPO) as implemented in the Hyperopt Python package
(Bergstra et al., 2015) is used to systematically fine-tune models, aiming to achieve the lowest possible
MSE on the selected data. A full overview of optimized parameters is provided in Appendix B.

The optimizedmodels’ performances, based on test data predictions and targets, are detailed in Table 3.
Table 3 presents a comparative overview of the different ML models applied to predict monopile-

supported OWT natural frequencies SS1, SS2, and FA1. First a reference value of the MSE and R2 are
given, by calculating them for a hypothetical model that would give the mean natural frequency of the
training data as prediction, replacing f̂ m x tð Þð Þ by f mtr

in Equations (3) and (4). Subsequently, MSE and R2

values are calculated for each model. In general, the R2 values for the SS2 mode are much higher than for
both FA1 and SS1 regardless of the model. This is because of the high EOVof SS2, mainly driven by the
tidal level and wave height, which is well caught by the models.

The relatively low R2 values observed for FA1 and SS1 indicate that the input variables used in theML
models cannot explain much of the variability in these modes. Thus, the low R2 values for FA1 and SS1
suggest inherently low variability in these modes rather than poor model performance. It is important to
note that R2 serves as an effective metric to compare models predicting the same variable but is less
suitable to compare models predicting different variables due to inherent differences in the variability of
the data to predict.

This higher variability captured by the model when compared to simply predicting themean frequency
is also observed by comparing the MSE of the models to the reference value. SS2 shows a greater
reduction in MSE compared to FA1 and SS1. SS1 shows the lowest MSE value, but by comparing to the
reference value, this can be interpreted as an inherent low variability in the natural frequency of this mode.

When comparing the models, the LR model shows in general a comparatively higher MSE and lower
R2. Applying MLR greatly improves model performance, especially for SS1, where R2 almost doubles,
and MLR even outperforms the other models in terms of MSE for the FA1 frequency predictions.
However, MLR requires the definition of operational cases. Tree-based models and ANNs generally
outperform the linear models without prior knowledge of the operational cases, with tree-based models

Table 3. Results obtained for the model comparison for OWT natural frequency predictions on the test
data after BHPO. The metric of the best performing model is highlighted in the table as bold-faced.

SS1 SS2 FA1

Type Model MSE R2 MSE R2 MSE R2

Ref. values:f mtr
9.15e–06 0.00 2.01e–04 0.00 6.05e–05 0.00

Lin. LR 8.62e–06 0.06 4.72e–05 0.77 5.16e–05 0.15
MLR 8.00e–06 0.11 4.44e–05 0.78 4.94e–05 0.16

Tree-based RF 7.88e–06 0.14 3.72e–05 0.81 4.99e–05 0.17
XGB 7.96e–06 0.13 3.85e–05 0.81 5.03e–05 0.17
CB 7.88e–06 0.14 3.73e–05 0.81 5.01e–05 0.17

ANN 1 hidden 8.12e–06 0.11 3.90e–05 0.80 5.05e–05 0.16
2 hidden 8.03e–06 0.12 3.95e–05 0.80 5.06e–05 0.16
3 hidden 7.98e–06 0.13 3.95e–05 0.80 5.05e–05 0.16
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slightly outperforming ANNs. This aligns with expectations set by Grinsztajn et al. (2022) regarding the
efficacy of tree-based algorithms for tabular data. In general, RF and CB perform best on all three natural
frequencies. In the end, CB is selected because the UQ methodology, as described in Section 3.2.4, is
already implemented in the Catboost Python package (Dorogush et al., 2018).

3.2.4. UQ
Once the models are trained, a prediction of the natural frequencies can be made and used to remove the
identified EOV, isolating the residual ϵm tð Þ as given in Equation (2). Assuming an additive error model the
residual ϵm tð Þ can be further decomposed to isolate noise and modeling error components, as shown in
Equation (5).

ϵm tð Þ¼ νm tð Þþ ξm tð Þþδm tð Þ ∀m (5)

The first term νm tð Þ denotes the noise present in the natural frequency data. The second term ξm tð Þ
represents the MLmodeling error. This consists of EOV in the natural frequency that the model could not
adequately predict. Finally, the third term δm tð Þ is the damage-sensitive part of the residual, independent
of EOV, which remains zero as long as the structure’s state is unchanged and gradually increases with
anomaly. However, it is not straightforward to dissociate the term δm tð Þ from νm tð Þ and ξm tð Þ.

The noise component νm tð Þ is assumed to follow a zero-mean Gaussian distribution, allowing for its
reduction through signal averaging (Hassan and Anwar, 2010). In prior work (Weil et al., 2023), the
frequentist confidence interval (CI; Dekking et al., 2006) was used to determine the number of residuals to
average to reduce the influence of the process noise below a certain threshold. However, as stated in
Hespanhol et al. (2019), the Bayesian credible intervals (BCI) are a more appropriate measure for this
purpose. Through BCIs, it is found that by averaging residuals ϵm tð Þ over 1-week timestamps, the noise in
ϵm tð Þ is reduced to below 1%, increasing the probability of detecting genuine shifts, despite the inherent
noise in the natural frequency.However, ξm tð Þ and δm tð Þ could still varywithin this timewindow.To address
this, UQ methods for OOD detection are applied to ensure that the inputs to the MLmodel are drawn from
the training distribution. By focusing only on reliable predictions, the contribution of ξm tð Þ to the residual is
minimized, as later shown in Section 3.3.2. Consequently, if a shift in the averaged residual is detected
during periods of low uncertainty, it can be attributed to δm tð Þ, indicating the detection of an anomaly.

This strategy requires incorporating UQ into the predictions. However, deterministic point predictors,
like those discussed in Section 3.2.3, while straightforward to train and implement with strong predictive
capabilities, do not provide inherent UQ. Fortunately, recent advancements in UQ methodologies now
enable uncertainty estimation for both tree-based models (Malinin et al., 2020; Mondal, 2021) and ANNs
(Gawlikowski et al., 2021; Pearce et al., 2020). These techniques allow for more robust predictions by
quantifying uncertainty, making them suitable for improving the reliability of the proposed SHM
framework.

Uncertainty can be divided into either aleatoric, relating to variability which is due to inherently
random effects (Hüllermeier and Waegeman, 2021), or epistemic, stemming from incomplete model
knowledge (Bastani and Alur, 2024). Aleatoric or data uncertainty arises from physical phenomena that
are random by nature. Therefore, the aleatoric uncertainty cannot be easily quantified and eliminated
during modeling calibration (Wang et al., 2023). On the other hand, epistemic, model, or knowledge
uncertainty arises from inadequate knowledge of the model to explain the data from inputs from regions
either far from the training data or sparsely covered by it. This uncertainty is reducible by providing more
knowledge about the problem to theMLmodel (e.g., providing more and new training data or optimizing
the model’s hyperparameters). Various empirical UQ techniques exist, as detailed in Poggi et al. (2020)
and Mondal (2021), offering methods to approximate the epistemic uncertainty such as Bayesian neural
networks (BNN) and Bayesian ensembles. Because BNNs entail significantly higher computational costs
compared to point-wise predictors (Bai and Chandra, 2023), it is decided to explore Bayesian ensembles.

Bayesian ensembles consist of an ensemble or collection of nBE models with different configurations
that all make predictions on the same data. The final prediction is an average of the predictions of all
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models, and epistemic uncertainty is quantified bymeasuring the variance or diversity of these predictions
(Chipman et al., 2006). As it has been shown in Section 3.2.3 that tree-based learners outperform ANNs
for the analyzed tabular data, this research focuses on Bayesian ensembles constructed from tree-based
models for UQ (Chipman et al., 2006; Duan et al., 2020). The construction of nBE different models of the
Bayesian ensemble is detailed byMalinin et al. (2020) for gradient boosted decision trees (GBDTs), using
stochastic gradient Langevin dynamics. However, the creation, storage, and prediction of these Bayesian
ensembles can be computation- and memory-intensive, as it requires training and storing of the nBE
models.

Therefore, Malinin et al. (2020) offer a practical solution to the computational demands of these
Bayesian ensembles through virtual ensembles. By recognizing that GBDTs are inherently an ensemble of
individual decision trees, a virtual ensemble can be constructed from a single GBDT model. This virtual
ensemble comprises nBE truncated submodels, each representing a stage in the GBDT’s creation process.
The final proposed strategy uses the virtual ensemble as implemented in the Catboost Python package
(Prokhorenkova, 2020) to quantify the knowledge uncertainty on the frequency predictions from a CB
regression model.

3.3. Integration of ML models and UQ in OMA-based SHM

This paragraph details the implementation of the ML models for natural frequency predictions combined
with associated UQ within the SHM methodology as previously illustrated in Figure 3.

3.3.1. Smart tracking
Traditional mode tracking from OMA often relies on reference thresholds. However, as demonstrated in
Xiang et al. (2024),model-based strategies employingRF andXGBmodels offer an alternative. Instead of
setting static upper and lower thresholds on the natural frequency for tracking, only results f i tð Þ that are
sufficiently close to the ML model predictions f̂ x tð Þð Þm are tracked as mode m. The proposed method-
ology integrates prediction uncertainties obtained through UQ to assess the validity of the model itself
given the prevailing EOV. This translates the tracking strategy into the rules given in Equation (6).

Um x tð Þð Þ≤ τum ∧ ∣ f̂ m x tð Þð Þ� f i tð Þ∣ ≤ rf m ) f i tð Þ∈m: (6)

In this equation, Um x tð Þð Þ denotes the knowledge uncertainty obtained from the virtual ensemble for
input variables x tð Þ. The uncertainty threshold τum is chosen as the 90th percentile of uncertainty from the
training data Umtr . The tracking range is set as a 3σ band around the error predictions from the training

data, or rf m ¼ 3σ f̂ m� f m
� �

.
The concept is illustrated in Figure 6 in comparison to a classic reference-based tracking of amonopile-

supported OWT’s SS2 mode. The traditional reference-based tracking bounds (blue) make no distinction
in data quality and require a wide tracking range to accommodate the EOV.Meanwhile, in smart tracking,
only results close to the ML model predictions are used, and only when uncertainty is lower than the
uncertainty threshold τum (orange). The resulting smart trackedmodes (green) are then stored as values for
the structural mode for further analysis.

Figure 6 also illustrates the advantageous use of UQ in the smart tracking principle. The SS2 mode is
expected to exhibit cyclic variations corresponding to tidal levels. However, discrepancies in this cyclic
pattern, indicative of rotor harmonic interference, are flagged by a high uncertainty of the virtual
ensemble. Meanwhile, (a simple) reference-based tracking would have still considered these results,
potentially obfuscating changes in the natural frequency.

3.3.2. Decision-making
The final step in the vibration-based SHM framework is the decision-making process. In the case of
natural frequency monitoring, frequency shifts after normalization are used to determine the structural
health of the structure. In the proposed methodology, this is obtained by calculating the residual ϵm tð Þ and
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separating parameter δm tð Þ as defined in Equation (5). A substantial deviation in δm tð Þ for any monitored
frequency f m tð Þ should trigger a structural health alert.

However, as stated in Section 3.2.4, the parameter δm tð Þ cannot be directly measured. Therefore, an
average of the residual ϵm tð Þ is considered to remove νm tð Þ, and only low uncertainty periods are
considered, to ensure a low ξm tð Þ. This latter relationship is highlighted by the sparsification error
curves (SECs) as proposed by Poggi et al. (2020). SECs are drawn by sequentially removing the
prediction for timestamp t with the highest knowledge uncertainty max Um tð Þð Þ from the predictions
and then recalculating the MSE (cf. Equation (3)) on the new dataset with one uncertain sample less.
The SECs depicted in Figure 7 for modes SS1, SS2, and FA1, illustrate a general MSE reduction with
the exclusion of high-uncertainty samples, thereby refining the predictive accuracy and reducing
modeling error ξm tð Þ.

Finally, either a distribution of the residuals over a time period or a control chart of the averaged
residuals is drawn to monitor the changes in the residual for low-uncertainty predictions. Both the
distribution and control charts are shown in the results of Section 4. The frequency shift that should trigger
an alarm depends on the use case. For instance, Prendergast et al. (2015) associated a 5% shift in the SS1
mode with significant scour. Alternatively, it is possible to draw the limits on the frequency changes

Figure 6. Conceptual illustration contrasting smart tracking (based on ML and UQ) with traditional
reference-based tracking for an OWT’s SS2 mode.

Figure 7. Sparsification error curves for the physical modes of an OWT, obtained by sequentially
removing the most uncertain predictions and showing the effect on the model performance throughMSE.
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through physics-based models as demonstrated in the study by Weil et al. (2023) for the SS1 mode of a
monopile-supported OWT. However, this is currently not incorporated into this research but will be
explored in a subsequent study.

4. Results

This section presents the results obtained from applying the novel vibration-based SHM framework as
shown in the flowchart of Figure 3 and detailed in Section 3 on both the 15-month OWT dataset described
in Section 2 and a synthetic dataset. This evaluation focuses on the ML models’ predictive performance
and the efficacy of the UQ in enhancing the SHM process.

4.1. SS2 smart tracking results

The smart trackingmethodology, as detailed in Section 3.3.1, is evaluated by applying it to the SS2mode,
where rotor harmonic interference, particularly at rated RPM, present notable tracking challenges. By
applying the smart trackingmethodology to the data, it is possible to removemost of theOMAoutput with
rotor harmonic interference, as evidenced by the changes in the data distribution depicted in Figure 8.
Figure 8a and 8b, respectively, provides a comprehensive breakdown of the absolute and relative
quantities of data throughout the operational states for the total, training and SS2 tracked datasets.
Figure 8c gives the legend for the OWToperational states. A detailed description of the operational states
is given in Appendix C.

The training data, carefully selected to include only operational cases with anticipated SS2 modal
behavior, intentionally omits data from the rated power (dark red) and rated RPM (brown) conditions,
known for their harmonic interference. As a result, the smart tracking process significantly diminishes the
prevalence of these states in the dataset, from a substantial 20%down to amere 3%. This reduction affirms
that the remaining 97%of the SS2modal data used for decision-making is predominantly free of harmonic
distortion. Moreover, the smart-tracked dataset constitutes a significant 34% of the entire dataset, offering
a more comprehensive temporal representation than the limited 4% derived solely from parked and idling
states (cf. Table 2). Additionally, the considered OWTwas parked or idling for only 2 weeks during the
entire 15-month period, while smart tracking 34% of data is more evenly spread over the monitoring
period.

Figure 8.Data description plots showing the proportion of the operational states (8c) for all the data, the
training data and the smart tracked data for SS2 both in absolute (8a) and relative (8b) terms.
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4.2. Control charts for decision-making

The control charts shown in Figure 9 depict the reference-based trackedmodes in blue and show the result
of averaging the data over 1 week in purple. After applying the smart tracking methodology, the orange
points are tracked. The residual is then calculated for thesemodes and averaged over aweek, as theweekly
average, normalized, shown in green. Additionally, themean training frequency is added to the residual to
bring it to the level of the measured frequencies.

For all three considered modes, the green line, representing the normalized and averaged natural
frequencies for low uncertainty predictions, remains stable around the mean, as expected from healthy
data when the variations in natural frequencies f m tð Þ are driven by modeled EOV f̂ m x tð Þð Þ and noise.

For the reference-based tracking, shown in purple, the process noise is removed through the weekly
averaging. However, the EOV remains, showing variations in the blue line that are not attributed to
changes in the structure. This highlights the importance of normalizing the natural frequency for EOV.

The smart tracking discards most of the modes that are at risk of being influenced by rotor harmonics.
An example of rotor harmonic interference is highlighted as a dashed box in Figure 9.When toomuch data
are not tracked, the normalized weekly average cannot accurately be calculated, this is visible as gaps over
time appear in the smart tracked results.

Currently, a data-driven limit can be set on the averaging and normalized natural frequency. In this
case, a 1% shift is used as an anomaly threshold in Figure 9 to trigger anomaly detection.

Figure 9. Control charts for monitoring the OWT natural frequencies after weekly data averaging
(purple), using the reference-based tracking (blue) compared to theML- andUQ-based tracking (orange)

and normalization (green).
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4.3. Validation of damage detection

Although the control charts show that it is possible tomonitor the shifts in the different natural frequencies
of the OWT, no anomaly has been reported on the OWT, and thus no significant shift in the natural
frequency during the monitoring period. Therefore, a synthetic dataset, based on the real data, with
different introduced natural frequency shifts is constructed to quantify the added value of the method over
the reference-based methodology. The dataset is created to mimic the interactions between the rotor
harmonic and the SS2 mode as outlined in Section 2.1.

To construct these data, a simple LR is trained on the selected SS2 data subset, when no harmonic
interference occurs, to learn simple relationships between the different environmental and operational
conditions and the SS2 mode. The LR is then used to generate cyclical changing data with some overlaid
Gaussian noise, as expected from the OMA process for the SS2 mode. This is shown as the orange line in
Figure 10. This represents the part of the physical mode that would be obtained by the OMA if no rotor
harmonic interference occurred. To simulate the rotor harmonic interference, the actual RPM data for the
full monitoring period are used to generate data representing the harmonic with added noise (representing
both the noise in the data and the RPMprocess). This is generated as hP ¼P∗RPM

60 þ νwithP¼ 6 for the 6P
harmonic. The harmonic data and structural mode are overlaid and when both occur with a difference
smaller than 0.2 Hz, the structural mode is removed as it is considered to be “clouded” by the harmonic.
This is the final synthetic OMA output and is illustrated in Figure 10 for a period with and without
harmonic interaction.

Figure 10 illustrates the harmonic interference issue in the synthetic data. During the vast majority of
time, the SS2mode is obfuscated by nearby harmonics, rendering it nearly impossible to reliably track the
mode. Only when the rotor speed drops, highlighted as green areas in the plot, the SS2 mode reappears in
the automated OMA. From an SHM perspective, only these periods highlighted in green contribute to a
reliable assessment.

Once the dataset is created, the last month of data is repeated five times with an increasing shift in the
physical part of the SS2 frequency, as given by the LR. These shifts start at�0:2% and range up to�5%.
The repeated datasets of 1 month with increasing shifts form the anomalous data.

Three different methods are compared for anomaly detection. The first method uses reference-based
tracking and simply measures the residual as the deviation of the natural frequency from the mean (taken
from the selected SS2 data) εSS2 tð Þ¼ f SS2 tð Þ�μSS2. This method does not normalize the natural
frequency and simply serves as a benchmark for the anomaly detection methodology. The second method
uses a point-wise ML predictor, CatBoostRegressor, in this case, (Dorogush et al., 2018), to get a
prediction of the SS2 mode every 10 minutes. If an OMA mode is detected with frequency inside the

Figure 10. Creation process of the synthetic dataset, with the synthetic SS2 mode created through an LR
(orange) and the synthetic OMA output generated by overlaying the 6P harmonic (black), showing

periods with and without (green) interference.
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3σ band, it is tracked and used for anomaly detection, regardless of theMLmodel inputs. The residuals of
the tracked modes and predictions are then taken as a measure of anomaly. Finally, the smart tracking
methodology, as introduced in Section 3.3.1 combining ML prediction and UQ is used to remove OOD
predictions from the tracking. Again, the residual is taken as a measure of anomaly but only for the
predictions with low uncertainty.

For all three methodologies, the residual distribution for the repeated month of data with synthetic
anomalies, as shown in Figure 11, is used as a metric to judge the anomaly detection capabilities of the
method. Already from the healthy data, it is clear that introducing the ML model creates a narrower
distribution around 0 Hz, showing a higher confidence in the “normality” of the data. The method
introducing the uncertainty shows a slightly narrower peak as it removes part of the noise introduced by
the harmonic interaction. When introducing the anomaly, it is clear that both ML- and uncertainty-
methods follow the shift in the data, while the reference-based method only shows a shift with a 5%
anomaly. Furthermore, the uncertainty-based method consistently shows a higher peak around the
anomaly than the ML-based method alone, highlighting the improvement in the anomaly detection
capabilities.

5. Future work

The proposed method lays the groundwork to improve and automate steps in the existing vibration-based
SHM approach. However, future work as identified in this paragraph is required to further advance the
method.

5.1. Tracking the whirling mode: OOD detection limitations

A final analysis to better understand the OOD detection based on the UQ is made on the OWTwhirling
mode, a flap- and edgewise mode of the rotor blades (Hansen, 2007). This mode is chosen because this
mode has a rotor harmonic crossing for a specific RPM range ([7, 7.5] RPM) within an operational state,
namely “rpm<MAX” as defined in Figure 8c. As a test, the whirlingmode, visible at RPM> 6, is selected
on a 6-month data subset, omitting the RPM range of rotor harmonic interaction, to train theMLmodel of
the proposed SHM strategy.

Figure 11. Residuals of three methods on a synthetic dataset with an increasing introduced anomaly on
the physical mode with harmonic interaction.
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Following the ML model training, the whirling mode is tracked using the methodology described in
Section 3.3.1. In this first case, the whirling mode was accurately tracked, but the [7, 7.5] RPM was
included in the smart tracked mode. This highlights that this range was not considered as OOD from the
training data by the UQ as it can be interpolated, and the ML model yields good predictions for this
operational state.

However, when the selected training data was limited to high RPMdata only (RPM>8.5), the whirling
mode was tracked for high RPM only. This example illustrates the limitations of the method, which only
excludes OOD data when it cannot accurately be interpolated by the model from the training data. This
could not be solved by tweaking the ML model hyperparameters. However, further investigation using
other UQmethods (ANN-based or the full Bayesian ensemble applied to RF or XGB) could be explored.

5.2. Physics-informed decision criteria

By integrating a physics-based model to interpret the shifts in the natural frequency with respect to
specific damaging scenarios, it is possible to elevate the SHM methodology from damage detection to
damage quantification. This was previously done inWeil et al. (2023) for quantification of scouring depth
based on SS1 frequency shift. By integrating this workflow on all the tracked modes, more different
scenarios can be considered with a higher precision.

6. Conclusion

This study has introduced a novel vibration-based SHM methodology, integrating ML and UQ to
automate and refine natural frequency tracking and anomaly detection, especially for OWTs. The
methodology used a single ML model, trained on data from healthy operational states, to perform both
mode tracking and normalization of EOV. Additionally, the application of UQ to the ML predictions
enabled the distinction of OOD cases, which is crucial for addressing the interference of rotor
harmonics.

A robust SHM framework was established, starting with the creation of a representative dataset for
MLmodel training, that encompasses all environmental and operational conditions when the automated
OMA outputs structural modes with no interference. Feature selection was performed using operational
and METEO data. From a comparison of different ML models, tree-based learners emerged as the
optimal choice, with Catboost being selected for its built-in UQ capabilities. The concept of a virtual
ensemble provided a tool for UQ, giving an estimate of knowledge uncertainty, for improved mode
tracking.

This study has shown the efficacy of the proposed smart tracking strategy based on ML models and
UQ, through the practical application of the proposed methodology on a monitored monopile-supported
OWT. It successfully distinguished between true structural modes and those affected by harmonic
interference for the SS2 mode. Reducing the timestamps with interference from a substantial 20% to a
mere 3%, while maintaining 34% of the original dataset. The study also explored the use of control charts
as a practical tool for decision-making. These charts showcased the comparative effectiveness of the
proposed smart tracking methodology against traditional reference-based tracking. The application on a
synthetic dataset, created to simulate shifts in natural frequency that can be hidden by rotor harmonic
interactions, further validated the methodology’s robustness in detecting anomalies when compared to
reference- and model-based implementations.

However, the study encountered challenges with OOD detection during the tracking of the whirling
mode in specific RPM ranges. This highlights that the current methodology cannot exclude regions that
can be interpolated from the training data by the ML model. This limitation highlights the potential for
further research, including the exploration of alternative UQ methods to refine the detection of OOD
samples.

In conclusion, the proposed methodology demonstrates significant improvements in SHM processes
for OWTs, particularly in natural frequency tracking and anomaly detection, especially when monitoring
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second-order modes. Future research will aim at combining this data-driven approach with physics-based
models, to interpret the detected frequency shifts, enhancing the vibration-based SHM capabilities from
damage detection to damage quantification.

Data availability statement. In this study, both public and proprietary data were used. The public data were downloaded from the
Meetnet Vlaamse Banken (MVBC) provided by Flemish government, Agency for Maritime Services and Coast (2023). The
proprietary data were provided by Parkwind under license. Due to these conditions, the proprietary data cannot be made publicly
available. Details of the data and the conditions under which they were used are documented internally and can be accessed with
permission from Parkwind. The developed Python packages for DBSCAN-based mode clustering is available at https://doi.org/
10.5281/zenodo.10523150 or https://github.com/OWI-Lab/oma_clustering and the developed Python package for manual data
selection is available at https://github.com/OWI-Lab/data_selector. Additionally, a Python package to directly accces the weather
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Appendix A. Data normalization through min–max normalization
Asmentioned in Section 3.2.1, this research incorporates min–max normalization for the selected data during themodel comparison
on the input of the artificial neural networks (ANNs). Themin–max normalization is defined by Equation (7), and the usedminimum
and maximum values are given in Table A1.

x0i tð Þ¼
xi tð Þ� xi,min

xi,max � xi,min
(7)

where:

• xi tð Þ is the original value at timestamp t.
• xi,min is the minimum value of the feature.
• xi,max is the maximum value of the feature.
• x0i tð Þ is the normalized value.

Table A1. Min and max values for min–max normalization

Parameter Min value Max value

10% highest waves 17.000 257.667
Wave height 13.000 201.667
Sea water temperature 6.300 20.800
Tide-TAW �2.000 501.000
Air pressure 993.300 1038.667
RPM 0.000 10.445
Pitch �3.945 90.840
Power �145.728 9524.993
sin(Yaw) �0.999 0.999
cos(Yaw) �1.000 1.000
sin(Wind direction) �0.999 1.000
cos(Wind direction) �1.000 1.000
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Appendix B. Hyperparameter optimization
The settings and the results of the hyperparameter optimization using theHyperopot Python package (Bergstra et al., 2015) are given
for all the considered machine learning models and natural frequencies in Table B1. For every algorithm optimization, a limit of
50 trials or 2 hours is applied.

Table B1. Settings and results of the hyperparameter optimization using the Hyperopot Python
package

Model Hyperparameter Hyperspace SS1 SS2 FA1

RF n estimators hp.uniformint(10, 1000) 956 472 339
max depth hp.uniformint(2, 16) 8 13 11
min samples split hp.uniformint(2, 10) 8 3 3
min samples leaf hp.uniformint(1, 5) 4 4 5

XGB n estimators hp.uniformint(10, 1000) 522 766 241
max depth hp.uniformint(2, 16) 5 4 3
learning rate hp.uniform(0.001,0.5) 0.019 0.037 0.052
colasample bytree hp.uniform(0.1, 1) 0.380 0.534 0.931

CB iterations hp.uniformint(10, 1000) 114 434 549
depth hp.uniformint(2, 16) 8 9 6
learning rate hp.uniformint(0.001, 0.5) 0.223 0.051 0.019
l2 leaf reg hp.uniform(1, 10) 9.269 8.748 4.607

ANN1 units layer1 hp.uniformint(32, 256) 235 150 247
batch normalization hp.choice([False, True]) False False False
learning rate hp.uniform(0.0001, 0.01) 0.003 0.002 0.005

ANN2 units layer1 hp.uniformint(32, 256) 149 85 139
units layer2 hp.uniformint(32, 256) 254 57 126
batch normalization hp.choice([False, True]) False False False
learning rate hp.uniform(0.0001, 0.01) 0.004 0.001 0.003

ANN3 units layer1 hp.uniform(32, 256) 191 156 126
units layer2 hp.uniform(32, 256) 163 117 140
units layer3 hp.uniform(32, 256) 33 43 76
batch normalization hp.choice([False, True]) False False False
learning rate hp.uniform(0.0001, 0.01) 0.001 0.001 0.003
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Appendix C. Operational states definitions
This appendix provides a detailed description of each operational state as shown in Figure 8. Table C1 lists the specific operational
states and includes a brief description for each, clarifying the operational state.

Cite this article:Weil M, Sastre Jurado C,WeijtjensWand Devriendt C (2025). Machine learning and uncertainty quantification to
track and monitor natural frequencies in vibration-based SHM applied to offshore wind turbines. Data-Centric Engineering, 6, e7.
doi:10.1017/dce.2024.60

Table C1. Description of the operational states of Figure 8

Operational state Description

Parked Turbine parked, pitched at >87, rotating at less than 0.4 rpm
Pitch:78 Turbine pitched at 78°
Idling Generic idling (no constraint on pitch)
Cutin Turbine speeding up to operational speeds
Cutin (pitch >20) Turbine speeding up to operational speeds with pitch >20
rpm < 6.6 Turbine rotating up to 6.6 rpm
rpm6.6 Turbine rotating at 6.6 rpm
Rated power Turbine at rated power
rpm < max Turbine speeding up to rated RPM
Rated RPM Turbine rotating at 10.4 rpm or 10.445 rpm
High wind Turbine reducing output power at extreme wind speeds
Curtailed (All) Catchall for data points that fall out of the normal behavior
Missing SCADA No SCADA data available
Other All data not labeled in the previous operational states
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