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QUOTIENTS AND INVERSE LIMITS OF SPACES 
OF ORDERINGS 

MURRAY A. MARSHALL 

0. I n t r o d u c t i o n . A connection between the theory of quadra t ic forms 
defined over a given field F, and the space XF of all orderings of F is developed 
by A. Pfister in [12]. XF can be viewed as a set of characters act ing on the group 
Fx/2Fx2, where 2Fx2 denotes the subgroup of Fx consisting of sums of squares. 
Namely, each ordering F Ç XF can be identified with the character 

<rP : Fx/ZP* - > { 1 , - 1 ! 

defined by 

I t follows from Pfister's result t ha t the W i t t ring of F modulo its radical is 
completely determined by the pair (XF, Fx/2Fx2). 

This result of Pfister's led the au thor to consider ' abs t rac t ' spaces of 
orderings. These are pairs (X, G) where G is an Abelian group satisfying 
x2 = 1 for all x d G, and X is a subset of the character group x(G) satisfying 
some special properties. These properties are s ta ted in detail in § 1. T h e idea 
a t the t ime was tha t by removing the 'non-essentials ' one might more easily 
determine the s t ructure of such spaces, and hence of their corresponding W i t t 
Rings. At the same time, it was hoped t ha t the axioms defining a space of 
orderings would be rigid enough to eliminate all 'uninterest ing ' examples. 

For finite spaces of orderings, this proved to be the case. In [11], finite spaces 
of orderings are classified and it is proved, using results from [5] or [7] t ha t 
every finite space of orderings is equivalent to the space of orderings of a 
Pythagor ian field. 

Before these results were obtained, two papers [1, 8] appeared in which a 
theory parallel to Pfister's was developed, bu t over semi-local rings. I t follows 
from results in these papers t ha t the spaces of signatures of semi-local rings 
provide addit ional examples of spaces of orderings in the sense considered here. 

In s tudying spaces of orderings, the concept of subspace has proved essential. 
In the case of the space of orderings of a field F, subspaces correspond bijec-
tively to the preorders of F. A preorder of F is jus t a subset T of Fx satisfying 
T+ TQT, TTQF, Fx2 Q T. The subspace of (XF, Fx/XFx2) corre­
sponding to the preorder T is the pair (XF(T), Fx/T), where XF(T) denotes 
the set of all orderings of F which are positive on T. Especially impor t an t sub-
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SPACES OF ORDERINGS 605 

spaces are obtained by considering valuations. To a real valuation v of F one 

can associate the subspace (Xv, Fx/Tv). Here Xv denotes the set of all orderings 

of F compatible with the valuation v as discussed in [3] or [13]. 

This paper represents a depar ture from previous papers on the subject in 
t ha t an a t t e m p t is made to s tudy a space of orderings in terms of its quot ient 
spaces. A space of orderings (X', G') is said to be a quotient space of the space 
of orderings (X, G) if G' is a subgroup of G, and Xf is the set of restrictions of 
elements of X to G'. As an example, if v is a real valuation of F, then the space 
of orderings of the corresponding residue field is a quotient of the space 
(XVt Fx/Tv) mentioned above. A second example is obtained by taking a 
subfield K of F such tha t the degree [F : K] is finite and odd. Then XK is a 
quot ient space of XF. Generally speaking, quotients seem to be most easily 
and natural ly discussed in the abst ract setting. 

Here is an outline of the content of this paper. 
In sections 1, 2, and 3 the category of spaces of orderings is introduced and 

some basic notions (subspaces, direct sums, quotients, group extensions) are 
developed. Most of this material is implicit in [11]. In § 4 the inverse limit of an 
inverse system of spaces of orderings is defined, and it is proved in Theorem 4.7 
tha t every space of orderings is the inverse limit of countable spaces. A space 
of orderings (X, G) is said to be countable if G is countable. In § 5 the following 
question is considered. 

Question 1. Which spaces of orderings are inverse limits of finite spaces? 

Although this question is not answered, the class of such spaces is shown to 
be quite large. The major results in this connection are Theorems 5.7, 5.8, 
and 5.11. 

Another question considered in § 5 is: 

Question 2. Suppose X is a space of orderings with Wi t t Ring W. Suppose 
k ^ 1, and t h a t / £ W satisfies af = 0 (mod 2k) for all a £ X. Is it t rue tha t 
f Ç Mk ? (Here Af denotes the ideal of 1/F consisting of even dimensional forms.) 

Question 2 has been considered previously in [7, 9, 10]. Theorem 5.2 provides 
a connection between open questions 1 and 2. 

Many results peripheral to the main theme of the paper are given as Remarks 
without proof. 

1. Spaces of order inés . The concept of a space of orderings is defined in 
[9, 11]. For completeness the definition is given below. 

Definition 1.1. A space of orderings is a pair (X, G) where G is an Abelian 
group such tha t x2 = 1 V ^ 6 G, and where X is a subset of the character 
group x(G) = Horn (G, {1, —1}) satisfying: 

01 : X is closed in x(G). 
02 : If x G G satisfies <r(x) = 1 \/a £ X, then x = 1. 
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03 : There exists a (necessarily unique) element — 1 £ G satisfying 

cr(-i) = - 1 Vo- e x . 
04 : If / and g are forms over G, and if / © g is isotropic, then there exists 

x G G such that x G Df, - x ^ Z^. 

Terminology 1.2. A form over G is an n- tu p i e / = (ai, . . . , a„), n ^ I with 
ai, . . . , an Ç G. w is referred to as the dimension of f. The signature of f at 
a É J is <T/ = £ïo"(^i) 6 Z. Two forms of/, gare said to be congruent (moduloX) 
denoted/ = g or / = g (mod X) if and only if d im/ = dim g and af = ag \/a £ X. 
A form / is said to represent x £ G if there exist x2, . . . , xn £ G such that 
/ = (x, x2, . . . , xn). We use £>,- to denote the set of all elements of G represented 
by / . A form / is said to be isotropic if / = (1, — 1, x3, . . . , xn) for 
some x3, • . . , xn G G. Certain operations are defined in forms; namely if 
f = (au . . . , an), g = (bh . . . , bm), then 

/ © g = (au . . . , an, 61, . . . , èw) and 

f © g = <a]6i, . . . , aitm, . . . , aw6], . . . , an6OT). 

For a Ç G we define a/ = (a) ® f = (aau . . . , aaw). In particular 

- / = ( - D / = {-au---, - O 
(for x G G, — x is by definition equal to ( —l)(x).) 

Definition 1.1 does not read quite the same as the definition of a space of 
orderings given in [9, 11]. To prove both definitions are equivalent, we need 
the following lemma. 

LEMMA 1.3. Let G be an Abelian group satisfying x2 = 1 for all x G G. Let X 
be a subset 0} x(G) satisfying 0i, 02, and 0Y Then (X, G) is a space of orderings 
if and only if the following property holds: 

0 / : Tor all forms f, g defined over G and for all x Ç G, x Ç Dmg implies there 
exists y £ Df, z £ Dg such that x £ D(VtZ). 

Proof. Suppose first that (X, G) is a space of orderings and let x £ DWg. Thus 
f © g © ( — x) is isotropic, so by 04 there exists y £ Df, —y £ Dg®(-X). Thus 
g © ( — x, y) is isotropic, so by 04 there exists z £ Dg, — z G D(-XtV). Thus 
( — x, y) = ( — z, xyz), so (y, z) = (x, xyz). Thus x G D(ViZ). 

Suppose now that 0 / holds and l e t / © g = (1, — 1) © fe. Let x G £>/, and 
wr i t e / = (x) © f. Since (1, — 1) = (x, — x) we h a v e / © g = (x, —x)®h 
so f ® g = ( — x)®h. Thus — x G Dyeg so there exists 3> £ D//, z ^ Dg such 
that —x Ç D(y>z). Thus — z G D(x>y) Ç Z)/. 

Definition 1.4. Let (X2-, Gz), i = 1,2 be spaces of orderings. A morphism 0 
from (Xi, G]) to (X2, G2) is a continuous group homomorphism 

0 • x(Gi) -» xiPt) 

which carries X\ into X2. 
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Note 1.5. By duali ty, specifying a continuous group homomorphism 

0 : x(Gi) —> x(G2) is equivalent to specifying a group homomorphism 

</>* : G2 -> Gi. 

Note 1.6. If 0 : (Xi, GO —> (X2 , G2) is a morphism of spaces of orderings, 
then the dual </>* : G2 —> Gi carries —1 into — 1. 

Definition 1.7. A morphism 0 : (Xi, G\) —» (X2, G2) is called an equivalence 
(or isomorphism) if </> : x(Gi) = x(G2) and 0 ( X i ) = X2. As in [11], we say two 
spaces (Xi, Gi) and (X2 , G2) are equivalent (denoted (Xi, G\) ^ (AT2, G2)) if 
there exists such an equivalence. 

Remark 1.8. If (X, G) is a given space of orderings, we can associate to (X, G) 
a ring W(X, G) called the Witt Ring of the space (X, G). This ring can be 
described as the set of equivalence classes of forms under the equivalence 
relation œ defined by: / tt g if and only if d i m / = dim g (mod 2) and 

af = ag Va e X. 

Addition and multiplication in W(X, G) are understood to be those induced by 
© and ®. Fur ther , a morphism </> : (Xi, G\) —• (AT2, G2) of spaces of orderings 
gives rise to ring homomorphism <p : W(X2, G2) —* W(Xi, Gi) via 

$(alt . . . , an) = <**(ai), . . . , 0*(aw)). 

T h u s there is a contravar iant functor from the category 0 of spaces 
of orderings and morphisms into the c a t e g o r y ^ of Wi t t rings of such spaces, 
and (unitary) ring homomorphisms. This functor is even an equivalence of 
categories, since a space is completely determined by its Wi t t Ring. (G is the 
unit group of W(X, G), and X corresponds bijectively to the ring homomor­
phisms a : W(X, G) —• Z.) In what follows we s ta te results only in the category 
0. The analogous properties of W are only mentioned in passing in the 
remarks. 

2. S u b s p a c e s a n d direct s u m s . Recall the definition of a subspace given 
in [11]: 

Definition 2.1. Let (X, G) be a space of orderings. A subspace of (X, G) is a 
pair ( F , G/A) where Y C X, and A Ç G satisfy F 1 = A, A 1 H I = F. 

Theorem 2.2 in [11] is valid for infinite spaces of orderings. This is the con­
tent of the following theorem. 

T H E O R E M 2.2. Every subspace of a space of orderings is a space of orderings. 

Proof. Let (X, G) be a space of orderings, and let ( F , G/A) be a subspace. 
Then 0i, 02, and O3 are clearly satisfied by the pair ( F , G/A). Moreover, the 
proof in [11] shows the result is true if F is a Harrison Basic clopen set, i.e. has 
the form F = X(ai, . . . , an) for some au . . . , an (z G. (In this case A = Dp, 
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where p = (1 , a\) ® . . . ® (1 , an).) T h u s to show 04 in the general case it is 
enough to prove the following: 

Claim. L e t / and g be forms over G. T h e n / = g (mod F) holds if and only if 
there exists aj , . . . , an £ A such t h a t / = g mod X(a x , . . . , a n) . 

The proof of the non-trivial pa r t of this claim is as follows: Let 

U= {a£X\af= ag\. 

T h u s U is open in X , and Y Q U. Note t h a t Y is the intersection of the sets 
X(ai, . . . , an) where {a,, . . . , an) runs through all finite subsets of A. I t follows 
by compactness t ha t there exists ai , . . . , an £ A such t h a t X ( a i , . . . , an) C [/. 
T h u s / = g mod X ( a b . . . , an). 

Example 2.3. Let Z be any subset of X. Let A = Z1 and let F = A1- H X . 

Then ( F , G/A) is a subspace of X. We will refer to this subspace of (X, G) as 

the subspace generated by Z. 

Remark 2.4. Let ( F , G/A) be a subspace of (X, G). Then there is an obvious 

morphism <f> : ( F , G/A) —> (X, G). The corresponding ring homomorphism 

0 : IF(X, G) -> W(Y, G/A) is clearly surjective. 

Notation 2.5. For ( F , G/A) a subspace of (X, G) we will denote by | F] the 
closed subgroup of x(G) generated by F. T h u s [F ] = A-1 = F-1-^. 

Definition 2.6. Let (Xt-, G/At) be subspaces of (X, G), i = 1, . . . , k and 
suppose X = U i X j and t ha t the product 11? [ X J = x(G) is a direct prod­
uct. Then we will say (X, G) is the direct sum of the subspaces (X*, G/A*), 
i = 1, . . . , k and will write X = X i 0 . . . © Xk (or more precisely (X, G) = 
(Xu G/A,) © . . . © ( X „ G/A, ) ) . 

Remark 2.7. The condition t ha t the product LIÏ [ X J = x(G) be direct is 
equivalent to the condition t ha t the natural injective homomorphism 
G —> I l ï G/A* be surjective. 

Remark 2.8. Here is an external characterizat ion of direct sum: Let 
(Xi, Gt) i = 1, . . . , k be spaces of orderings. Let G = I l ï G* and for each 
i, 1 g i S k, let F , = {a e x (G) | er|Gi G X „ <r|^ = 1 if j ^ i} . (Here, for 
77 a subgroup of G, <r|# denotes the restriction of a to H.) Let X = U Ï Yt. 
Then one can easily verify (X, G) is a space of orderings. (This is basically 
because every w-dimensional form / on G determines and is determined by k 
w-dimensional fo rms / i , . . . ,fk on Gi, . . . , Gk respectively, a n d / = g (mod X ) 
holds if and only if ft = gi(mod Xt) holds for each i = 1, . . . , k.) Moreover, 
if we identify the spaces (Xu Gt) i = 1, . . . , k as subspaces of (X, G) in the 
natura l way, we see t ha t X = X i © . . . © Xk (internal direct sum) . 

Remark 2.9. Suppose (X, G) is the direct sum of the spaces 

(Xu Gt), i = 1, . . . , k. 
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Then there is a natural injective ring homomorphism from W(X, G) into the 
product ring Y\\ W{XU Gt). The image consists of those ^-tuples 

(jufi,...,h) 

such tha t dim fi = d i m / i ( m o d 2), i = 2, . . . , k. This description of the 
direct sum is also found in [7]. 

One is especially interested in spaces of the following type: 

Definition 2.10. A space of orderings (X, G) is said to be indecomposible if 
X = Xi © X2, Xi, X2 subspaces implies either X\ = 0 or X2 = 0. 

Remark 2.11. Many interesting questions about spaces of orderings can be 
reduced to the indecomposible case. Two examples of this are found in Theorem 
5.8 and Remark 5.9. 

Remark 2.12. The best criterion for indecomposibility known to da te appears 
to be the following: Let X be a space of orderings. Then X is indecomposible if 
and only if for each clopen subset U Q X, U ^ X, U 9e 0, there exists a 
4-element fan F Ç I such tha t F <£ U, F Pi U ^ 0. (A fan [4] is jus t a 
subspace F Ç X satisfying a, 0, y Ç F implies afiy G F. This result follows 
from results in [2] in case X is the space of orderings of a field, bu t it can be 
proved in general.) 

Example 2.13. Here is a trivial application of the criterion for indecom­
posibility given in Remark 2.12. Consider a 1-stable space (X, G). One charac­
terization of such a space is tha t the natural injection G —» Cont {X, {1, — 1 j ) 
is onto. Another is tha t (X, G) has no 4-element fans. Thus we see tha t (up to 
equivalence) the only indecomposible 1-stable space is the space with a single 
ordering. 

3. Q u o t i e n t spaces a n d group ex tens ions . Let (X, G) be a space of 
orderings. Fix a subgroup G' Ç G, and let X' denote the set of all restrictions 
of elements of X to G'. Then the pair (X', G') clearly satisfies 0i and 02. More­
over, 03 will be satisfied if and only if — 1 G G'. Simple conditions which will 
ensure t ha t {X', G') satisfies 04 are not easy to obtain. In any case, we make the 
following definition. 

Definition 3.1. A quotient space of a space of orderings (X, G) is a pair (X', G') 
obtained in the above fashion which is itself a space of orderings. 

Remark 3.2. If (X', Gf) is a quotient space of (X, G) then there is a natural 
morphism from (X, G) to (X', Gf). The corresponding ring homomorphism 
on the W i t t Rings identifies W(X', Gf) with a subring of W(X, G). 

The following result is useful in the proof of Theorem 4.3. 

LEMMA 3.3. Let (X, G) be a space of orderings, let G' be a subgroup of G con­
taining — 1, and let X' = {a\G> \a G G}. Suppose the following condition holds: 
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(*) / / / , g are forms defined over G and if Df C\ DQ 7^ 0, then 

Dfr\Dgr\Gf 9* 0. 

Then (Xf, G) is a quotient space of (X, G). 

Proof. We must verify t ha t (Xe, Gf) satisfies 04. F o r / a form defined over 
G', let D/ denote the set of elements of G' represented b y / over G'. T h a t is, 
x G D/ if and only if x G G', and there exists x2, . . . , xn G G' such t ha t 

/ = \X, #2 , • • • , Xn). 

Claim. For any f o r m / defined over G', D/ = Df C\ G'. 

This is clear if dim / = 1 or 2. In general, let x G Df C\ G' and 
write / = (a) © g where a G G', and g is a form defined over G'. T h u s 
(a, — x) ® g is isotropic over G, so D(a-X) C\ D-0 ^ 0. T h u s D{a-X) C\ D_0 

C\ G' j£ 0. Let 3/ G D(a-X) P\ D-^ H G'. Thus , by induction on the dimen­
sion, y G D _ / . Also y G D(llt-X) C\G = £>'<„,_*> SO X G £>'<„,_„>.£ £>/• This 
completes the proof of the claim. 

Now suppose / , g are forms over G'. Then f ® g isotropic over G implies 
f ® g isotropic over G implies Df H D-0 9^ 0 implies Df C\ D_0 C\ G 7^ 0 
implies D/ r\ D-g' ^ 0. T h u s (X', G) satisfies 04. 

Remark 3.4. Suppose (X', G) is already known to be a quot ient space of 
(X, G). Then one verifies t ha t condition (*) of Lemma 3.3 is equivalent to the 
following condition: 

(**): If a form / defined over G is isotropic over G, then it is isotropic 
over G. 

The type of quot ient space mentioned in the following example is described 
in [11]. This type of quot ient is very special, bu t also very useful. The mot iva­
tion for the construction comes from the theory of va luat ions on fields. See, 
for example, [13, section 7]. 

Example 3.5. Let (X, G) be a space of orderings. Let T denote the set of all 
characters a G x(G) such t ha t aX = X. T is clearly a closed subgroup of 

x ( G ) . L e t G / = r - \ and let X ' = {<r\G, \a G X\. Exact ly as in [11], one may 
verify t h a t (Xr, G) is a space of orderings. Note t ha t X consists of all G G x(G) 
such tha t a\G> G X'. In terms of the definition to follow, this says t h a t (X, G) 
is a group extension of (Xf, G). Of course, it may happen t h a t T = 1. 

Definition 3.6. Let {Xf, G') be a space of orderings and let G be a group con­
taining G as a subgroup and satisfying x2 = 1 \/x G G. Let 

X = {a G X(G)\ <H*' e X'}. 

Then (X, G) is a space of orderings. We refer to a space of orderings (X, G) 
obtained in this way as a group extension of {X', G')- We refer to such a group 
extension as proper if G ^ G. 
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Remark 3.7. The fact tha t the pair (X, G) in Definition 3.6 is indeed a space 
of orderings is a consequence of the following: 

L e t / be a form over G, and s u p p o s e / is expressed in the form / = Xifi © 
. . . © Xgfs where Xi, . . . , xs £ G lie in distinct cosets modulo G', and where 
/ i , . . . ,fs are forms defined over G'. T h e n / is isotropic (over G) if and only if 
a t least one of / i , . . . , fs is isotropic over G'. The proof of this is not given here. 

Remark 3.8. Suppose (X} G) is a group extension of (Xf, G). Then the Wi t t 
Rings of these two spaces are related by 

W(X,G) ^ W(Xf,G)[G/G]. 

(Here R[H] denotes the group ring extension of the ring R by the group H)' 
The isomorphism is not canonical. 

Remark 3.9. The above construction provides additional examples of inde-
composible spaces. Namely, if (X, G) is any proper group extension of any 
space (X'', G), and if \X\ > 2, then (X, G) is indecomposible. This is easily 
verified. 

4. Inverse l i m i t s . In this section we define inverse limits, and prove tha t 
every space of orderings is an inverse limit of countable spaces. 

Definition 4 .1 . An inverse system of spaces of orderings is a triple consisting 
of (a) a directed set (/, ^ ) (b) spaces of orderings (X{, Gt), one for each 
i £ I and (c) morphisms <j>ij(Xu d) —» (Xjt Gf) for all i, j £ I satisfying 
i ^ j . I t is assumed tha t each morphism 4>a satisfies 4>ij(Xt) = Xj. This 
implies in part icular tha t </>%• : Gj —> Gt is injective. I t is further assumed for 
each i ^ j è fe, h h k £ I, t ha t <t>ik = <j>jk o 0 O . 

Definition 4.2. Let (/, (Xu Gt), 0 O ) be a given inverse system of spaces of 
orderings. Let G = lim Gu and X = J i m I j C lim xX^z) = x(^)« The pair 
(X, G) thus obtained is referred to as the inverse limit of the given inverse 
system. This is denoted by writing (X, G) = lim (Xu Gt), the limit being 
taken with respect to the directed set (/, ^ ) . 

T H E O R E M 4.3. The inverse limit of a given inverse system of spaces of orderings 
is a space of orderings. 

Proof. Use the notat ions of Definition 4.2. Let </>** : Gt —> G denote the 
canonical injection. Then the dual 0* : x(G) —> x(Gt) is a continuous sur-
jective group homomorphism, so it follows tha t X = C\i<t>~l{Xi) is closed. 
Thus Oi holds. 

Claim. For each i d I, <t>i(X) = Xt. For let a £ Xt. Since I is directed and 
4>kj(Xk) = Xj for k è J, it follows tha t any finite intersection of the sets 
4)j~l(Xj) C\ <1>~1{<J),J (z I, is not empty. Thus , by compactness, 

X r\<t>rl(<r) Je 0. 

This proves the claim. 
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Now identify each Gt with its image under </>**. By the claim, this identifies 
Xt with the restriction of X to G*. 02 and 03 are now clear. If/, g are forms 
defined over G, t h e n / , g are both defined over some Gi} i Ç / . I t is clear t ha t 
f = g (mod X ) if and only if/ = g (mod X t). T h u s 04 is clear. 

Remark 4.4. Let (X, G) be the inverse limit of the inverse system 
(/, (X{, Gi), <t>a). T h e morphisms <£?J- : (Xu Gt) —> (J3-, G ;) determine infective 
ring homomorphisms 4>tj : W ( X j , G ;) —> 1^(XZ-, GO- W(-^\ G) is jus t the 
direct limit of the system (/, W(X u Gt), 0 ^ ) . 

Definition 4.5. A space of orderings (X, G) is said to be countable if G is 
countable. 

Remark 4.6. If a space (X, G) is countable, then as a topological space X has 
a countable base, for clearly the Harrison basic sets X(ai, . . . , a n ) , 
ai} . . . , an £ G will be a countable base for X in this case. 

T H E O R E M 4.7. Each space of orderings is an inverse limit of countable spaces. 

Proof. Let (X, G) be a given space of orderings. T o show (X, G) is an inverse 
limit of countable spaces, it is enough to show tha t for each countable subset 
S of G there exists a countable quot ient space (Xf, Gr) of (X, G) such t h a t 
S Ç G ' . 

Let 5 be a given countable subset of G. Define a sequence of subgroups 
Gi ÇZ G2 ^ G3 Q . . . of G as follows: Let Gi denote the smallest subgroup of 
G containing S and — 1 . Now supposing Gn is defined, define Gn+i as follows: 
For each pair of forms / , g defined over Gn such t ha t Df Pi D&?± 0 pick: an 
element xftQ Ç Df C\DQ and let Gw+i be the smallest subgroup of G containing 
Gn and the elements x / i (, obtained in this way. Finally, let G' = U î Gn. Then 
clearly 5 Ç G', — 1 Ç Gr and G' is countable (since each Gn is countable) . Also 
Gr has the proper ty (*) of Lemma 3.3. Thus , by t h a t Lemma, (X', G') is a 
quot ient space of (X, G). 

5. Spaces w h i c h are inverse l i m i t s of f inite spaces . In this section the 
following question is considered: 

Question 1. Which spaces of orderings are inverse limits of finite spaces? 

One motivat ion for s tudying this question is obtained by considering the 
following question, and the remark and theorem following it. 

Question 2. Let (X, G) be a space of orderings, and k ^ 1. L e t / G W(X, G) 
be such t h a t 0/ = 0 mod 2k holds for all a G X. Then is it t rue t ha t 
/ G Mk(X, G)? (M(X, G) denotes the ideal of even dimensional forms in 
W(X, G).) 

Remark 5.1. Question 2 is known to have an affirmative answer for many 
spaces, e.g. see [7, 9, 10]. In part icular the result is known to be t rue for all 
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finite spaces of orderings. From the next theorem, it follows tha t Question 2 
has an affirmative answer for all spaces of orderings which are inverse limits 
of finite spaces. 

T H E O R E M 5.2. Suppose (X, G) =< l im (Xu Gt) and that Question 2 has an 
affirmative answer for each (X i} d). Then it has an affirmative answer for (X, G). 

Proof. L e t / £ W(X, G) satisfy af = 0 mod 2k W G X. Since W{X, G) = 
l imW(Xj , Gt) we may as well a s s u m e / £ W(XU Gz) for some i. Since the 
map X —» Xi is surjective it follows tha t af = 0 mod 2k \/a £ Xt. Thus , by 
a s s u m p t i o n / G Mk{Xu Gt). But clearly Mk(Xu Gt) Q Mk(X, G). 

Remark 5.3. Here is additional motivation for studying Question 1. Denote 
by 38 the category whose objects are the compact totally disconnected topo­
logical spaces, and whose morphisms are the continuous maps. There is a 
natural identification of 38 with a subcategory of the category & of all spaces 
of orderings, namely the subcategory of © consisting of all 1-stable spaces. 
Under this identification X Ç 38 is identified with the 1-stable space (X, G) 
where G = Cont (X, {1, —1}). I t follows from results in [6] (also see [13]) t ha t 
every space of orderings in this subcategory is equivalent to the space of 
orderings of a Pythagorian field satisfying S.A.P. (strong approximation 
proper ty) and conversely. The point to be made here is t ha t a well-known result 
in topology asserts tha t every X £ 38 is the inverse limit of finite spaces. T h u s it 
is natural to ask how far this familiar property of 38 extends into the larger 
category. 

Notation 5.4. From now on J^~ will denote the subcategory of © consisting 
of all finite spaces of orderings, and p r o ^ the subcategory of © consisting of 
inverse limits of finite spaces. 

Remark 5.5. T o show tha t a space of orderings (X, G) belongs to pro J ^ it is 
necessary and sufficient to show tha t for each given finite subset 

au . . . , an G G, 

there exists a finite quotient space (Xf, G') of (X, G) such tha t ai, . . . , an Ç G'. 

Remark 5.6. If we carry through the proof of Theorem 4.7 in the case 5 is 
finite we can (by a proper choice of the elements xftg a t each stage) construct 
the groups Gi, G2, G3, . . . in such a way tha t each is finite. Of course this still 
doesn ' t imply the finiteness of G' = U Î Gn. 

The following Theorem summarizes some obvious properties of pro J r . 

T H E O R E M 5.7. (1) IfXf 6 p r o J ^ i = 1, 2, then I i 0 I 2 ^ p r o J T 
(2) If X is a group extension of Xf G pro ^ , then X G pro ^ . 
(3) / / X = lim Xu and if Xt Ç p r o ^ for each i, then X G pro Jr. 

Proof. All these results are fairly elementary. Here is the proof of (2). Let 
ai, . . . , an Ç G. Let H denote the subgroup of G generated by a1} . . . an, and 
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let H' — H C\ G'. By assumption there exists a finite quotient space (X/ , G\) 
of {X'', G') such that H' C G/. Let Gi denote the subgroup of G generated by 
G/ and H, and let Xi denote the restriction of X to G\. Thus «i, . . . , an Ç Gi. 
Moreover ( J i , Gi) is a space of orderings. In fact it is a group extension of 
(AY, d ' ) . 

A slightly deeper result is now given. 

THEOREM 5.8. Let (X, G) fr£ a space of orderings. Suppose every indecomposible 
sub space of X belongs to pro J^. Then X £ pro Ĵ ~. 

Proof. It is enough to show that for each finite subset «i, . . . , an £ G there 
exists a finite quotient space (Xf, G') of (X, G) such that ai, . . . , an 6 G'. 
We assume that for some finite set aj, . . . , an no such quotient exists, and 
obtain a contradiction. First we need the following: 

Claim. Let Xu i £ 7 be a set of subspaces of X linearly ordered by inclusion, 
and let X0 = H/X^. X0 is clearly a subspace of X. Let A* = Xt1- for each 
i Ç 7 U {0}. Suppose there is a finite quotient of (X0, G/A0) containing 
ftiAo, . . . , anA0. Then there exists i £ 7 such that (Xu G/A{) has a finite 
quotient containing <2iAz-, . . . , anAt. 

To prove this claim, first note that A0 = U/ A*. Let (X0'', Go'/A0) be a finite 
quotient of (X0, G/A0) such that ax, . . . , an £ Go'. For each i £ 7, let G/ 
denote the subgroup of G generated by Â  and b\, . . . , bk where bi, . . . , ^ is a 
fixed basis of Go' modulo A0. 

It is clear that G//A* ^ G0'/A0 cannonically and that the dual isomorphism 
x(Go'/Ao) = x(G//Ai) carries X0

f intoX/ (X/ is the restriction of Xt to G/) . 
To simplify notation, identify these groups and consider 

«' £ nix; cx(Go7Ao). 

Suppose o-'(frj) = e, £ {1, — 1}, j = 1, . . . , k. It follows that 

Xi(biei, . . . , &*€*) ^ 0 
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for each i Ç / . By compactness, 

Xoib^u . . . , bkek) = Hi X tfaeu . . . , bkek) * 0. 

This implies a' £ X0
f. T h u s XQ = f^jX/. Since the spaces X/, i £ I are 

linearly ordered by inclusion, and each is finite, it follows tha t we 
have X( = X0', and hence (X/, G//A<) — (X0, G0'/AQ) for i £ I sufficiently 
large. In particular, this implies (X/, G//At) is a space of orderings for i (z I 
sufficiently large. On the other hand U / G{ = Go', «1, . . . , aw G Go', and 
the groups G/, i (z I are linearly ordered by inclusion. T h u s ai, . . . , a„. Ç G / 
for i £ I sufficiently large. This completes the proof of the claim. 

Now consider the set ff of all subspaces ( F , G/A) of (X, G) such tha t there 
does not exist a finite quot ient of ( F, G/A) containing aiA, . . . , a„A. Order this 
set by inclusion, i.e. (Y1} G/Ai) ^ (F 2 , G/A2) if and only if Fx 2 F2 . By 
assumption, (X, G) Ç j ^ 7 , so j ^ F^ 0. By the claim, and Zorn's Lemma, ff has 
a minimal element. Say ( F , G/A) is a minimal element of ff. 

If F decomposes as F = Fi © F2 , Yt ^ 0, i = 1, 2, then by the mini­
mali ty of F, there would exist a finite quot ient Y ( of F z containing the cosets 
of ai , . . . , an, for i = 1,2. But then F / © F 2 ' would be a quotient of F with 
the same properties. This is a contradiction. Thus , F is indecomposible, so by 
assumption, F Ç pro J r . But this is also a contradiction. 

Remark 5.9. The technique used here also serves to reduce many other 
problems about spaces of orderings to the indecomposible case. For example, 
Question 2 reduces to the indecomposible case by this technique. 

Definition 5.10. An indecomposible space of orderings (X, G) is said to be of 
elementary type if either \X\ = 1, or if (X, G) is a proper group extension of 
some space of orderings (Xf, G'). 

T H E O R E M 5.11. Let (X, G) be a space of orderings, each of whose indecomposible 
subspaces is of elementary type. Then X Ç pro 

Proof. Proceed as in Theorem 5.8. T h a t is, suppose there is a finite set 
ai , . . . , an G G which is not contained in any finite quotient of (X, G). Define 
Sf and ( F , G/A) exactly as in Theorem 5.8. Then ( F, G/A) is indecomposible 
and hence of elementary type. Clearly F is not singleton, so there exists a 
non-trivial character y Ç x (G/A) such tha t y Y = Y. Thus ( F , G/A) is a 
group extension of ( F ; , G' /A) where Gf/A = kern y. 

Fix an element x G G, x $_ G'. Then F(x)1- = A U Ax. The subspace 
( F ( x ) , G/A U Ax) of ( F , G/A) is equivalent to the space ( F ' , G' /A) in a can­
onical way. By the minimali ty of F, there exists a finite quot ient of F(x) 
containing the cosets of ai , . . . , an. Let ( F / , G / / A ) denote the corresponding 
quot ient of ( F ' , G'/A) under the equivalence. Wri te each at in the form 
a{ = friXei, bf (z G\ e* = 0 or 1, i = 1, . . . , n. I t should be clear tha t 
bu . . . , bn Ç G / . Now let Gi = G / U G/x , and let Fi denote the restriction 
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of Y to Gi/A. Then (F i , Gi /A) is a group extension of ( F / , GY/A) so it is a 
space of orderings and hence is a finite quot ient of ( F , G/A) . Also 
ai , . . . , an 6 Gi. This contradict ion completes the proof. 

Remark 5.12. The subcategory <o ol Û consisting of all spaces of orderings 
satisfying the hypothesis of Theorem 5.11 is fairly extensive. For example, it 
follows from results in [11] t h a t ^ Ç ê . Also 

(1) $ contains all 1-stable spaces. 

(2) If Xu X2 e #, then X, ® X2 g <f. 
(3) If X is a group extension of X' G <f, then X £ cf. 
In part icular, d0 contains all spaces of the type discussed in [7]. 

Remark 5.13. There is an abs t rac t classification of the category of spaces ^ 
considered in [7]. Namely, a space of orderings belongs to c1o if and only if it is 
generated by a finite number of fans. The proof of this assertion uses essentially 
only the theorems and techniques used in [11]. Note t ha t to say a space X is 
generated by subspaces Fi, . . . , Fk means simply t ha t 

(F, u . . . u Fk)± = F^ n ... r\ /v- = l. 
The connection between the category ^ and the category of spaces satisfying 
the chain condition [see 9, 10] is not clear, a l though it is clear t ha t every space 
1 ^ ^ does satisfy the chain condition. One might guess t ha t these categories 
are equal. 
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