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The symmetry group of the CAFFE model∗
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ABSTRACT. A new ice-sheet flow model called CAFFE (Continuum-mechanical Anisotropic Flow model
based on an anisotropic Flow Enhancement factor) has recently become a source of considerable con-
troversy within the glaciological community. Its main proponents (Placidi, Greve and Seddik) defend the
thesis that this model can describe the effect of induced anisotropy on ice-sheet flow, while others assert
that the CAFFE model is merely an isotropic model. Here I resolve this dispute by rigorously deriving
the symmetry group of the CAFFE model.

INTRODUCTION
Recently, a new model of anisotropic ice-sheet flow has gen-
erated considerable debate among theoretical glaciologists.
(This debate became evident during the 2nd International
Workshop on Physics of Ice Core Records (PICR-2), 2–6 Feb-
ruary 2007, convened by T. Hondoh in Sapporo, Japan, and
during the European Science Foundation Exploratory Work-
shop on Modelling and Interpretation of Ice Microstructures
(ESF–MIIM), 9–11 April 2008, convened by P.D. Bons,
S.H. Faria and S. Kipfstuhl in Göttingen, Germany.) It is called
the ‘CAFFE model’ (Placidi and Hutter, 2005; Seddik and
others, 2008; Greve and others, in press), where the acronym
CAFFE stands for Continuum-mechanical Anisotropic Flow
model based on an anisotropic Flow Enhancement factor.
(The name ‘CAFFE model’ should not be confused with the
similar abbreviation ‘CAFE model’, which stands for ‘Cellular
Automaton – Finite Element model’, used since the last dec-
ade for numerical simulations of polycrystal plasticity (e.g.
Das and others, 2004).) The CAFFE model is a peculiar partic-
ularization for numerical ice-sheet simulations of the general
thermodynamic theory of mixtures with continuous diversity
(Faria, 2001; Faria and Hutter, 2002) applied to the creep
of large polycrystalline ice masses (Faria and others, 2003,
2006; Placidi and others, 2004; Faria, 2006a,b; Placidi and
Hutter, 2006).
The source of the controversy lies in the fundamental equa-

tion of the CAFFE model, which appears as a slight modifi-
cation of the classical Glen’s flow law:

D = E (S)A(T )σn−1e tD, (1)

where D is the strain-rate tensor, tD is the deviatoric part

of the Cauchy stress tensor, σe =
√
1
2Tr(t

D)2 is the effective
stress invariant, n is the power-law exponent, T is the tem-
perature, A(T ) is a temperature-dependent rate factor, and
E (S) plays the role of a flow enhancement factor, with S de-
noting the so-called ‘deformability’ of the polycrystal. From
a continuum-mechanical point of view, S can be regarded
as an internal variable used to describe the effect of crys-
tallographic texture (also called ‘fabric’ by glaciologists). In
particular, when the material is isotropic, it follows by defini-
tion that S = 1 and E (1) = 1 (Seddik and others, 2008; Greve
and others, in press), in such a way that Equation (1) reduces
to the classical version of Glen’s flow law proposed by Nye
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(1953). Thus, the creators of the CAFFE model (Placidi, Greve
and Seddik) claim that Equation (1) is an anisotropic flow law,
while others assert that it is an isotropic constitutive function
that cannot model anisotropy.
There is no doubt that the anisotropy of Equation (1), if

it exists, must be contained in the enhancement factor, E .
Therefore, all that is needed to conclude the debate is to de-
termine whether the enhancement factor, E , is an anisotropic
constitutive function or not.

ON ANISOTROPIC FUNCTIONS
Succinctly, in continuum physics (cf. Truesdell and Noll,
1965; Hutter, 1983; Nye, 1985; Liu, 2002, and references
therein) a material is said to be isotropic in a given refer-
ence configuration if its response is invariant with respect
to any orthogonal transformation (viz. rotation, reflection or
inversion) of the body, otherwise it is called anisotropic.
(When defining isotropy, some authors consider only rota-
tions (i.e. proper orthogonal transformations), since only
these are usually feasible in practice. However, this approach
would be unsuitable, for example, for optically active mater-
ials (hemitropic media) and is therefore not adopted here.
As remarked by Nye (1985): ‘if we are to link physics to the
mathematical theory of symmetry it is difficult to avoid the
use of such unperformable operations’.) The set of transform-
ations that render the material response invariant is called the
’symmetry group’ of the material in the given configuration.
Simple applications of this fundamental notion may, at first

sight, give the impression that any anisotropic constitutive
function must be defined as a vector- or tensor-valued func-
tion possessing tensorial transport coefficients. These tensors
(of compliance, viscosity, conductivity, etc.) provide distinct
scalar coefficients for different directions, known as ‘direc-
tional properties’. Based on these simple concepts it becomes
hopeless to conceive any anisotropic effect in the enhance-
ment factor, E (S), since it is a scalar function of a single scalar
variable and consequently does not allow the introduction
of directional properties. Thus, from this point of view the
opposers of the CAFFE model seem to be correct.
It should be remarked, however, that scalar-valued aniso-

tropic functions do exist (cf. Spencer, 1971; Boehler, 1975;
Liu, 1982; Xiao, 1996). In constitutive theory such functions
are often constructed with the help of certain vectors and
tensors that define particular directions, lines and planes of
symmetry in the material. Evidently, not all material aniso-
tropies can be described in this manner, but many of them
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can be, including the most common symmetries (e.g. trans-
verse isotropy, orthotropy) and several crystal classes. For
such materials, we propose the following:

Theorem 1 (e.g. Liu, 2002) Let

G =
{
H ∈ H , Hnα = nα , HMβH

T = Mβ

}
(2)

be the symmetry group of a certain anisotropic material.
The set,H, denotes an appropriate group of transformations,
while thematrix,H , stands for a transformation that preserves
the directions, lines and planes of material symmetry defined
by the directors, nα (with α = 1, 2, . . . ), and the tensors,Mβ

(with β = 1, 2, . . . ). Let F̂ (X ) be a scalar function of the
tensor variable X . Thus, F̂ (X ) is invariant relative to G – and
is therefore called an anisotropic scalar function – if and only
if it can be represented by

F̂ (X ) = F̃ (X , nα,Mβ) , (3)

where F̃ (X ,nα,Mβ ) is invariant relative to H.
In usual cases, which include creeping polycrystalline

media like natural ice, we may assume H = O, where O
is the group of all orthogonal transformations. This implies
that F̃ (X ,nα,Mβ ) is an isotropic function of X , nα and Mβ ,
since it is invariant relative to H = O, while F̂ (X ) is an an-
isotropic function of X , because it is invariant with respect
to G only. Obviously, in the particular case of an isotropic
material with no preferred symmetry directions and planes
(i.e. no directors, nα, and no tensors, Mβ ), we have simply
Giso = H = O.

THE CAFFE SYMMETRY GROUP
We can now try to apply these concepts to the CAFFE equa-
tion (1). As already mentioned, all we need to do is analyze
the symmetry properties of the enhancement factor func-
tion, E . This is rather trivial, since E is, by assumption, a
simple polynomial function of the deformability, S (Seddik
and others, 2008; Greve and others, in press). Therefore, we
conclude immediately that E is an isotropic function of S
and consequently the CAFFE equation (1) is indeed an iso-
tropic constitutive function of the variables T , tD and S.
These are independent variables determined, respectively,
through the balance equation of internal energy (first law
of thermodynamics), the balance equation of linear momen-
tum (equation of motion) and the following integral equation
(cf. Seddik and others, 2008; Greve and others, in press):

S =
∫
S2
f ∗S∗d2n ,

with

S∗ =
5
2σ2e

[
n ·

(
tD

)2
n −

(
n · tDn

)2]
.

(4)

It is through Equation (4) that the notion of a mixture with
continuous diversity is introduced. Roughly (for more details
see Faria, 2001, 2006a; Faria and others, 2003; Placidi and
others, 2004), we visualize the polycrystal as a mixture of lat-
tice orientations, in such a manner that the orientation vector
n ∈ S2 denotes the normal to a plane of material symmetry
(more precisely the basal plane of the ice lattice), with the
unit sphere, S2, describing the space in which this continu-
ous diversity of lattice orientations (more generically called
‘species’) is defined. Accordingly, d2n denotes an infinites-
imal solid angle of S2, while the orientational mass fraction,

f ∗(n, x , t ), stands for the fraction of crystalline matter in pos-
ition x at time t with basal planes normal to n. (In materials
science (e.g. Kumar and Dawson, 1996; Raabe and Roters,
2004) the orientational mass fraction, f ∗(n, x , t ), would be
called ‘orientational distribution function’ (ODF). I refrain
from using this name here because glaciologists frequently
use it with a different connotation (for historical reasons), as
the relative number (instead of the mass fraction) of grains
with a given lattice orientation.) Thus, the integral in Equation
(4) represents a weighted average of the function S∗ over all
species of the mixture, i.e. over all orientations.
We can now identify the source of polemic about the an-

isotropy of the CAFFE model: the internal variable, S, makes
Equation (1) seem very simple, but it does not provide any
clue about the symmetry of the material, because all the in-
formation about material symmetry is hidden within the inte-
gral of Equation (4). Luckily, it is straightforward to overcome
this problem because the integrand of Equation (4) is such
that the integral can be solved directly. Solving Equation (4)
is straightforward: we need first notice that neither σe nor tD

are dependent on n.
Thus, after introducing the orientation tensors

Aij =
∫
S2
f ∗ ninj d

2n ,

Bijkl =
∫
S2
f ∗ ninjnknl d

2n ,
(5)

we can immediately integrate Equation (4), obtaining

S =
5
2σ2e

tDij t
D
kl

(
δikAjl − Bijkl

)
. (6)

The orientation tensors, Equation (5), are closely related
to the moments of the distribution, f ∗. Strictly, the moments
of f ∗ are the irreducible versions of Equation (5), i.e. the
traceless parts of Aij and Bijkl (see, for example, Ehrentraut
and Muschik, 1998). These tensors can be called by a variety
of names, such as structure or alignment tensors.
Thus, we may use Equation (6) to perform a change of

variables S → {tD,A,B} such that
E (S) = Ẽ (tD,A,B ) . (7)

With this change of variables we can now derive the new
form of the CAFFE equation (1):

D = Ẽ (tD,A,B )A(T )σn−1e tD , (8)

where Ẽ (tD,A,B ) is the enhancement factor as a function of
the deviatoric stress, tD, and the orientation tensors, A and
B , defined in Equation (5).
Equation (8) is the desired anisotropic representation of the

CAFFE model. Indeed, from Theorem 1 we recognize that
there exists an anisotropic scalar function of the deviatoric
stress, Ê (tD), such that (cf. Equation (3))

Ê (tD) = Ẽ (tD,A,B ) , (9)

where Ẽ is an isotropic function of tD, A and B .
At last, using Theorem 1 we can finally derive the sym-

metry group of the CAFFE model (cf. Equation (2))

GCAFFE = {H ∈ O ,
HijAjkHlk = Ail ,HijHlkBjkrsHprHqs= Bilpq} ,

(10)
from which we readily recognize that Ẽ (tD,A,B ) is invari-
ant relative to O, while Ê (tD) is invariant with respect to
GCAFFE only.
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FINAL REMARKS
It should be emphasized that Equation (8) is not an approxi-
mation of Equation (1). It is the exact result of a suitable
change of variables. Likewise, Equation (10) is a complete
and rigorous description of the anisotropy of the CAFFE
model valid in all possible situations, that is, for any crys-
tallographic texture (‘fabric’). Evidently, the symmetry of the
crystallographic texture is, in general, not precisely described
by the CAFFE symmetry group, Equation (10), which simply
reflects the fact that the CAFFE model has its limitations (or,
more precisely, the integral in Equation (4) filters out any
symmetry element of the crystallographic texture that is not
included in Equation (10).) These are, however, not severe
limitations in the case of ice-sheet modelling, since most nat-
ural crystallographic textures (‘fabrics’) observed in ice-core
samples possess symmetries that are reasonably compatible
with Equation (10).
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