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An open interval of a simply ordered set 5 is a subset I oî S such that either 
(1) for some a G S, I = {x G S\x < a}, 
(2) for some a G S, I = {x G S|a < x], or 
(3) for some a £ S and ô G 5, 7 = {x G S\a < x < b). 
A simply ordered set with its interval topology (i.e., the topology in which 

"neighborhood of x" means "open interval containing x") will be called an 
ordered space. 

It is shown that a connected ordered space 5 is separable provided it satisfies 
Souslin's condition (2) (i.e., there exists no uncountable collection of mutually 
exclusive open subsets of S) and there is a countable family F of continuous 
functions of S into itself such that each point p of S is a limit point of 
{fiP) I / £ F}. If 5 is not assumed to satisfy Souslin's condition, the existence of 
such a family F does not imply that S is separable; however, if no element of 
F has a fixed point or if the elements of F can be arranged in a sequence 
{fn} such that for each point p of S, {fn(p)} —> Pi then 5 must satisfy Souslin's 
condition and hence must be separable. 

Notation. If 5 is an ordered space and a and b are elements of S such that 
a < b, then ab will denote the open interval of S with end points a and b; 
i.e., ab = {x Ç S\a < x < b}. As usual, S X S will denote the topological 
product of 5 with itself and if / is a function of S into itself, then G (J) will 
denote the "graph" of / in 5 X 5; that is, G (J) = {(x,f(x))\x G S}. 

THEOREM 1. Suppose S is a connected ordered space and F is a countable 
family of continuous functions of S into itself such that each point p of S is a 
limit point of {f(p)\f G F}. If S satisfies Souslin's condition, then S is separable. 

LEMMA. Under the above hypothesis, if a, b and c are elements of S such that 
a < b < c, then for some fin F, G (J) intersects the subset (ab X be) + (be X ab) 
ofSXS. 

Proof of Lemma. Since b is a limit of {f(b)\f Ç F}, there exists an element 
/ o f F such tha t / (6) G ac and/(6) ^ b. Suppose f(b) Ç be. Since / i s contin­
uous, there exists a neighborhood V of b such that f(V) C be. Since 5 is 
connected, there exists a point x of V such that x 6 ab. Since x G ab and 
f(x) Ç be, (x,f(x)) G ab X &c. Similarly, if f(b) G afr, there exists an x in ta 
such that (x,f(x)) € be X ab. Hence G(f) intersects (ab X be) + (be X ab). 
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Proof of Theorem 1. In (1) it is shown that if S is not separable there 
exists an uncountable collection U of mutually exclusive open subsets of 
S X S such that if U £ U, there exist points a, b, c of S such that a < b < c 
and U = (ab X be) + (be X ab). Since F is countable and for each U in U 
there is an / in F such that G (J) intersects U, there exists an / 0 in F such that 
G(fo) intersects each of uncountably many elements of U. Since for each U 
in U, the intersection of G (Jo) and U is an open subset of G(fo), G(/o) contains 
uncountably many mutually exclusive open sets. But since / 0 is continuous, 
G (Jo) is homeomorphic to S and hence satisfies Souslin's condition. 

That Theorem 1 does not remain true if the requirement that S satisfy 
Souslin's condition be dropped is shown by the following example. 

Let the points of S be the ordered pairs (x, y) of real numbers such that 
0 < y < 1 and let (xly y±) precede (x2, y2) in S if and only if either X\ < x% 
or xi = X2 and yi < y2. Then S is a connected ordered space but is not separable 
since it does not satisfy Souslin's condition. For each positive integer », 
let 

gn(x, y) = [x, y - ^ + ~J , hn(x, y) = [x H ~ , y J . 

Then for each », both gn and hn are continuous functions of S into itself. 
If p = (x, y) then p is a limit point of {#»(£)} if 0 < y < 1 and p is a limit 
point of {hn(p)} iî y = 0 or y = 1. Hence if 7̂  = {{gw} + {&n}}, then for each 
p in S, p is a limit point of {/(£)|/ G F}. 

THEOREM 2. If S is a connected ordered space and F is a countable family of 
continuous functions of S into itself such that (1) no element of F has a fixed point 
and (2) each point p of S is a limit point of {f(p)\f G F\, then S is separable. 

LEMMA 1. Every uncountable subset of a connected ordered space has a limit 
point. 

Proof of Lemma 1. Suppose 5 is a connected ordered space and M is an 
uncountable subset of S which has no limit point. Let a be a point of 5 and 
suppose there are uncountably many points x of M such that a < x. Since S 
is connected, every infinité bounded subset of M has a limit point. Hence if b 
is a point of 5 such that a < by then ab contains not more than a finite number 
of points of M. It follows that there exists a sequence {xn} of points of M such 
that for each », a < xn < xn+\. Since for each » there are not more than a 
finite number of points of M in the interval axn} but there are uncountably 
many points x of M such that a < x, the sequence {xn} is bounded and hence 
has a limit point. 

LEMMA 2. If S is a connected ordered space and G is an uncountable collection 
of mutually exclusive intervals of S, then there exist a point p of S and an infinite 
countable subcollection G' of G such that every neighborhood of p contains all but 
a finite number of the elements of Gf. 

https://doi.org/10.4153/CJM-1955-059-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-059-5


550 B. J. BALL 

Proof of Lemma 2. Let M denote a set consisting of one and only one point 
of each element of G. Since M is uncountable, it has a limit point. If q is a 
limit point of M, then either every open interval containing q contains a 
point x of M such that x < q or every open interval containing q contains a 
point x of M such that q < x. Hence there exists a sequence {xn} of points of 
M such that either (1) for each n} xn < xn+i < q or (2) for each n,q< xn+x <xn. 
Since S is connected and {xn} is bounded, {x^} has both a greatest lower bound 
in S and a least upper bound in S. In case (1), let p be the greatest lower bound 
of {xn} and in case (2), let p be the least upper bound of {xn}. In either case 
it is clear that the sequence \xn) converges to p. For each n, let gn denote the 
element of G which contains xn. It is easily seen that since the elements of G 
are mutually exclusive, every neighborhood of p contains all but a finite num­
ber of the intervals gi, g2, gz, . . . . 

Proof of Theorem 2. Suppose G is an uncountable collection of mutually 
exclusive open intervals of S. For each element g of G, there exists an element 
f0 of F such that fg(g) intersects g. Hence there exist an element/ of F and an 
uncountable subcollection Gr of G such that for each element g of Gf, f(g) 
intersects g. From Lemma 2 it follows that there exist a point p of S and a 
sequence gi, g2, gz, . . . of elements of G' such that every neighborhood of p 
contains all but a finite number of the intervals gi, g2, gz, . . . . For each n, 
let pn be a point of gn such that f(pn) £ g». Then {pn\ —* p and hence since 
/ i s continuous, {/(/>„)} -» / (£ ) . But since for each n,f(pn) € gn, {/(£„)} -» £• 
Hence/(£) = £ a n d / has a fixed point. Hence S satisfies Souslin's condition. 
It follows from Theorem 1 that S is separable. 

NOTE. If in the hypothesis of Theorem 2 the elements of F are required to 
be homeomorphisms of 5 onto itself, it can be shown by a direct argument that 
for each point p of 5 the set 

\fn(p)\f e F, * = o, ± i , ±2 , . . . } 
is a countable dense subset of S. 

THEOREM 3. If S is a connected ordered space and {fn} is a sequence of con­
tinuous functions of S into itself such that for each point p of 5, {fn (p)} —> p 
and for infinitely many integers n, fn(p) 9e p, then S is separable. 

Proof. Suppose G is an uncountable collection of mutually exclusive open 
intervals of S. For each element g of G there exist a point pQ of g and an integer 
nQ such that for n > n0, fn(Po) £ g- Hence there exist an integer n and an 
uncountable subcollection G' of G such that for each element g of G', n — ng. 
By Lemma 2 to Theorem 2, there exist a point p of S and a sequence gi, g2, 
gz, . . . of elements of G' such that every neighborhood of p contains all but a 
finite number of the intervals gi, g2, gz, . . . . I t follows as in the proof of Theo­
rem 2 that for k > n, fk(p) = p. But this is impossible by hypothesis. Hence 
5 satisfies Souslin's condition. Hence, by Theorem 1, S is separable. 

https://doi.org/10.4153/CJM-1955-059-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-059-5


SEPARABILITY OF AN ORDERED SPACE 551 

REFERENCES 

1. G. Kurepa, La condition de Souslin et une propriété charaderistique des nombres réels, 
Comptes Rendus de L'Académie des Sciences (Paris), 231 (1950), 1113-1114. 

2. M. Souslin, Problème 3, Fund. Math., 1 (1920), 223. 

University of Virginia 

https://doi.org/10.4153/CJM-1955-059-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-059-5

