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Abstract

Let V be a finite dimensional Hermitian vector space and K be a compact Lie subgroup of l/( V) for
which the representation of K on C[V] is multiplicity free. One obtains a canonical basis [pa] for the
space Q V R ] * of AT-invariant polynomials on VR and also a basis {qa} via orthogonalization of thepa's.
The polynomial pa yields the homogeneous component of highest degree in qa. The coefficients that
express the qa 's in terms of the pp 's are the generalized binomial coefficients of Yan. The main result in
this paper shows that these numbers are rational.

2000 Mathematics subject classification: primary O5E35, 20G05.

1. Introduction

Throughout this paper, V denotes a finite dimensional complex vector space with
Hermitian inner product (•, •) and norm | • |. K denotes a compact Lie group which
acts linearly and unitarily on V. We write kz for the action of k € K on a vector z 6 V.
The associated representation of K on the space C[ V] of holomorphic polynomials on
V is given by the formula (k • p)(z) = p(k~lz). The action of K on V is said to be a
(linear) multiplicity free action when this representation of K on C[V] is multiplicity
free. That is, no irreducible representation of K occurs more than once in C[ V]. We
assume the action of K on V is multiplicity free throughout this paper. As shown in
[1, Proposition 2.2], it follows that the action of the identity component of K on V
is also multiplicity free. Thus we can assume that K is connected. The multiplicity
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free actions have been completely classified (see [5,12,13]). We make use of this
classification below in Section 4 of this paper.

We write the decomposition of C[ V] into Af-irreducible subspaces as

(1.1)
aeA

Here A denotes a countably infinite index set. In Section 2, we specify A concretely
as a set of highest weights. Decomposition (1.1) is canonical because the action of K
is multiplicity free. The subspace £?m{V) c C[V] of homogeneous polynomials of
degree m is /C-invariant. Thus each irreducible Pa is contained in some £?m(V). We
write |a| for the degree of homogeneity of Pa, so that Pa c ^\a\( V).

There are no non-constant ^-invariant polynomials in C[V]. Indeed, the trivial
representation of K occurs only once in C[V]. There are, however, non-constant
K-invariant polynomials on the underlying real space VR for V. These are non-
holomorphic. The algebra C[ VR]K of such invariant polynomials has a natural vector
space basis. To describe this, we introduce the Fock (or Fischer) inner product given
on both C[ V] and C[ VR] by

(1.2) {f'8)*

Here n = dimc( V) and 'dz1 denotes Lebesgue measure on VR = R2". Fora € A let
da = dim(Pa), choose an orthonormal basis {vu v2,.. •, v^) for Pa, and set

(1.3)

It is not difficult to see that this definition of the pa's does not depend on the choice of
orthonormal basis for Pa and that {pa \ a e A} is a basis for the vector space C[ VR]*
(see [2, Proposition 3.9]).

One obtains a second basis for C[ VR]* by orthogonalization of the pa's. More
precisely, we

(1) choose any ordering on the set of indices A that ensures a precedes p if |ot | < \p\,
(2) use the Fock inner product and this ordering to perform Gram-Schmidt orthog-

onalization on the sequence [pa \ a e A}, and
(3) normalize the resulting polynomials qa so that qa(0) = 1.

In [2, Proposition 4.2] we show that the resulting basis [qa \ a e A} does not
depend on the ordering chosen for the indices {a € A | |a| = m} that arise from
the decomposition of &m( V), m e 2+ . Our proof of this fact in [2] involves the
representation theory of the Heisenberg group. We can suppress the Heisenberg
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group and outline the key ideas as follows. For z e V and/ e C[ V] let n(z)f be the
function on V given as

n(z)f (to) = e-
<w'z)/2-M2/*f (w + z)

and define functions qa via

(1.4)

It is shown in [2] that

(1) qa is a well defined K -invariant polynomial on VR with qa(Q) = 1,
(2) the qa 's are pair-wise orthogonal with respect to the Fock inner product, and
(3) the homogeneous component of highest degree in qa is (— l)ia|p«.

It follows from these facts that if one chooses any ordering for A as above then
orthogonalization yields the polynomials qa given by (1.4).

We now have two canonical bases [pa | a e A} and [qa \ a e A} for <C[ VR]*\ The
pa's are homogeneous (of degree 2\a\) and the qa\ are orthogonal. We write the qa's
as linear combinations of the pa's:

(1.5) qa =

Since the po's and qa's are real valued functions, the coefficients ["] are real. We call
these the generalized binomial coefficients for the multiplicity free action of K on V.
They are defined via (1.5) for |/J| < |a|. We extend the definition to all of A x A by
setting [*] = 0 when |/31 > |a|.

The inclusion of the sign '(—l)1^1' in (1.5) is motivated by the fact that ( - l ) H p a

is the homogeneous component of highest degree in qa. Thus [̂ ] = 1 and ["] = 0 for
a ± fi with \a\ = \/i\. Moreover, Lemma 3.9 in [6] shows that, with this convention,
the generalized binomial coefficients are non-negative. The main result in this paper
asserts that these are, moreover, rational numbers.

THEOREM 1.1. ["] is a non-negative rational number for all a, ft € A.

The generalized binomial coefficients were introduced in the setting of multiplicity
free actions by Yan in his unpublished work [17]. The simplest example of a multi-
plicity free action is given by the standard action of K — U(n) on V = C". In this
case C[ V] decomposes as C[ V] = J2m ^(V) and one can show (see [17] or [6]) that
[m] = (™), independent of n. This motivates the terminology. For multiplicity free
actions that arise from Hermitian symmetric spaces, Yan has shown that the general-
ized binomial coefficients as defined above agree with those introduced by Herz, Dib
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and Faraut-Koranyi (see [8,9,18]). Our paper [6] shows that the generalized binomial
coefficients appear in the solutions to a variety of combinatorial and analytic problems
that arise in connection with multiplicity free actions and related Gelfand pairs asso-
ciated with the Heisenberg group. We indicate one such interconnection. From pp,
one obtains a Wick ordered polynomial coefficient differential operator 'pp (z, 3/3z)'.
This is ^-invariant and hence scalar on each subspace Pa. The eigenvalue for this
operator on Pa is ["]/(2"?ld/s). This relates the computation of generalized binomial
coefficients to that of eigenvalues for K -invariant polynomial coefficient differential
operators, a problem that has been studied recently in [14-16]. Theorem 1.1 shows
that these eigenvalues are non-negative rational numbers.

The rest of this paper is structured as follows. In Section 2 we show that the basis
{pa | a € A} contains a canonical subset {yu ..., yr] of 'fundamental invariants'
that freely generate C[ V%]K as an algebra. We prove that one can replace the pa's
by polynomials of the form y°' • • • y°r in the orthogonalization procedure used to
determine the qa's. For this, we need to use a specific refinement of the partial
ordering by degrees that is compatible with the weight ordering used to determine the
fundamental invariants. This is the content of Theorem 2.1 below. In Section 3, we
reduce the proof of Theorem 1.1 to the assertion that one can find some orthonormal
basis for V so that each fundamental invariant y, is given by a polynomial with rational
coefficients in the coordinates with respect to the basis. The proof uses Theorem 2.1
together with some results concerning generalized binomial coefficients from [6]. In
Section 4 we complete the proof of Theorem 1.1 by showing the existence of such
a basis. We do this via case-by-case analysis using a classification of multiplicity
free actions and exhibiting rational fundamental highest weight vectors. This requires
rather explicit knowledge of the decomposition for C[ V] in each case. We believe
that the details of this case-by-case analysis, which extends work of Howe and Umeda
from [11], are of independent interest.

2. Fundamental invariants

Let T be a maximal torus in K and G = Kc, H = Tc be the complexified groups
with Lie algebras g and h respectively. Choose a positive system A+ = A+(g, h)
of roots. We recall that these choices produce a simple ordering on the weights
X 6 h* = hom(h, C) for any representation of K. We denote this weight ordering
by <. Let A c h* denote the set of highest weights for the irreducible representations
of K which occur in C[ V]. Thus A is the index set for decomposition (1.1), and the
irreducible component Pa has highest weight a e A.

If ha, tip e C[V] are a- and ^-highest weight vectors, then hahp is an (a + /})-
highest weight vector and thus A c h* is an additive semigroup. Following [11] we
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call the primitive elements of A fundamental highest weights. These are the elements
of A that cannot be expressed as sums a + fi with a, fi e A. We see that if ha is a
prime polynomial, then a is a fundamental highest weight. As explained in [11], the
converse is also true. The fundamental highest weights are finite in number and freely
generate A. Let

(2.1) {a , ,« 2 , . . . , a r }

be the fundamental highest weights listed in increasing order using -<. We then have

A = {<ZiOfi H h arar \ au ..., ar € 1+],

where /+ denotes the non-negative integers. The fundamental highest weights thus
establish a semigroup isomorphism

(l+Y = A, (au...,ar) (-• axax -\ V arar.

This correspondence is canonical having chosen the data T and A+. We sometimes
write elements a e A as 'a = (a i , . . . , a,)' to mean a = axai + • • • + arar. In this
notation we have a\ = (1 ,0 , . . . , 0), a2 = (0, 1,0,..., 0) and so on.

DEFINITION 2.1. The fundamental invariants yu ..., yr are defined as yj = paj

where as above c*i,..., ar e A are the fundamental highest weights.

For a — ( a i , . . . , ar) € A let

Note that ya is ̂ -invariant and homogeneous of degree 2|a | = deg(/?o). We know that
the qa 's can be obtained by orthogonalization of the pa's using any ordering compatible
with degree. We show that the qa's can also be obtained by orthogonalization of the
ya's. For this, we need to use the weight ordering -< on A to refine the partial ordering
by degrees.

THEOREM 2.1. The polynomials [qa \ a e A} are obtained from the polynomials
[ya | a e A} by using the Fock inner product to perform Gram-Schmidt orthogonal-
ization and normalizing so that qa(Qi) = 1. Here we impose the ordering < on A
defined by

a<P& [(|or| < |0|) or (\a\ = \P\ and a < 0) ] .
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We remark that, from a practical viewpoint, Theorem 2.1 substantially improves
the orthogonalization result discussed in Section 1. In many examples, it is much
easier to obtain explicit formulae for the fundamental invariants, which are finite
in number, than it is to produce formulae for all of the /?o's. In such cases, the
orthogonalization procedure in Theorem 2.1 is concrete in the sense that the sequence
of ya 's is explicit. We provide formulae for the fundamental invariants for many of
the examples discussed below in Section 4. In [3], Theorem 2.1 was obtained in the
context of one specific multiplicity free action. This is Example 4.1.2 below.

PROOF OF THEOREM 2.1. Given X e h*, we write Wk for the A-weight space in
C[V], Wk = {/ 6 C[V] | X • / = X(X)f VX e h} inC[V]. Choose a highest weight
vector hj 6 Paj for each of the fundamental highest weights ait... ,ar. The hj 's are
unique up to non-zero scalar multiples. We normalize to ensure {hj ,hj)& = 1. Since
Paj is an orthogonal direct sum of its weight spaces, we can write the fundamental
invariant y; = paj in the form

(2.2) Yj=-rhjhj+rj,

where r, e £ ^ a . Wk <g> Wx. For or = ( a , , . . . , ar) e A we let ha = h"'h? • • • ha;.
This is a highest weight vector in Pa. From (2.2) we see that

(2.3) Ya = "^ v W « + ra,

where ra e ^2k<a Wk ® Wx. Similarly, we see that p a can also be written in the form

(2.4) p a = -^haha + r'a,

where fea = l/||/io||2 is a positive constant and r'a € £ ^ a Wk ® Wk.
Comparing (2.3) and (2.4), we see that

(2.5) p a = caya + sa,

where ca is a positive constant and sa e X^< a Wk <g> Wx- As both p a and ya are
^-invariant, so is sa. Since {pa \ a e A} is a basis for Q V R ] * , we have that
sa e Spanipp \ fi e A, fl < a). As both p a and ya are homogeneous of degree 2|a|,
equation (2.5) also shows that sa is homogeneous of degree 2\a\, provided sa ^ 0.
Thus we must have

sa e Span(p^ | \P\ = \a\ and )S < a) C Span(p^ | 0 < a).
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This fact together with (2.5) implies that application of Gram-Schmidt orthogonal-
ization to the sequences [pa | a e A} and {ya \ a e A} ordered via < yield the
same result. Since we know that orthogonalization of the pa's yields the qa's, this
completes the proof. •

REMARK 2.1. We note that the proof of Theorem 2.1 shows that for fixed m and
a = min{/f e A | |/J| = m] one has

pa = caya,

where ca = (</•; • ••«£)/«, | |*«l l 2 ) -

3. Proof of Theorem 1.1

Suppose that [eu ..., en] is an orthonormal basis for the Hermitian vector space V.
We obtain isomorphisms V = C" and

C[V] = C[Zl, . . . , Zn], C[ VR] = C[z,, . . . , Z,, Z,, . . . , Znl

where z\, • • • ,zn are the coordinates with respect to the basis. We write Q[V] and
Q[ VR] for the Q-subalgebras of C[ V] and <C[ VR] that correspond to Q [ z i , . . . , zn] and
Q[z i , . . . ,Zn,Zi, • •• ,zH] under these identifications. Our notation conceals the fact
that Q[ V] and Q[ VR] depend on the orthonormal basis used. In Section 4 we prove
the following result.

LEMMA 3.1. There is an orthonormal basis for V in which yt,... ,yr € Q[ VR].

This result is a key ingredient in our proof of Theorem 1.1. We assume Lemma 3.1
here and complete the proof of Theorem 1.1. Fix an orthonormal basis for V so that
the fundamental invariants are rational polynomials as in Lemma 3.1.

Next we recall that the monomials z' := z[' ••• z'n" in C[ V] = C[zi,..., zn] are or-
thogonal with respect to (-,-), and satisfy {z',z'), =2'I\ := 2" + +'"/,! •••/„!. (See
for example [10, Theorem 1.63], although this reference uses a different normalization
convention for the Fock inner product.) Thus we also have

. ,-j r-j\

(Z Z ,Z Z )je = i

10 otherwise.

In particular, the inner product of any two monomials in C[VR] is integral. We
conclude immediately that

LEMMA 3.2. (/, g), e Qforanyf, g e Q[VR].
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LEMMA 3.3. qa e Q.[VR]foralla e A.

PROOF. We use the ordering specified in Theorem 2.1 to perform Gram-Schmidt
orthogonalization with the sequence of polynomials {ya \ a € A}. This yields an
(unnormalized) sequence of orthogonal polynomials qa with q0 = 1 and

ga = ya -

for a > 0. Here 0 = (0 , . . . , 0) e A is the index for which Po = C, the scalar
polynomials. We have that q0 € Q[VR]. Assume inductively that a > 0 and that
to G Q[MR] for ft < a. Lemma 3.1 shows that ya € Q[ VR] and Lemma 3.2 ensures
that the coefficients in the expression for qa are all rational. Thus qa e Q[ VR] for all
a e A. A second induction on a shows that 5^(0) € Q. Thus also qa = qa/qa(Q) e

D

We can now complete the proof of Theorem 1.1 by using some combinatorial
identities from [6]. Proposition 3.7 in that paper asserts that

We know, moreover, that the ^a's are orthogonal and the norms are given by
(qa, qa)* = l/da. (See [4,17].) Thus, for |«| = |/3| + 1 we have

Lemma 3.3 shows that qa and \z\2qp/2 belong to Q[ VR] and hence the left hand side
of the last equation is rational by Lemma 3.2. It follows that ["] e Q whenever
|a| = |0| + 1. Suppose more generally that |a| = \fi\ + k. Equation (3.9) in [6] reads:

where the sum is over all (e ! , . . . , e*_i) with \Sj\ = |0| +j. Since all the generalized
binomial coefficients appearing on the right hand side of this equation are rational, we
conclude that [a

p] e Q.

4. Case-by-case analysis

In this section we prove Lemma 3.1. This involves case-by-case analysis working
from the classification of multiplicity free actions contained in [5]. We begin with a
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simple lemma that enables a substantial reduction in the work required for each case.
First note that the concept of multiplicity free action depends only on the image of K
in U( V) under its representation on V. Thus we can regard K as a subgroup of U( V)
acting on V in the usual fashion. Recall that we use an orthonormal basis of V to
write polynomials in coordinates and identify rational subalgebras Q[ V] and Q[ VR]
of C[ V] and C[ VR]. Such a basis can also be used to realize U( V) and GL( V) as the
matrix groups U(n) and GL(«, C). The group K and its complexification G — Kc

become subgroups of GL(n, C) acting on C" in the standard fashion. The Lie algebra
0 of G becomes a subalgebra of the Lie algebra gl(n, C) of n x n matrices. Let
0o_ = 0 D gl(n, Q). This is a Lie algebra over Q. One says that 0Q is a rational form
for g if g = C <8» 0Q. Equivalently, g has a basis (over C) that is contained in the
subset 0Q.

LEMMA 4.1. Suppose that QQ is a rational form for Q. Let a € A and suppose that
Pa n Q[V] ^ {0}. ThenPa e Q[VK].

PROOF. Let h e P a n Q [ V] with h 7̂  0. Since Pa is A"-irreducible we have
Pa = <fy (g)h. Thus any basis {/i,..., fm} for Pa (m = da) can be written as

for some D , , . . . , Dm € <fr(g). Since <%(Q) = ^ ( C <g> 0Q) = C <g> ^ ( 0 Q ) , we can
write

for some cjA,..., ciXj € C and D J A , . . . , DjXj 6 ^ ( 0 Q ) . Thus

Pa = C - S p a n ( / , , . . . , fm)

= C - S p a n ( D l A h , . . . , D 1 A h , D 2 A h , . . . , D 2 M h , . . . , D m < l h , . . . , D m , i m h )

and we conclude that Pa has a basis consisting of vectors of the form Dtjh. Let
{gi» • • •. gm) denote such a basis. Since DtJ e ^ ( g Q ) C ^{gl{n, Q)) and gl(n, Q)
preserves Q[V] = Q [ z , , . . . , zn], we have that gu ..., gm e Q[V].

Next we orthogonalize the basis {g{,..., gm} to obtain a basis {u{,..., um} defined
as Mi = gi and

for i — 2,..., m. Since the g; 's belong to Q[ V], we can use Lemma 3.2 and induction,
as in the proof for Lemma 3.3, to conclude that Uj € Q[ V\. Since {uu • • •, um} is an
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orthogonal basis for Pa, we can use Vj = Uj/\\iij || in (1.3) to write

1
pa(z) = —

m

Here (uj, uj) •? € Q since uj e Q[ V]. Thus we see that pa e Q[ V]. •

To prove Lemma 3.1, it now suffices to show that for any multiplicity free ac-
tion:

(1) there is an orthonormal basis for V for which gQ = g D gl(n, Q) is a rational
form for g, and
(2) one can find fundamental highest weight vectors hj e Paj (j' = 1 , . . . , r) that are

rational polynomials in the coordinates with respect to this basis. That is, hj € Q[ V]
forj = 1 , . . . , r.

This completes the proof. Indeed, Lemma 4.1 shows that using such a basis we have
y , , . . . , y r e Q [ V R ] .

The group G c GL( V) is connected reductive and complex algebraic. Decompose
V as an orthogonal direct sum of G-irreducible subspaces:

(4.i) v=v,e---evm.
For our purposes, we can replace G by G = G x (Cx)m where G' denotes the
commutator subgroup and we have one copy of the scalars Cx acting on each subspace
Vj. Indeed, the decompositions of C[V] under the actions of G and G coincide and
hence the po's, qa's and generalized binomial coefficients for the two actions are the
same. We can assume, moreover, that the action of the semisimple group G on V is
indecomposable. This means that we can't write V as a direct sum V = Wi © W2

and G as a product G = G\ x G2 with G's acting independently on W,. Indeed,
suppose that given any such indecomposable action one can find an orthonormal basis
with respect to which the fundamental invariants are rational polynomials. If the
action of G decomposes as a product of indecomposable actions of subgroups G' on
subspaces Wj then one obtains an orthonormal basis for V that meets our requirements
by concatenation of appropriately chosen bases for the Wj's. In particular, these
bases produce obvious inclusions Q[(W/)R] C Q[ VR] and the fundamental invariants
Yj,t e Q[( Wj )R] for the actions of each G'j x (Cx)m> on Wj just combine to yield the
(rational) fundamental invariants for the action of G.

We can now simplify the notation from the preceding paragraph and restrict our
attention to actions of the following sort.

• G c GL( V) is a connected semisimple complex algebraic group acting
indecomposably on V.

• V = Vt © • • • © Vm, where each V} is G-irreducible.
• The joint action of G x (Cx)m on V is multiplicity free.
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Group

SL(n) (n > 1)
SO(n) (n > 3)
Sp(2n) (n > 2)
S2(SL(n)) (n > 2)
A2(SL(n)) (n > 4)
SL(n) <g> SL(m) (n, m > 2)
Sp(2n) (g) SL(2) (n > 2)
Sp(2n) <g> SL(3) (n > 2)
Sp(4) <g> SL(n) (n > 4)
Spin(7)
Spin(9)
Spin(lO)
G2

E6

Degrees of fundamental highest
weight vectors (number)
1(1)
1,2(2)

KD
1,2, ...,n(n)

l ,2 , . . . , |n /2J(Ln/2j )
1,2,.. . , min(«, m) (min(n, m))
1,2,2(3)
1,2,2,3,3,4(6)
1,2,2,3,4,4(6)
1,2(2)
1,2,2(3)
1,2(2)
1,2(2)
1,2,3(3)

Example
number
4.1.1
4.1.2
4.1.1
4.1.4
4.1.5
4.1.3
4.1.6
4.1.7
4.1.8
4.1.9
4.1.10
4.1.11
4.1.2
4.1.12

Such actions have been completely classified. In all cases, one has either m = 1, so
that the action of G on V is irreducible, or m = 2. The irreducible multiplicity free
actions were classified by Kac in [12]. The indecomposable non-irreducible actions
were classified by the authors in [5] and independently by Leahy in [13]. Below, we
examine each possibility in turn to complete the proof of Lemma 3.1.

4.1. Irreducible multiplicity free actions Table 1, taken from [12], lists all pos-
sibilities for semisimple groups G C GL( V) acting irreducibly on V for which the
action of G x (C*) is multiplicity free. The notation, adopted from [12], indicates G
as the image of a group under some irreducible representation on some vector space
V. For example, A2(SL(n)) indicates the image of SL(n, C) in GL(A2(C)) and
Sp(2n) ® SL(3) indicates the image of Sp(2/j, C) x SL(3, C) in GL(C2" ® C3) under
the obvious representations.

For all of the groups G c GL( V) in Table 1, the vector space V has a standard
basis that is orthonormal for a natural Hermitian inner product that determines the
compact real form K c U(V). For the classical groups, these are the natural bases
for C , A2(C), S2(C) and C ® Cm. Using these bases to realize G as a matrix
group G C GL(n, C), one sees easily that 0Q = 0 n gl(n, Q) is a rational form for g
in each case. Thus, it remains to show that one can find fundamental highest weight
vectors that are rational polynomials in the coordinates with respect to these natural
bases. We do this below in each case. The fundamental highest weight vectors for
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most of these actions were given explicitly by Howe and Umeda in [11]. In all cases,
the number of fundamental highest weight vectors and their degrees (as homogeneous
polynomials in C [ V]) are in [ 11 ]. We have incorporated this information into Table 1.
In many cases, we are able to present explicit formulae for the fundamental invariants,
at least up to scalar multiples. We follow the notational conventions in [11], to which
we refer the reader for further details regarding the decomposition of C[ V] for each
of these examples.

4.1.1. SL(n), Sp(2n) Here G = SL(n, C) and G = Sp(2n, C) act on V = C1

and V = C2" by their defining representations. The G-irreducible subspaces of
C[ V] are the spaces £?m(V) of homogeneous polynomials of each fixed degree m.
There is a single fundamental highest weight vector, z\ e &>\ (V) and the associated
fundamental invariant is y(z) = |z|2/2. As we have already noted, the generalized
binomial coefficients for these examples are the usual binomial coefficients, motivating
our terminology.

4.1.2. SO(n), G2 Let e(z) = z2 H 1- z2 be the SO(«, C)-invariant polynomial
on V = Cn and let

2

Then^T = {p e C[V] | Dcp = 0} is the space of'harmonics', wither = £ ~ = 0 ^ ,
Jf?m = Jf? n &m(V). The decomposition of C[V] into SO(n, C) x C*-irreducibles
reads:

There are two fundamental highest weight vectors in C[ V], z\ and s(z). The associated
fundamental invariants are y{(z) = |z|2/2 and y2(z) = |e(z)|2/4«. For further details
on this example, we refer the reader to [3].

The exceptional group G2 acts on V = C7 as a subgroup of SO(7, C). The
subspaces 3ttfmel in <C[ V] are irreducible for the action of G2 x C*. Thus the decom-
position, fundamental highest weight vectors and invariants for this example are the
same as those for SO (7).

In the following examples, V is O <g> C , A2(C), S2(C) or C" © C . We regard
V as the space o f n x m matrices, skew-symmetric n x n matrices, symmetric n x n
matrices or n x 2 matrices respectively. We write z = (z,;) for the coordinates of
z e V with respect to the standard basis for V and use the notation

detit(z) = det

\Zkl
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4.1.3. SL(n) <8> SL(m) The decomposition of C[C ® Cm] under the action of
SL(n, C) x SL(m, C) x Cx is given by

Here the sum is taken over all Young's diagrams with at most min(n, m) rows and
p"D, p% are the representations of SL(n, C) and SL(m, C) corresponding to D. The
fundamental highest weight vectors are

det*(z) for k = 1 , . . . , min(/i,m).

The fundamental invariants can be written up to normalization as

m=i./i=*

Here /, J denote subsets of {1 n} and { 1 , . . . , m] and det/y(z) is the subdeter-
minant of z obtained from rows / and columns J.

4.1.4. S2(SL(n)) Here C[52(C")] decomposes under the action of SL(n, Q x P
as C[S2(C)] = J^D P"D- The sum is over all Young's diagrams D with at most n
rows, all of even length. The fundamental highest weight vectors are det*(z) for
k = 1 n.

4.1.5. A2(SL(n)) The decomposition is C[A2(O)] = Y,Dpn
D, where the sum

is over all Young's diagrams D with at most n rows and each column is of even
length. The fundamental highest weight vectors are ft(z) for k = 1 , . . . , [n/2],
where £t

2(z) = det2t(z). That is, £*(z) is the Pfaffian of the skew symmetric matrix
given by the first 2k rows and columns of z. This is written explicitly in [11] as

where Bk is the subgroup of the symmetric group S2* which preserves the pairs
{{1, 2 } , . . . , [2k — 1, 2k}}. In particular, we see that £*(z) is a rational polynomial in
the entries of z. Le t / = {iu ..., i2k} C [I,... ,n} and let £/ be the Pfaffian computed
with rows / and columns / . Up to normalization, the fundamental invariants are

4.1.6. Sp(2n) <g> SL(2) Letu, e C2n be the columns of z eV = C2n<g)C2, i = 1, 2.
The symplectic product e(z) = co{v\, u2)ofthe columns ofz is an Sp(2n, C)-invariant.
Let De = e(3/3z), and Jf = {p e C[ V] | Dep = 0}. We have

C[V]=
a,>a2>0

t>0
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where the irreducible subspace Jt?at,a2e
l has highest weight vector z"1'~

a2det2(z)a2e'.
Thus the fundamental highest weight vectors are z n , det2(z) and s(z) and we have
fundamental invariants / i(z) = |z|2 and y2(z) = |£(z)|2, modulo normalizations. In
order to compute the third fundamental invariant, we look at the decomposition of
^ 2 ( V). Under the action of GL(2n, C) x GL(2, C) we have

(4.2) 9>
i(.V) = (p(

2
2) ® P(

2
2)) 0 (p2;,!, <8> p (

2
U ) ) .

When we restrict to Sp(2/z, C) x GL(2, C), the second component decomposes as
M\\ © Ce. As we saw in Example 4.1.3, the (unnormalized) fundamental invariant
corresponding to the second component in (4.2) is ^ | / | = 2det / (z)det / (z) , where /
indicates the choice of rows. Thus, if y2 is the invariant corresponding to J#\,i, we
can average over orthonormal bases for Jtf{_\ © Ce in two different ways to obtain
£ | / | = 2 ( l /8)det , (z)det , (z) = Yiiz) + |e(z)|2/(8n), so that

\e(z)\2~\

J'l=2 ^ ^ ^ Z ' ~^ J '
4.1.7. Sp(2n) <8) SL(3) Again, we write the columns of z € C2" ® C3 as

vt e C2", i = 1, 2, 3. We have the three Sp(2n, C)-invariants £y(z) = a>(.vh Vj),
1 < i < j < 3, and corresponding operators Dtj = £y (3/3z). The space of harmonic
polynomials is Jf? = {p e C[ V] | Dyp = 0 for all i,j}, which decomposes as Jf =
E ^ . , a 2 , « 3 . w h e r e 'Kt.c.a, has highest weight vector z"r"2det2(z)a2-or3det3(z)0'3. The
full decomposition of C[ V] is (from [11]):

0 & 2 0 < 2 a 3

h >0

where o^aia^ is the representation of Sp(2n, C) on Jifa,,a2,ai and p3
D is the representa-

tion of SL(3, C) with Young's diagram D. By [11], we have six fundamental highest
weight vectors:

£i = Ziu Kz = £i2(z). ?3 = Zn£23(z) - Zn£n(z) + ZnSl2(z),

£2 = det2(z), f3 = det3(z), & = det12.i3(z)ei2(z) - det2(z)e13(z).

We have the usual fundamental invariant Ki(z) = |z|2. The second degree fun-
damental invariants yi{z) and y2(z) are found in the components a", <g> p(

3, 1} and
CTo ® Pa i) respectively. The sum of these two components is the SL(2n, C) x SL(3, Q -
irreducible p ^ 1 } <8> /t)^,). As in the previous example, we take diagonal sums in two
ways to obtain
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On the other hand, pfi1 ® p3
M ) is spanned by the ei} 's, and hence:

r I ! £ ' J ^ © ' Mz) = -= T] det,,j(z)detl,J(z) - — y2'(z).
8 n 8 i/i=m=2 8 n

The highest weight vector f3' lies in the the irreducible subspace (T"OQ ® p (
3 , 1);

which has dimension six. An orthogonal basis is given by u\ = ZnSn — Zn£iz
for i = 1 , . . . , 6. The first of these basis elements can be rewritten as

ll Zl2 Zl3 \ / Zll Zn Z\3

2i Zn Z23 J + d e t l z31 z32 Z33

\Zn+2,l Zn+2,2 Zn+2,3/ \2n+3,l Zn+3,2 Zn+3,3/

which is a sum of twelve distinct monomials, each of norm 8. Thus we obtain:

' i = l

The sum of subspaces (CT"J [ (Sip3) j 1))©(<7liO,o<8>P(
3
liU)) is theSL(2n, C) x SL(3, C)-

irreducible p2", t) ® p(
3
 t } ) , and hence

1

|/|=3

where the subscript / indicates a choice of rows. We have not derived a formula for
the fundamental invariant y4', which seems quite complicated.

4.1.8. Sp(4) <g> SL(n) The fundamental highest weight vectors are, from [11],

?i = zi i. Ki = det2 (z), f3 = det3 (z),

f4 = deuCz), ?2 = £i2(z). ?i = deti2,13(z)£i2(z) - det2(z)£i3(z)-

The highest weight vector fj determines the space spanned by e,y(z) = a>(u,-, Uy),
1 < 1 < j < m, and thus

16

As before, the spaces with highest weight vectors f2 and & s u m t 0 t n e SL(4, C) x
SL(», C)-irreducible p(

4, 1} <g) p("[ 1)? and hence
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In degree three, the irreducible subspace containing £3 is the SL(4, C) x SL(n, Q-
irreducible p(

4j, „ ® /o", ,,,, and hence

Similarly,

where J indicates a choice of columns.

4.7.9. Spin(7) The action here is the spin representation of Spin(7, C) on V =
A(C3). We use the usual basis 1, et, et A e,, e\ A e2 A e3 for V and let / 0 , / , , / y , /123
respectively be the dual basis for V*. The polynomial e = /o/i23—/1/23+/2/13—/3/12
defines a Spin(7, C) -invariant inner product on V. So we have fundamental highest
weight vectors/o, s and corresponding (unnormalized) fundamental invariants y\ (z) =
\z\2 and y2(z) = \£(z)\2.

4.1.10. Spin(9) According to [11], there are three fundamental highest weight
vectors, of degrees 1, 2 and 2. The space ^(V) decomposes into three irreducible
components, of dimensions 126, 9 and 1. The 9-dimensional irreducible is a copy of
the standard representation of SO(9, C), and we have a Spin(9, C)-invariant. More
explicitly, we take V = A(C4) and use the natural basis for V with dual basis
fo,ft,fij,fijk,f 1234 as in Example 4.1.9. Here f0 is a highest weight vector for
^ , ( V) = V*, and /0

2 is a highest weight vector for the 126-dimensional irreducible
in &>

1{y). A highest weight vector for the 9-dimensional irreducible is /0/234 —
72/34 + A/24 — A/23, and the Spin(9, C)-invariant inner product is given by the
following pairing of coordinates:

jof'1234 +/1/234 —/2/134 +/3/124 —/4/123 —/12/34 +/13/24 — f 14/23-

4.1.11. Spin(lO) The spin representation for Spin(10, C) can be realized in
V = Aeven(C5) = C © A2(C5) © A4(C5), and we use the natural bases for V and
V* as in the preceding two examples. We have fundamental highest weight vectors
of degrees 1 and 2 given by / 0 and ^3/45 — ^4/35 + /2s/34- The second of these
generates a copy of the standard module for SO(10, C) in

4.1.12. E6 Following [7], we realize the standard representation of E6 on a Jordan
algebra V of dimension 27 with elements

X = £2

X2 X~i £
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where £, € C and x, e c€, the 8-dimensional (complex) Cayley algebra. We have
so(8, C) as a subalgebra of the the Lie algebra of E6. Under the restriction to so(&, C),
V decomposes into three 8-dimensional irreducibles (the standard representation and
the two inequivalent spin representations) and a 3-dimensional trivial subspace (cor-
responding to the diagonal entries in X).

Under an appropriate choice of positive roots, we find that X H> £l is a highest
weight vector for ^ (V). We are left with two remaining fundamental highest weight
vectors, of degrees 2 and 3. The highest weight vector in degree two generates the
27-dimensional representationcontragredient to ^i(V). Let V3 be the subspace of V
spanned by the matrices X with x3 ^ 0, and all other entries zero. Then so(8, C) acts
on V3 by one of the spin representations. There is an so(8, C)-invariant inner product
on V3 given by pairing the appropriate coordinates, and this is the fundamental highest
weight vector of degree two. In degree three, we have an £6-invariant,'det', given
explicitly by

(x 1*2X3 + * 1*2*3) - £1*1*1 - £2*2*2 ~ £3*3*3-

4.2. Indecomposable non-irreducible multiplicity free actions Table 2 lists the
semisimple groups G C GL( V) acting indecomposably on V = Vi © V2 for which
the action of G x (Cx)2 is multiplicity free. The subscripts on the direct sums indicate
simple factors acting diagonally. Thus, for example, SL(n) ©sun) (SL(n) 0 SL(m))
denotes the image of SL(n) x SL(m) under the representation on V = Vi © V2 =
(C) © ( C ® Cm) where SL(n, C) acts diagonally on Vj and V2. In each case only one
simple factor acts diagonally. For each such group G, the restrictions to Vi and V2 are
irreducible multiplicity free actions and have thus been discussed above. In each case,
we use the orthonormal basis for V obtained by adjoining the standard orthonormal
bases for V! and V2, employed in our discussion of the irreducible multiplicity free
actions. It is transparent that if we use such a basis to realize G as a matrix group
G C GL(n, C), then gQ = g D gl(n, Q) is a rational form for g. In each case
we present formulae for the fundamental highest weight vectors in C[V] that are
rational in the coordinates with respect to this natural basis. Clearly, these include
fundamental highest weight vectors for the actions of G on Vi and V2. In each case,
however, there are additional fundamental highest weights. We have listed the number
of fundamental highest weight vectors and their degrees in Table 2. We follow the
notational conventions in [5], to which we refer the reader for justification of the
decompositions of C[ V] described below.

4.2.1. SL(n) ©SL(n) SL(n) Here G = SL(w, C) acts on V = V{ © V2 = C" © C
via two copies of its defining representation. The decomposition is
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TABLE 2.

Group
Example number

SL(n) ©sL(n) SL(n) (n > 2)
Example 4.2.1

SL(n) ©SL(n) SL(n)* (n > 3)
Example 4.2.2
SL(n) ©sun) A2(SL(n)) (n > 4)
Example 4.2.3

SL(n)* ©sL(n) A
2(SL(n)) (n > 4)

Example 4.2.6

SL(n) ©SLW (SL(n) ® SL(m)) (n, m > 2)
Example 4.2.4

SL(n)* ©sL(n) (SL(n) ® SL(m))
(n > 3, m > 2)
Example 4.2.5
SL(2) ©SL(2) (SL(2) ® Sp(2n)) (« > 2)
Example 4.2.7

(SL(n) <8> SL(2)) ©SL(2) (SL(2) <8> SL(m))

Example 4.2.8

(SL(n) (8i SL(2)) ©SL(2) (SL(2) <8> Sp(2m))

(n,m > 2)
Example 4.2.8
(Sp(2n) (8> SL(2)) ©SL(2) (SL(2) <8> Sp(2m))
(n, m > 2)
Example 4.2.8
Sp(2n) ffisp(2n) Sp(2n) (n > 2)
Example 4.2.9

Spin(8) eSpill(8, SO(8)
Example 4.2.10

Degrees of fundamental highest
weight vectors (number)
1,1,2(3)

1,1,2(3)

1 , 2 , . . . , L«/2J,
1 , 2 , . . . , L(n + 1)/2J

(")
1,2 L«/2J,
1,2 L(« - D/2J
( n - 1 )
1, 2 , . . . , min(«, m).
1, 2 , . . . , min(n, m + 1)
(min(2n, 2m + 1))
1,2,..., min(«, m),
1, 2 , . . . ,min(n,m + 1)
(min(2n, 2m + 1))
1,1,2,2,2(5)

1,1,2,2,2(5)

1,1,2,2,2,2(6)

1, 1,2,2,2,2,2(7)

1,1,2,2(4)

1,1,2,2,2(5)
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If we identify V with C <g> C2, we can describe the fundamental highest weight
vectors as £1 — Zn, £,' = Zn, and £2 = det2(z). The irreducible component p"k+t_j ^

has highest weight vector K\~'iK'i)1''Ki• The fundamental invariants are |vi|2, |u2|2,
and 5Z|/|=2 |det/(z)|2, up to normalizations.

4.2.2. SL(n) ©SL(n> SL(n)* Here SL(w, C) acts on V = Vi © V2 = C" © (€")*
and we have

j <nun(k,l)

Again, there are three fundamental highest weight vectors, of degrees 1,1 and 2. The
first two are coordinates in V and V* respectively. The fundamental highest weight
vector of degree two is given by the natural pairing Vi x V2 = C" x (C)* ->• C,
which is SL(n)-invariant. The irreducible component p"k+t_j t t i) has highest weight
vector £f ~; (£,')*"•' t,[ as in the preceding example.

4.2.3. SL(n) ©SL(n) A2(SL(n)) We identify V = V! © V2 = C" © A2(C") with
A2 (C + 1 ) by regarding the first row (or column) of an (n +1) x (n +1) skew symmetric
matrix as an element of C", and the remaining entries as an element of A 2 ( C ) . For
z 6 A 2 (O + 1 ) , we write z' for this element of A 2 ( C ) . That is, z' is obtained by
removing the first row and column of z. Under this identification, the diagonal action
of SL(n, C) on V! © V2 is realized on A 2 (O + 1 ) by restricting the action of SL(/ i+1, C)
to the subgroup SL(n, C) c SL(n + 1, C) embedded as

A € SL(n, i

The fundamental highest weight vectors arising from the separate actions of SL(n, C)
on Vi and V2 are zn and £*(z) for k = 1 , . . . , [n/2\, where s"*'(z) is the Pfaffian of the
first 2k rows and columns of the n x n matrix z'. There are additional fundamental
highest weight vectors, &(z) fork = 1 , . . . , [ (« + 1)/2J. These are the Pfaffians
of the first 2k rows and columns of the (n + l ) x ( n + l) matrix z. Note that
£,(£) = zn, so our fundamental highest weight vectors are the £*'s together with
the ^ ' s . The discussion in Example 4.1.5 shows how these Pfaffians can be written
explicitly as rational polynomials in the matrix entries. The decomposition of C[ V] is
C[ V] = ^2D pD, where D ranges over all Young's diagrams. For D = (ki,..., kn),
a highest weight vector for pD in C[ V] is

when n = 2m is even, and

s Y 2(s~l') 2 3S"2
3 " • • •S" m "" 2 ""'(s"m) ""' "(s"m+l)"

when n = 2m + 1 is odd.
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4.2.4. SL(n) eS L ( n ) (SL(n) <g> SL(m)) We realize V = V! 0 V2 = C1 © ( C <g> C")
as C" <g) Cm+1 with SL(n, C) x SL(/n, C) acting via its embedding in SL(n, C) x
SL(m + 1, C). For an n x (m + 1) matrix z, write z' for the n x m matrix obtained by
removing the first column. The fundamental highest weight vectors are &(z) = dett(z)
for k = 1 , . . . , min(«, m + 1) and ^'(z) = det*(z') for k = 1 , . . . , min(/z, wi). Here
£, (z) = zu and the £*(z)'s are the fundamental highest weight vectors that arise from
the separate actions of SL(n, C) x SL(m) on Vj and V2. The irreducible components
of <C[V] have the form p"x+m ^ +/Jn) ® PjT where A. is a Young's diagram with at
most min(n, m) rows, and /i. = (jiy, ..., (in) satisfies fij < Xj-i — A.; fory > 2. The
highest weight vector for this component is

when n < m and

when n > m.

4.2.5. SL(n)* ©SL(n) (SL(n) ® SL(m)) To decompose C[V] under the action of
SL(n, C) x SL(m, C) on V = Vi 0 V2 = (€")* 0 (C" <g» Cm), we must decompose
p£,-i <8> (p" ® pf ) , where it""1 denotes the Young's diagram with k boxes in each of
n — 1 rows and A. is a Young's diagram with at most min(n, m) rows. We obtain

E M Pw+*....,M._1+*,M. ® Pf' W h e r e Ml + • • • + Mn = ^1 + • • • + K, My < A.; for
y = 1 , . . . , n - 1,0 < /AB - A.,, < *, and X, > /ii > A.2 > ^2 > • • • > M«-i > A.B. We
write z = (z,y) for elements of V2 = C ® Cm and ^ for elements in Vi = (O)*. Let
z' be the (n + 1) x m matrix

f (Vl) 1
J '

where vt is the i'th column of z. Then the action of SL(n, C) x SL(m, C) on z' is
given by embedding SL(n, C) x SL(/n, C) in SL(n + 1, C) x SL(m, C). The standard
coordinate function £„ is a highest weight vector for the representation of SL(n, C)
on ^ i ( Vi) = V* = C. Our fundamental highest weight vectors are thus £„, det*(z)
k = 1 , . . . , min(n, m) and deU(z') for k = I,..., min(n — 1, m). Here det^z) is a
polynomial of degree k on V and dett(z') has degree it + 1. A highest weight vector
for the irreducible p£ + t M _,+tM ® pf in C[V] can be expressed in terms of the
fundamental highest weight vectors as:

We remark that the number and degrees of the fundamental highest weight vectors for
this example coincide with those for the related Example 4.2.4.
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4.2.6. SL(n)* ©SL(n) A
2(SL(n)) Here V = V, © V2 = (C1)* © A2(C"). We write

z = (Zij) e A2(C"), £ = (I,) e ( C T , and let

0

z' = € A2(C"+1),

where u, is the i'th column of z. The group SL(n, C) acts on z' via the embedding
SL(n, C) «->• SL(n + 1, C), as in Example 4.2.3. Our fundamental highest weight
vectors are £„, ft for fc = 1 , . . . , L(« - 1)/2J and ^ for it = 1 , . . . , L«/2J. Here ft
and i;'k are the Pfaffians of the first 2k rows and columns of z and z' respectively. Note
that ft is a homogeneous polynomial of degree k on V, whereas ^ has degree k + 1.

To understand the decomposition of C[ V], we consider the cases n even and n odd
separately. If n — 2m, we need to consider the decomposition of p£,_, <g> p" where
X = {Xx,Xi,X2,X2,... ,Xm,Xm). We obtain irreducible components corresponding to
Young's diagrams (it + Xu k + fxu ..., k + Xm, \xm + Xm), where Xt > nx > X2 >
M2 > • • • > : Mm-i > A.m, /J,m < k and /ii + • • • + /im = Xt + • • • A.m_i. The highest
weight vector for this component is

For n = 2m + 1, we have p ^ <8> p" with X — (Xlt Xt, X2, X2,..., Xm, Xm, 0), whose
irreducible components correspond to diagrams (k + Xi, k + Hi,..., k + Xm, k +
Mm, Mm+i), where A., > fit > X2 > \x2 > • • • > Xm > \xm, nm+l < k, and HI -\ h
/xm+i = Xi + • • • Xm. This component has highest weight vector

?„ Si Sm-1

It is interesting to note that here we have one fewer fundamental highest weight vector
than in the related untwisted Example 4.2.3.

4.2.7. SL(2) 0SU2) (SL(2) <g> Sp(2n)) We identify V = V,0 V2 = C20(C2n<8)C2)
with C2n+1 ® C2 as in Example 4.2.4, and embed G = Sp(2«, C) x SL(2, C) in
SL(2n + 1, C) x SL(2, C). Write z = (z,y) for a (2n + 1) x 2 matrix in V and let z'
denote the 2n x 2 matrix obtained by removing the first row of z. The fundamental
highest weight vectors are zu, Zn, s', det2(z) and det2(z'). where e' is the symplectic
product of the columns of z'. The irreducible components are of the form

with the restrictions at > a2, fi2 < ai — a2. The highest weight vector for this
component is
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4.2.8. (SL(n) <g> SL(2)) 0SL(2) (SL(2) <g> SL(m)) Here we examine together the
actions of

(a) G = SL(n, C) xSL(2, C)xSL(m, C) on V= V,® V2 = (Cn<g>C2)e(C2®Cm),
(b) G = SL(n,C)xSL(2,C)xSp(2m,C)on V= V,® V2 = (C"(g)C2)e(C2(8)C2'n),
(c) G = Sp(2n,C)xSL(2,C)xSp(2m, C) on V= V,® V2 = (C2n®C2)e(C2<g>C2m).

In each case, we identify V with C"+M ® C2, where N = not 2n, M = m or 2m. We
write elements of V as

- & ] •
where x e C ® C2 and y 6 CM <g> C2. In cases (b) and (c), we have the symplectic
invariants e(x), e(y) given by the symplectic inner products of the columns of x and
y respectively.

In case (a), C[ V] decomposes into irreducibles of the form p" ® p2 <g> p™ where
\fi\ = \X\ + \v\, ix2 < X{ + v2, fii — Xi > v2, and /x2 > X2 + v2. The fundamental
highest weight vectors arexi1,yn,det2(jc),det2(>'),andxiiyi2-j:i2yi1. The irreducible
component above has highest weight vector

In case (b), the irreducibles are of the form

Pi ®pl® <• C ^»|xi(C- ® C2) <8> ^|u|+2;- (C
2m ® C2),

where; > 0, |/x| = |A| + |v| + 2/\ j*i > vx+j ,X2 + v2+j < /x2 < w, + A.2+y. The
fundamental highest weight vectors are ^n, yn, det2(^), det2(y), e(y) and
x12yn. The typical irreducible component above has highest weight vector

In case (c), the fundamental highest weight vectors are xu, yn, det2(;c), det2(y),
s(x), s{y) andxnyi2 — x12yn. The irreducibles are of the form

a" ®pl® <r? C ^|xi+2a(C
2" ® C2) ® ^M+2b(€

2m ® C2),

where |/x| = |A.| + |v| + 2a + 2b, /x2 > X2 + v2 + a + b, \x2 < kx + v2 + a + b and
ix2 < k2 + Vi + a + b. This has highest weight vector
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4.2.9. Sp(2n) ®S9(2n) Sp(2n) We identify V = V, © V2 = C2n 0 C2n with C2" <g> C2

and write points z e V as z = (zy). The group G = Sp(2«, C) acts on V from the
left and the symplectic product e(z) of the columns is an invariant. The fundamental
highest weight vectors are zu, Zn, s(z), and det2(z). The irreducible components of
•^(C2") <g> &>i(C2n) are of the form a^M, with A., > k2, and A, + A.2 = it 4-1 - 2m
for m > 0. The highest weight vector for this irreducible is

4.2.10. SO(8) ©sPin(8) Spin(8) In this example, Spin(8, C) acts on V =
Vi © V2 = C8 © Aeven(C4) via the standard representation of SO(8, C) on Vi and
the spin representation on V2 = C8. These two representations can be written as co100o
and (UIIM, where the subscripts indicate the highest weights for the representations.
We have the decompositions

= / <yjt+(_,-_2j_m t_< k—ik—i—mi a n d

ij.m

We use the standard basis for V2* as in Example 4.1.11 and give VJ coordinates
Zi, . . . , Zs, which are weight vectors for the maximal torus. We have fundamental
highest weight vectors corresponding to the highest weight vectors for each Vh the
Spin(8, C)-invariants in each Vi and a fifth highest weight vector which generates the
other spin representation in &2( V). Explicitly, these are

f i = z i . f i = / o . Ki = Z1Z5 + zitt + zzzi + uz%,

K2 — /0/1234 — /12/34 + /13/24 — / M / B . £2' — z*fo + zifu + Z2/24 + 23/34-

The irreducible component ct>t.w_I-_2y_m,*_,-,jt_i,i_,-_m has highest weight vector

>'~27 —m c.7 /yi\lk—2i~m />~i\i /ytt\m
SI S2 VSl^ VS2̂  \Sl) <

and ojt+€_,_2;_m+.,t_,+ i,t_1+ >,t-,-m+i has highest weight vector

yl—V —"> yj /yi\2k—2i-m+l /y>\i /y»\m
Si S2 VSl-* V^-* VS2 / •
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