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QUOTIENTS AND INVERSE LIMITS OF SPACES
OF ORDERINGS

MURRAY A. MARSHALL

0. Introduction. A connection between the theory of quadratic forms
defined over a given field F, and the space X » of all orderings of F is developed
by A. Pfister in [12]. X » can be viewed as a set of characters acting on the group
FX/2F** where ZF** denotes the subgroup of FX consisting of sums of squares.
Namely, each ordering P € X can be identified with the character

op: PX/SPE (1, —1)

defined by

()_{ 1 ifacP
7P =) fad¢ P’

It follows from Pfister’s result that the Witt ring of / modulo its radical is
completely determined by the pair (X5, F¥/ZFx*).

This result of Pfister’s led the author to consider ‘abstract’ spaces of
orderings. These are pairs (X, G) where G is an Abelian group satisfying
x* = 1forallx € G, and X is a subset of the character group x(G) satisfying
some special properties. These properties are stated in detail in § 1. The idea
at the time was that by removing the ‘non-essentials’ one might more easily
determine the structure of such spaces, and hence of their corresponding Witt
Rings. At the same time, it was hoped that the axioms defining a space of
orderings would be rigid enough to eliminate all ‘uninteresting’ examples.

For finite spaces of orderings, this proved to be the case. In [11], finite spaces
of orderings are classified and it is proved, using results from |5] or |7] that
every finite space of orderings is equivalent to the space of orderings of a
Pythagorian field.

Before these results were obtained, two papers [1, 8] appeared in which a
theory parallel to Pfister’s was developed, but over semi-local rings. It follows
from results in these papers that the spaces of signatures of semi-local rings
provide additional examples of spaces of orderings in the sense considered here.

In studying spaces of orderings, the concept of subspace has proved essential.
In the case of the space of orderings of a field F, subspaces correspond bijec-
tively to the preorders of F. A preorder of F is just a subset 1" of F>< satisfying
T+ TCT, ITTCT, PP CT. The subspace of (Xz FX/ZF) corre-
sponding to the preorder T is the pair (X (1), F*/T"), where X #(7") denotes
the set of all orderings of F which are positive on 7". Especially important sub-
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spaces are obtained by considering valuations. To a real valuation » of F one
can associate the subspace (X,, F*¥/7',). Here X, denotes the set of all orderings
of F compatible with the valuation v as discussed in |3] or [13].

This paper represents a departure from previous papers on the subject in
that an attempt is made to study a space of orderings in terms of its quotient
spaces. A space of orderings (X', G) is said to be a quotient space ot the space
of orderings (X, G) if G’ is a subgroup of G, and X' is the set of restrictions of
elements of X to G’. As an example, if v is a real valuation of F, then the space
of orderings of the corresponding residue field is a quotient of the space
(X,, F*/T,) mentioned above. A second example is obtained by taking a
subfield K of F such that the degree [F : K] is finite and odd. Then X, is a
quotient space of X p. Generally speaking, quotients seem to bhe most easily
and naturally discussed in the abstract setting.

Here is an outline of the content of this paper.

In sections 1, 2, and 3 the category of spaces of orderings is introduced and
some basic notions (subspaces, direct sums, quotients, group extensions) are
developed. Most of this material is implicit in [11]. In § 4 the tnverse limit of an
inverse system of spaces of orderings is defined, and it is proved in Theorem 4.7
that every space of orderings is the inverse limit of countable spaces. A space
of orderings (X, G) is said to be countable if G is countable. In § 5 the following
question is considered.

Question 1. Which spaces of orderings are inverse limits of finite spaces?

Although this question is not answered, the class of such spaces is shown to
be quite large. The major results in this connection are Theorems 5.7, 5.8,
and 5.11.

Another question considered in § 5 is:

Question 2. Suppose X is a space of orderings with Witt Ring . Suppose
k = 1, and that f € W satisfies of = 0 (mod 2¥) for all ¢ € X. Isit true that
f € M*? (Here M denotes the ideal of W consisting ot even dimensional forms.)

Question 2 has been considered previously in [7,9, 10]. Theorem 5.2 provides
a connection between open questions 1 and 2.

Many results peripheral to the main theme of the paper are given as Remarks
without proof.

1. Spaces of orderings. The concept of a space of orderings is defined in
[9, 11]. For completeness the definition is given below.

Definition 1.1. A space of orderings is a pair (X, G) where G is an Abelian
group such that x? = 1 Vx € G, and where X is a subset of the character
group x(G) = Hom (G, {1, —1}) satisfying:

0; : X is closed in x(G).

0,: If x € Gsatisfieso(x) =1 Vo € X, thenx = 1.
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03 : There exists a (necessarily unique) element —1 € G satisfying
c(—1) = =1 Ve X.

0,: If fand ¢ are forms over G, and if f @ g is isotropic, then there exists
x € Gsuch thatx € D;,, —x € D,.

Terminology 1.2. A form over G is an n-tuple f = (a1, ..., a,), n = 1 with
a1y . ..,a, € G. nis referred to as the dimension of f. The signature of f at
o€ Xisaf = X1a(a;) € Z. Twoforms of f, gare said to be congruent (modulo X)
denotedf = gorf = g(mod X) ifand only ifdimf = dim gand of = ¢g Vo € X.

A form f is said to represent x € G if there exist x»,...,x, € G such that
f= (x,x2...,x,). Weuse D, to denote the set of all elements of G represented
by f. A form f is said to be usotropic if f = (1, —1, x3,...,x,) for
some X3, ...,x, € G. Certain operations are defined in forms; namely if
f=A(a,...,a,),8 = {b1,...,bn), then

f®g="{a,...,a0hb1,...,b,) and

f®g= (b ...,aibp,...,a01,. .., aby).
For a € G we define af = {(a) @ f = (aay, ..., aq,). In particular

__j = (_l)f = <—(11, ce ey —(l,,>

(for x € G, —x is by definition equal to (—1)(x).)

Definition 1.1 does not read quite the same as the definition of a space of
orderings given in [9, 11]. To prove both definitions are equivalent, we need
the following lemma.

LEmmA 1.3. Let G be an Abelian group satisfying x* = 1 for all x € G. Let X
be a subset of x(G) satisfying 01, 02, and 05. Then (X, G) is a space of orderings
if and only if the following property holds:

0, : For all forms f, ¢ defined over G and for all x € G, x € D g, implies there
exists y € Dy, 2 € D, such that x € Dy, ,).

Proof. Suppose first that (X, G) is a space of orderings and letx € D qg,. Thus
f® g ® (—x) is isotropic, so by 0, there exists y € D;,, —y € D,g (). Thus
¢ ® (—x, y) is isotropic, so by 0, there exists z € D,, —z ¢ D,,) Thus
(—=x,y) = (—z xy2), 80 (¥, 2) = (x, xyz). Thus x € Dy, ..

Suppose now that 0,” holds and let f @ g = (1, —1) @ k. Let x € D/, and
write f = (x) @ f’. Since (1, —1) = (x, —x) we have f ® ¢ = (x, —x) ® &
soff @ g=(—x) ® h. Thus —x € Dyg, so there exists y € D,z ¢ D, such
that —x € Dy, ). Thus —z € D) € Dy.

Definition 1.4. Let (X, G;), 1 = 1,2 be spaces of orderings. A morphism ¢
from (X, G;) to (X2, G2) is a continuous group homomorphism

¢ : x(G1) — x(G2)

which carries X into X,.
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Note 1.5. By duality, specifying a continuous group homomorphism
¢ : x(G1) — x(G2) is equivalent to specifying a group homomorphism
¢* : G2 g Gl.

Note 1.6. If ¢ : (X1, G1) — (X», Go) is a morphism of spaces of orderings,
then the dual ¢* : Gy — G, carries —1 into —1.

Definition 1.7. A morphism ¢ : (X1, G1) — (X2, G2) is called an equivalence
(or isomorphism) if ¢ : x(G1) =2 x(G2) and ¢(X 1) = X». Asin [11], we say two
spaces (X1, G1) and (X., G.) are equivalent (denoted (X, G1) «— (X, G2)) if
there exists such an equivalence.

Remark 1.8. If (X, G) is a given space of orderings, we can associate to (X, G)
a ring W(X, G) called the Witt Ring of the space (X, G). This ring can be
described as the set of equivalence classes of forms under the equivalence
relation & defined by: f & ¢ if and only it dim f = dim g(mod 2) and

of =og Vo€ X.

Addition and multiplication in W (X, G) are understood to be those induced by
® and ®. Further, a morphism ¢ : (X1, G1) — (X, G») of spaces of orderings
gives rise to ring homomorphism ¢ : W(X,, G.) — W(X,, G)) via

dlay, ..., a,) = (¢*(a1), ..., d*(a,)).

Thus there is a contravariant functor from the category & of spaces
of orderings and morphisms into the category ¥ of Witt rings of such spaces,
and (unitary) ring homomorphisms. This functor is even an equivalence of
categories, since a space is completely determined by its Witt Ring. (G is the
unit group of W(X, G), and X corresponds bijectively to the ring homomor-
phisms ¢ : W(X, G) — Z.) In what follows we state results only in the category
. The analogous properties of ¥ are only mentioned in passing in the
remarks.

2. Subspaces and direct sums. Recall the definition of a subspace given
in [11]:

Definition 2.1. Let (X, G) be a space of orderings. A subspace of (X, G) is a
pair (¥, G/A) where ¥ C X, and A C Gsatisfy V- = A, AL N X = 7.

Theorem 2.2 in [11] is valid for infinite spaces of orderings. This is the con-
tent of the following theorem.

THEOREM 2.2. Every subspace of a space of orderings is a space of orderings.

Proof. Let (X, G) be a space of orderings, and let (¥, G/A) be a subspace.
Then 0;, 02, and 03 are clearly satisfied by the pair (¥, G/A). Moreover, the
proof in [11] shows the result is true if ¥ is a Harrison Basic clopen set, i.e. has
the form ¥V = X(ay, ..., q,) for some a4, ..., a, € G. (In this case A = D,
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where p = (1,a1) @ ... ® (1, a,).) Thus to show 0, in the general case it is
enough to prove the following:

Claim. Let f and g be forms over G. Then f = g(mod ¥) holds if and only if
there exists a;, ..., a, € Asuch that f = g mod X (a,, ..., a,).

The proof of the non-trivial part of this claim is as follows: Let
U=1{o€ X|of = ag}.

Thus Uis open in X, and ¥ C U. Note that V is the intersection of the sets

X(ay, ..., a,) where{ay, ..., a,} runs through all finite subsets of A. It follows
by compactness that there exists ay, . . ., @, € Asuch that X (ay,...,q,) €& U.
Thus f = gmod X (ay, ..., a,).

Example 2.3. Let Z be any subset of X. Let A = Ztandlet ¥V = A+ N X.
Then (¥, G/A) is a subspace of X. We will refer to this subspace of (X, G) as
the subspace generated by Z.

Remark 2.4. Let (Y, G/A) be a subspace of (X, G). Then there is an obvious
morphism ¢ : (¥, G/A) — (X, G). The corresponding ring homomorphism
¢: WX, G) > W(Y, G/A) is clearly surjective.

Notation 2.5. For (¥, G/A) a subspace of (X, G) we will denote by [ V] the
closed subgroup of x(G) generated by V. Thus [V] = A+ = V14

Definition 2.6. Let (X;, G/A;) be subspaces of (X, G), ¢+ =1,...,%k and
suppose X = U4 X, and that the product 1§ [X;] = x(G) is a direct prod-
uct. Then we will say (X, G) is the direct sum of the subspaces (X, G/Ay),
i=1,...,kand will write X = X, @ ... @ X, (or more precisely (X, G) =
(X1, G/A) @ ... @ (Xy, G/Ay)).

Remark 2.7. The condition that the product I} [X;] = x(G) be direct is
equivalent to the condition that the natural injective homomorphism
G — 115 G/A,; be surjective.

Remark 2.8. Here is an external characterization of direct sum: Let
(X G;) 1=1,...,k be spaces of orderings. Let G = 1% G, and for each
i,1 27 =2k letY; =10 € x(G)| dlg: € Xy 0|l¢; = 1if j # 1}. (Iere, for
H a subgroup of G, o|y denotes the restriction of ¢ to H.) Let X = U} V..
Then one can easily verify (X, G) is a space of orderings. (This is basically
because every n-dimensional form f on G determines and is determined by &

n-dimensional forms f1, . . ., fy on G, . . ., G; respectively, and f = ¢g(mod X)
holds if and only if f; = g;(mod X ;) holds for each 7 = 1, ..., k.) Moreover,
if we identify the spaces (X, G;) ¢ = 1,..., kassubspaces of (X, G) in the

natural way, we see that X = X, @ ... ® X, (internal direct sum).
Remark 2.9. Suppose (X, G) is the direct sum of the spaces
(Xi1Gi)y /L:].,,k
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Then there is a natural injective ring homomorphism from W (X, G) into the
product ring 1w, G,). The image consists of those k-tuples

(flvf2v e vfk)

such that dim f; = dim fi(mod 2), ¢ = 2,...,k This description of the
direct sum is also found in [7].

One is especially interested in spaces of the following type:

Definition 2.10. A space of orderings (X, G) is said to be indecomposible if
X = X, ® X., X, X.subspaces implies either X, = @ or X, = .

Remark 2.11. Many interesting questions about spaces of orderings can be

reduced to the indecomposible case. T'wo examples ot this are found in Theorem
5.8 and Remark 5.9.

Remark 2.12. The best criterion for indecomposibility known to date appears
to be the following: Let X be a space of orderings. Then X is indecomposible if
and only if for each clopen subset U C X, U # X, U 5 @, there exists a
4-element fan F C X such that F € U, FN\ U = 0. (A fan [4] is just a
subspace F C X satisfying a, 8, v € F implies afy € F. This result follows
from results in [2] in case X is the space of orderings of a field, but it can be
proved in general.)

Example 2.13. Here is a trivial application of the criterion for indecom-
posibility given in Remark 2.12. Consider a 1-stable space (X, G). One charac-
terization of such a space is that the natural injection G — Cont (X, {1, —1})
is onto. Another is that (X, G) has no 4-element fans. Thus we see that (up to
equivalence) the only indecomposible 1-stable space is the space with a single
ordering.

3. Quotient spaces and group extensions. Let (X, G) be a space of
orderings. Fix a subgroup G’ C G, and let X’ denote the set of all restrictions
of elements of X to G'. Then the pair (X', G’) clearly satisfies 0, and 0. More-
over, 0; will be satisfied if and only if —1 € G’. Simple conditions which will
ensure that (X’, G') satisfies 0, are not easy to obtain. In any case, we make the
following definition.

Definition 3.1. A quotient space of a space of orderings (X, G) is a pair (X', G")
obtained in the above fashion which is itself a space of orderings.

Remark 3.2. If (X', G") is a quotient space of (X, G) then there is a natural
morphism from (X, G) to (X', G'). The corresponding ring homomorphism
on the Witt Rings identifies W (X', G') with a subring of W (X, G).

The following result is useful in the proof of Theorem 4.3.

LeEmMA 3.3. Let (X, G) be a space of orderings, let G' be a subgroup of G con-
tatning —1, and let X' = {o|¢ |0 € G}. Suppose the following condition holds:
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(*) If f, g are forms defined over G' and if D, M\ D, #~ 0, then
D, N\ND, NG # 0.
Then (X', G') is a quotient space of (X, G).

Proof. We must verity that (X', G’) satisfies 04. For f a form defined over
G’, let D/ denote the set of elements of G’ represented by [ over G'. That is,
x € D/ if and only if x € G', and there exists x»,...,x, € G’ such that
= {x,x0...,%,).

Clawm. For any form f defined over G', D/ = D, N\ G'.

This is clear if dimf =1 or 2. In general, let x ¢ D, N\ G and
write f = (a) ® ¢ where a« € G, and ¢ is a form defined over G’. Thus
{a, —x) @ g is isotropic over G, so D, ;) N\ D_, # . Thus D¢, —,) YD _,
NG #@. Lety € D¢ —) M D_, N\ G'. Thus, by induction on the dimen-
sion,y € D_)/. Alsoy € D¢, NG = D', _pysox € D'(,_,».C D/. This
completes the proof of the claim.

Now suppose f, ¢ are forms over G'. Then f @ ¢ isotropic over G’ implies
f ® g isotropic over G implies D, N\ D_, % @ implies D, ND_, N\ G’ # ¢
implies D/ M D_,/ # @. Thus (X', G’) satisfies 0..

Remark 3.4. Suppose (X', G’) is already known to be a quotient space of
(X, G). Then one verifies that condition (*) of Lemma 3.3 is equivalent to the
following condition:

(**): If a form f defined over G’ is isotropic over G, then it is isotropic
over G'.

The type of quotient space mentioned in the following example is described
in [11]. This type of quotient is very special, but also very useful. The motiva-
tion for the construction comes from the theory of valuations on fields. See,
for example, (13, section 7].

Example 3.5. Let (X, G) be a space of orderings. Let 7" denote the set of all
characters a € x(G) such that aX = X. T is clearly a closed subgroup of
x(G). Let G’ = T+ and let X’ = {g]¢ |0 € X}. Exactly as in [11], one may
verify that (X', G’) is a space of orderings. Note that X consists of all ¢ € x(G)
such that o] ¢ € X’. In terms of the definition to follow, this says that (X, G)
is a group extension of (X’, G’). Of course, it may happen that 7" = 1.

Definition 3.6. Let (X', G’) be a space of orderings and let G be a group con-
taining G’ as a subgroup and satisfying x> = 1 V& € G. Let

X = {0 € x(G)] ole € X'}.

Then (X, G) is a space of orderings. We refer to a space of orderings (X, G)
obtained in this way as a group extension of (X', G’). We refer to such a group
extension as proper if G # G’.
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Remark 3.7. The fact that the pair (X, G) in Definition 3.6 is indeed a space
of orderings is a consequence of the following:
Let f be a form over G, and suppose f is expressed in the form f = x,f; @

... @ x,f, where xy,...,x; € G lie in distinct cosets modulo G’, and where
f1, - .., fsare forms defined over G’. Then f is isotropic (over G) if and only if
at least one of 1, . . ., f, is isotropic over G’. The proof of this is not given here.

Remark 3.8. Suppose (X, G) is a group extension of (X', G'). Then the Witt
Rings of these two spaces are related by

WX, G =WX', GHIG/G).

(Here R[H] denotes the group ring extension of the ring R by the group H)"
The isomorphism is not canonical.

Remark 3.9. The above construction provides additional examples of inde-
composible spaces. Namely, if (X, G) is any proper group extension of any
space (X', G'), and if |X| > 2, then (X, G) is indecomposible. This is easily
verified.

4. Inverse limits. In this section we define inverse limits, and prove that
every space of orderings is an inverse limit of countable spaces.

Definition 4.1. An inverse system of spaces of orderings is a triple consisting
of (a) a directed set (I, =) (b) spaces of orderings (X;, G,), one for each
1 € I and (c) morphisms ¢;(X,;, G;) = (X,, G;) for all 7, j € [ satisfying
it = j. It is assumed that each morphism ¢,; satisfies ¢,;(X;) = X ;. This
implies in particular that ¢*,; : G, — G, is injective. It is further assumed for
each 7 z _] = k, i, j, k S I, that ¢ilc = d’jk o] ¢”

Definition 4.2. Let (I, (X, G;), ¢4;) be a given inverse system of spaces of
orderings. Let G = lim G,, and X = lim X, € lim x(G:) = x(G). The pair
(X, G) thus obtained is referred to as the tnverse limit of the given inverse
system. This is denoted by writing (X, G) =_lim (X, G,), the limit being
taken with respect to the directed set (I, =).

THEOREM 4.3. The inverse limit of « given inverse system of spaces of orderings
is a space of orderings.

Proof. Use the notations of Definition 4.2. Let ¢.* : G, — G denote the
canonical injection. Then the dual ¢;: x(G) — x(G;) is a continuous sur-
jective group homomorphism, so it follows that X = M; ¢, 1(X,) is closed.
Thus 0; holds.

Clawm. For each 1 € I, ¢,(X) = X,. Forlet ¢ € X,. Since I is directed and
¢x;(Xx) = X, for k =2 j, it follows that any finite intersection of the sets
o, X ;) Mo (o), ] € I, is not empty. Thus, by compactness,

X m ¢1—1(U) # ﬂ.

This proves the claim.

https://doi.org/10.4153/CJM-1979-061-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-061-4

612 MURRAY A. MARSHALL

Now identify each G; with its image under ¢ *. By the claim, this identifies
X ; with the restriction of X to G,. 0, and 0; are now clear. If f, ¢ are forms
defined over G, then f, g are both defined over some G;, 7 ¢ I. [tisclear that
f = g(mod X) if and only if f = g(mod X ;). Thus 0, is clear.

Remark 4.4. Let (X, G) be the inverse limit of the inverse system
(I, (X4 Gy), ¢:). The morphisms ¢,; : (X4, G;) — (X, G;) determine injective
ring homomorphisms ¢;;: W(X,, G;) » WX, G;). W(X, G) is just the
direct limit of the system (I, W(X,, G.), ¢:,).

Definition 4.5. A space of orderings (X, G) is said to be countable if G is
countable.

Remark 4.6. If a space (X, G) is countable, then as a topological space X has
a countable base, for clearly the Harrison basic sets X (ay,...,a,),
ai, ..., a, € G will be a countable base for X in this case.

THEOREM 4.7. Each space of orderings is an inverse limit of countable spuces.

Proof. Let (X, G) be a given space of orderings. To show (X, G) is an inverse
limit of countable spaces, it is enough to show that for each countable subset
S of G there exists a countable quotient space (X', G') of (X, G) such that
SCda.

Let S be a given countable subset of G. Define a sequence of subgroups
Gi1 C G2 C G3; C...of G as follows: Let G, denote the smallest subgroup of
G containing S and —1. Now supposing G, is defined, define G, as follows:
For each pair of forms f, ¢ defined over G, such that D, M D, @ pick an
element x,, € D, M D, and let G,;1 be the smallest subgroup of G containing
G, and the elements x,, obtained in this way. Finally, let G’ = UYT G,. Then
clearly S C G’, —1 € G’ and G’ is countable (since each G, is countable). Also
G’ has the property (*) of Lemma 3.3. Thus, by that Lemma, (X', G’) is a
quotient space of (X, G).

5. Spaces which are inverse limits of finite spaces. In this section the
following question is considered:

Question 1. Which spaces of orderings are inverse limits of finite spaces?

One motivation for studying this question is obtained by considering the
following question, and the remark and theorem following it.

Question 2. Let (X, G) be a space of orderings, and £ = 1. Let f ¢ W(X, G)
be such that ¢f = 0 mod 2*¥ holds for all ¢ € X. Then is it true that
f€e M*X, G)? (M(X, G) denotes the ideal of even dimensional forms in
WX, G).)

Remark 5.1. Question 2 is known to have an afhrmative answer for many
spaces, e.g. see (7, 9, 10]. In particular the result is known to be true for all
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finite spaces of orderings. From the next theorem, it follows that Question 2
has an affirmative answer for all spaces of orderings which are inverse limits
of finite spaces.

THEOREM 5.2. Suppose (X, G) =_lim (X;, G;) and that Question 2 has an
affirmative answer for each (X ;, G;). Then it has an affirmative answer for (X, G).

Proof. Let f € W(X, G) satisfy ¢f = 0 mod 2¢ Vo € X. Since W(X, G) =
mW(Xi, G;) we may as well assume f € W(X,, G;) for some :. Since the
map X — X, is surjective it follows that ¢f = 0 mod 2¢ V¢ € X,. Thus, by
assumption [ € M*(X,, G,). But clearly M*(X,, G;,) C M*(X, G).

Remark 5.3. Here is additional motivation for studying Question 1. Denote
by % the category whose objects are the compact totally disconnected topo-
logical spaces, and whose morphisms are the continuous maps. There is a
natural identification of Z with a subcategory of the category & of all spaces
of orderings, namely the subcategory of ¢ consisting of all 1-stable spaces.
Under this identification X € & is identified with the 1-stable space (X, G)
where G = Cont (X, {1, —1}). It follows from results in [6] (also see [13]) that
every space of orderings in this subcategory is equivalent to the space of
orderings of a Pythagorian field satisfying S.A.P. (strong approximation
property) and conversely. The point to be made here is that a well-known result
in topology asserts that every X € & 1s the inverse limit of finite spaces. Thus it
is natural to ask how far this familiar property of &% extends into the larger
category.

Notation 5.4. From now on.%# will denote the subcategory of & consisting
of all finite spaces of orderings, and pro# the subcategory of ¢ consisting of
inverse limits of finite spaces.

Remark 5.5. To show that a space of orderings (X, G) belongs to pro% it is
necessary and sufficient to show that for each given finite subset

d],...,aneG,
there exists a finite quotient space (X', G') of (X, G) such thata,,...,a, € G'.

Remark 5.6. If we carry through the proof of Theorem 4.7 in the case S is
finite we can (by a proper choice of the elements x,, at each stage) construct
the groups G, Gs, G, . . . in such a way that each is finite. Of course this still
doesn’t imply the finiteness of G’ = UT G,.

The following Theorem summarizes some obvious properties of pro.% .

THEOREM 5.7. (1) If X, € pro#,i = 1,2, then X, ® X, € pro#.

(2) If X is a group extension of X' € pro# , then X € pro.%.

(3) If X =]lim X, and if X, € proF for each i, then X € proF.

Proof. All these results are fairly elementary. Here is the proof of (2). Let
ay, ..., a, € G. Let H denote the subgroup of G generated by a,, . .. a,, and
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let H = H M G'. By assumption there exists a finite quotient space (X', G1")
of (X', G") such that H' C G,'. Let G, denote the subgroup of G generated by
G, and H, and let X, denote the restriction of X to G,. Thus ay, ..., «a, € Gi.
Moreover (X, G,) is a space of orderings. In fact it is a group extension of
(Xl/, Gl/)-

A slightly deeper result is now given.

THEOREM 5.8. Let (X, G) be a space of ordermgs Suppose every indecomposible
subspace of X belongs to pro# . Then X € pro#

Proof. 1t is enough to show that for each finite subset «y, ..., «¢, € G there
exists a finite quotient space (X', G’) of (X, G) such that a,,...,qa, € G".
We assume that for some finite set ay, ..., a, no such quotient exists, and

obtain a contradiction. First we need the following:

Claim. Let X ;, ¢ € I be a set of subspaces of X linearly ordered by inclusion,
and let Xo = MN; X X, is clearly a subspace of X. Let A; = X/t for each
1 € I'\U {0}. Suppose there is a finite quotient of (X,, G/A,) containing
@ilo, . . ., a,00. Then there exists 7 € I such that (X, G/A;) has a finite
quotient containing a;A;, . .., a,A;.

To prove this claim, first note that Ay = U; A;. Let (X', Gy'/Ay) be a finite
quotient of (X, G/Ay) such that ay,...,a, € Gy. For each 71 € I, let G/
denote the subgroup of G generated by A;and by, ..., b, where by, ..., b;isa

fixed basis of Gy’ modulo A,.

Ao

Ve

It is clear that G//A; = Gy'/A, cannonically and that the dual isomorphism
x(Go'/Ay) = x(G//A;) carries X' into X/ (X is the restriction of X ; to G/).
To simplify notation, identify these groups and consider

d € N X/ S x(Go'/A).
Suppose ¢’ (b;) = ¢; € {1, =1}, j=1,...,k. Itfollows that

Xi(blél, e ybkfk) ?f ﬂ
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for each 7 € I. By compactness,
Xo(})lel, PR »bkflc) = m[ Xi(blﬂ, ey bkfk) # ﬂ

This implies ¢’ € X. Thus Xy’ = N; X /. Since the spaces X/, 7 € I are
linearly ordered by inclusion, and each is finite, it follows that we
have X/ = X/, and hence (X/, G//A;) « (X, G//A,) for 1 € I sufficiently
large. In particular, this implies (X, G//A,) is a space of orderings for i € [
sufficiently large. On the other hand U; G/ = G, a1, ...,a, € Gy, and
the groups G/, 7 € I are linearly ordered by inclusion. Thus ay,...,a, € G/
for 7 € I sufficiently large. This completes the proof of the claim.

Now consider the set.% of all subspaces (¥, G/A) of (X, G) such that there
does not exist a finite quotient of (Y, G/A) containing a4, . . ., a,A. Order this
set by inclusion, i.e. (Y1, G/A1) = (Vs, G/Ay) if and only if ¥V, D V.. By
assumption, (X, G) € .¥,s0.% # 0. By the claim, and Zorn's Lemma, .¥ has
a minimal element. Say (Y, G/A) is a minimal element of .%.

If Y decomposes as V=YV, ® V,, V;, # 0, =1, 2, then by the mini-
mality of V, there would exist a finite quotient ¥,/ of ¥, containing the cosets
ofai, ..., a, fort =1, 2. But then ¥’ @ ¥, would be a quotient of ¥ with
the same properties. This is a contradiction. Thus, ¥ is indecomposible, so by
assumption, ¥V € pro#. But this is also a contradiction.

Remark 5.9. The technique used here also serves to reduce many other
problems about spaces of orderings to the indecomposible case. For example,
Question 2 reduces to the indecomposible case by this technique.

Definition 5.10. An indecomposible space of orderings (X, G) is said to be of
elementary type if either | X| = 1, or if (X, G) is a proper group extension of
some space of orderings (X', G’).

THEOREM 5.11. Let (X, G) be a space of orderings, each of whose indecom posible
subspaces is of elementary type. Then X € pro.F .

Proof. Proceed as in Theorem 5.8. That is, suppose there is a finite set
a, ..., a, ¢ G which is not contained in any finite quotient of (X, G). Define
% and (Y, G/A) exactly as in Theorem 5.8. Then (Y, G/A) is indecomposible
and hence of elementary type. Clearly V is not singleton, so there exists a
non-trivial character vy € x(G/A) such that vV = V. Thus (V, G/A) is a
group extension of (¥V’, G'/A) where G'/A = kern y.

Fix an element x € G, x ¢ G’. Then Y(x): = AU Ax. The subspace
(Y(x), G/A U Ax) of (¥, G/A) is equivalent to the space (¥Y’, G’/A) in a can-
onical way. By the minimality of V, there exists a finite quotient of ¥ (x)
containing the cosets of a4, . . ., a,. Let (¥}, Gi’/A) denote the corresponding
quotient of (Y’, G’/A) under the equivalence. Write each «; in the form
a;=bx, b; €G, ¢,=0 or 1, i =1,...,n It should be clear that
by, ..., b, € GY. Now let G, = G, U Gyx, and let V; denote the restriction

https://doi.org/10.4153/CJM-1979-061-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-061-4

616 MURRAY A. MARSHALL

of ¥ to G1/A. Then (Y,, G1/A) is a group extension of (Y, G\'/A) so it is a
space of orderings and hence is a finite quotient of (¥, G/A). Also
@i, ..., a, € Gi. This contradiction completes the proof.

Remark 5.12. The subcategory & of ¢ consisting of all spaces of orderings
satisfying the hypothesis of Theorem 5.11 is fairly extensive. For example, it
follows from results in [11] that# C &. Also

(1) & contains all 1-stable spaces.

(2) IfX], Xz 6 éﬂ, then X] @ XQ E éa

(3) If X is a group extension of X’ € &, then X ¢ & .

In particular, ¢ contains all spaces of the type discussed in [7].

Remark 5.13. There is an abstract classification of the category of spaces %
considered in [7]. Namely, a space of orderings belongs to % if and only if it is
generated by a finite number of fans. The proof of this assertion uses essentially
only the theorems and techniques used in [11]. Note that to say a space X is
generated by subspaces I, . . ., F; means simply that

(F1UUFk)J-=F1lf\f\FLL=1

The connection between the category % and the category of spaces satisfying
the chain condition [see 9, 10] is not clear, although it is clear that every space
X € % does satisfy the chain condition. One might guess that these categories
are equal.
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