
TPLP 25 (2): 225–255, 2025. c© The Author(s), 2024. Published by Cambridge University

Press. This is an Open Access article, distributed under the terms of the Creative Commons

Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted

re-use, distribution and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068424000164 First published online 28 October 2024

225

Practical Reasoning in DatalogMTL†

DINGMIN WANG and BERNARDO CUENCA GRAU
Department of Computer Science, University of Oxford, Oxford, UK

(e-mails: dingmin.wang@cs.ox.ac.uk, bernardo.cuenca.grau@cs.ox.ac.uk)

PRZEMYS�LAW A. WA�LȨGA
Department of Computer Science, University of Oxford, Oxford, UK

School of Electronic Engineering and Computer Science, Queen Mary University of London,

London, UK

(e-mail: przemyslaw.walega@cs.ox.ac.uk)

PAN HU
Department of Computer Science, University of Oxford, Oxford, UK

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,

Shanghai, China,

(e-mail: pan.hu@sjtu.edu.cn)

submitted 13 March 2023; revised 20 October 2023; accepted 9 June 2024

Abstract

DatalogMTL is an extension of Datalog with metric temporal operators that has found an
increasing number of applications in recent years. Reasoning in DatalogMTL is, however, of
high computational complexity, which makes reasoning in modern data-intensive applications
challenging. In this paper we present a practical reasoning algorithm for the full DatalogMTL
language, which we have implemented in a system called MeTeoR. Our approach effectively
combines an optimised (but generally non-terminating) materialisation (a.k.a. forward chain-
ing) procedure, which provides scalable behaviour, with an automata-based component that
guarantees termination and completeness. To ensure favourable scalability of the materialisation
component, we propose a novel seminäıve materialisation procedure for DatalogMTL enjoying
the non-repetition property, which ensures that each rule instance will be applied at most once
throughout its entire execution. Moreover, our materialisation procedure is enhanced with addi-
tional optimisations which further reduce the number of redundant computations performed
during materialisation by disregarding rules as soon as it is certain that they cannot derive new
facts in subsequent materialisation steps. Our extensive evaluation supports the practicality of
our approach.

KEYWORDS: temporal reasoning, metric temporal logic, datalogMTL

†This paper extends our conference publications at the AAAI Conference on Artificial Intelligence (Wang
et al. 2022) and at the International Joint Conference on Rules and Reasoning (Wang et al. 2022).

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164
https://orcid.org/0000-0003-2909-5923
mailto:dingmin.wang@cs.ox.ac.uk
mailto:bernardo.cuenca.grau@cs.ox.ac.uk
mailto:przemyslaw.walega@cs.ox.ac.uk
https://orcid.org/0000-0003-1701-9640
mailto:pan.hu@sjtu.edu.cn
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000164&domain=pdf
https://doi.org/10.1017/S1471068424000164

D. Wang et al.226

1 Introduction

DatalogMTL (Brandt et al. 2018) is an extension of the core rule-based language Datalog

(Ceri et al. 1989) with operators from metric temporal logic (MTL) (Koymans 1990)

interpreted over the rational timeline. For example, the following DatalogMTL rule states

that travellers can enter the US if they had a negative COVID-19 test sometime in the

last 2 days (♦−[0,2]) and have held fully vaccinated status continuously throughout the last

15 days (�[0,15])

Authorised(x)←♦−[0,2] NegativeLFT (x)∧�[0,15]FullyVaccinated(x).

DatalogMTL is a powerful temporal knowledge representation language, which has

recently found applications in ontology-based query answering (Brandt et al. 2018;

Kikot et al. 2018; Kalaycı et al. 2018; Koopmann 2019) and stream reasoning (Wa�lȩga

et al. 2019b), amongst others (Nissl and Sallinger 2022; Mori et al. 2022). Reasoning

in DatalogMTL is, however, of high complexity, namely ExpSpace-complete (Brandt

et al. 2018) and PSpace-complete with respect to data size (Wa�lȩga et al. 2019a), which

makes reasoning in data-intensive applications challenging. Thus, theoretical research

has focused on establishing a suitable trade-off between expressive power and complexity

of reasoning, by identifying lower complexity fragments of DatalogMTL (Wa�lȩga et al.

2021,2023) and studying alternative semantics with favourable computational behaviour

(Wa�lȩga et al. 2020; Ryzhikov et al. 2019).

The design and implementation of practical reasoning algorithms for DatalogMTL

remains, however, a largely unexplored area – something that has so far prevented its

widespread adoption in applications. Brandt et al. (2018) implemented a prototype rea-

soner based on query rewriting that is applicable only to non-recursive DatalogMTL

programmes; in turn, the temporal extension of the Vadalog system (Bellomarini et al.

2018) described by Bellomarini et al. (2022) implements the full DatalogMTL language,

but without termination guarantees. The lack of available reasoners for DatalogMTL is

in stark contrast with plain Datalog, for which a plethora of (both academic and com-

mercial) systems have been developed and successfully deployed in practice (Motik et al.

2014; Bellomarini et al. 2018; Carral et al. 2019).

In this paper, we present the first practical reasoning algorithm for the full

DatalogMTL language, which is sound, complete, and terminating. Our algorithm com-

bines materialisation (a.k.a. forward chaining) and automata-based reasoning. On the

one hand, materialisation is the reasoning paradigm of choice in numerous Datalog sys-

tems (Bry et al. 2007; Motik et al. 2014; Bellomarini et al. 2018; Carral et al. 2019); facts

logically entailed by an input programme and dataset are derived in successive rounds of

rule applications (also called materialisation steps) until a fixpoint is reached or a fact of

interest (or a contradiction) is derived; both this process and its output are often referred

to as materialisation. A direct implementation of materialisation-based reasoning in

DatalogMTL is, however, problematic since forward chaining may require infinitely many

rounds of rule applications (Wa�lȩga et al. 2021,2023). An alternative to materialisation-

based reasoning ensuring completeness and termination relies on constructing B FC;chi

automata and checking non-emptiness of their languages (Wa�lȩga et al. 2019a). This

procedure, however, was mainly proposed for obtaining tight complexity bounds, and

not with efficient implementation in mind; in particular, the constructed automata are

of exponential size, which makes direct implementations impractical. Our approach deals

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 227

with these difficulties by providing optimised materialisation-based algorithms together

with an effective way of combining the scalability of materialisation-based reasoning and

the completeness guaranteed by automata-based procedures, thus providing “the best of

both worlds.”

After discussing related work in Section 2 and preliminary definitions for DatalogMTL

in Section 3, we will present the following contributions of our work.

1. In Section 4 we recapitulate different techniques available for reasoning in

DatalogMTL, which we will take as a starting point for the development of our

approach. On the one hand, we present a variant of the (non-terminating) näıve

materialisation procedure (Wa�lȩga et al. 2023), and prove its soundness and com-

pleteness; on the other hand, we describe existing algorithms based on exponential

reductions to reasoning in linear temporal logic (LTL) and to emptiness checking

of B FC;chi automata.

2. In Section 5.1 we present a seminäıve materialisation procedure for DatalogMTL.

In contrast to the näıve procedure provided in Section 4.1 and analogously to

the classical seminäıve algorithm for plain Datalog (Abiteboul et al. 1995; Motik

et al. 2019), our procedure aims at minimising redundant computation by keeping

track of newly derived facts in each materialisation step and ensuring that rule

applications in the following materialisation step involve at least one of these newly

derived facts. In this way, each rule instance is considered at most once, and so our

procedure is said to enjoy the non-repetition property.

3. In Section 5.2 we present an optimised variant of our seminäıve procedure which

further reduces the number of redundant computations performed during materi-

alisation by disregarding rules during the execution of the procedure as soon as

we can be certain that their application will never derive new facts in subsequent

materialisation steps.

4. In Section 5.3 we propose a practical reasoning algorithm combining optimised

seminäıve materialisation and our realisation of the automata-based reasoning

approach of (Wa�lȩga et al. 2019a). Our algorithm is designed to delegate the

bulk of the computation to the scalable materialisation component and resort to

automata-based techniques only as needed to ensure termination and completeness.

5. We have implemented our approach in the MeTeoR (Metric Temporal Reasoner)

system, which we have made publicly available.1 In Section 6 we describe our

implementation and present its evaluation on a temporal extension of the Lehigh

University Benchmark (LUBM), the Weather Benchmark used by Brandt et al.

(2018), and the iTemporal benchmark generator developed by Bellomarini et al.

(2022). In Section 6.4 we describe the results of our evaluation and draw the

following conclusions.

– Although completeness and termination in our approach can be ensured by relying

on either automata construction or on a reduction to LTL satisfiability followed by

the application of a LTL reasoner, our experiments show that automata construc-

tion yields superior performance and can be used to solve non-trivial problems;

this justifies our choice of automata over LTL in MeTeoR.

1 See https://github.com/wdimmy/DatalogMTL˙Practical˙Reasoning for the version of MeTeoR
described and evaluated in this paper.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.228

– Our proposed seminäıve materialisation strategy offers significant performance

and scalability gains over näıve materialisation, and it can be successfully applied

to non-trivial programmes and datasets with tens of millions of temporal facts.

– The performance of MeTeoR is superior to that of the query rewriting approach

proposed by Brandt et al. (2018) on non-recursive programmes.

– The vast majority of queries for programmes generated by iTemporal can

be answered using materialisation only. This supports the practicality of our

approach since the bulk of the workload is delegated to the scalable materiali-

sation component and the use of automata-based reasoning is only required in

exceptional cases.

This paper is supplemented by a technical appendix containing all the proofs to our

claims.

2 Related work

DatalogMTL was first introduced by Brandt et al. (2017) and it has found applica-

tions in areas as diverse as temporal stream reasoning (Wa�lȩga et al. 2019b), temporal

ontology-based data access (Brandt et al. 2017), specification and verification of banking

agreements (Nissl and Sallinger 2022), fact-checking economic claims (Mori et al. 2022),

and the description of human movements (Raheb et al. 2017). The complexity of stan-

dard reasoning tasks in both the full language and its fragments has been investigated in

depth (Brandt et al. 2018; Wa�lȩga et al. 2019a,2021; Bellomarini et al. 2021). Alternative

semantics to the standard continuous semantics over the rational timeline have also been

considered; these include the semantics based on the integer timeline studied by Wa�lȩga

et al. (2020) and the event-based semantics by Ryzhikov et al. (2019). DatalogMTL has

also been recently extended with negation-as-failure under the stable model semantics,

first for stratified programmes (Cucala et al. 2021) and subsequently for the general case

(Wa�lȩga et al. 2021).

There have been numerous alternative proposals for extending Datalog with temporal

constructs. For example, Datalog1S (Chomicki and Imielinski 1988) is a prominent early

extension, in which predicates are allowed to contain terms of an additional temporal

sort and a single successor function symbol over this sort. A number of recent temporal

extensions of Datalog feature operators from LTL (Artale et al. 2015) as well as from the

Halpern-Shoham logic of intervals (Kontchakov et al. 2016). Extensions of DatalogMTL

with non-monotonic negation are closely related to temporal extensions of answer set

programming (ASP) (Aguado et al. 2021). Particularly relevant is a recently introduced

extension of ASP with MTL operators (Cabalar et al. 2020) as well as the LARS frame-

work (Beck et al. 2018), which combines ASP and MTL operators for reasoning over

data streams. It is worth observing, however, that all these temporal extensions of ASP

are interpreted over the integer timeline. Finally, operators from MTL have also been

exploited in temporal extensions of description logics (Gutiérrez-Basulto et al. 2016;

Artale and Franconi 1998; Baader et al. 2017; Thost 2018).

The first system with DatalogMTL support was an extension of the Ontop platform

(Kalaycı et al. 2018) restricted to non-recursive programmes and based on reasoning via

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 229

rewriting into SQL. Very recently, the Vadalog reasoning system (Bellomarini et al. 2018)

has also been extended with DatalogMTL support (Bellomarini et al. 2022); the algo-

rithm implemented by this extension is, however, non-terminating in general. Fragments

of DatalogMTL for which materialisation-based reasoning is guaranteed to terminate

have been identified and studied by Wa�lȩga et al. (2023); these fragments, however,

impose restrictions which effectively disallow programmes expressing “recursion through

time.” Finally, there is a plethora of reasoners available for solving satisfiability checking

problems in LTL, with techniques involving reduction to model checking, tableau sys-

tems, and automata-based techniques. Prominent recent examples of highly-optimised

LTL reasoners include nuXmv (Cavada et al. 2014) and BLACK (Geatti et al. 2019),

where the latter was our LTL reasoner of choice in the experiments reported in Section 6.

3 Preliminaries

In this section, we recapitulate the syntax, semantics, and key reasoning problems in

DatalogMTL.

3.1 Syntax

We consider a timeline consisting of ordered rational numbers, denoted by Q, which we

also call time points . A (rational) interval ρ is a set of rational numbers that is either

empty or such that

– for all t1, t2, t3 ∈Q satisfying t1 < t2 < t3 and t1, t3 ∈ ρ, it must be the case that

t2 ∈ ρ, and

– the greatest lower bound ρ− and the least upper bound ρ+ of ρ belong to Q∪
{−∞,∞}.2

The bounds ρ− and ρ+ are called the left and the right endpoints of ρ, respectively.

An interval is punctual if it contains exactly one time point. Intervals ρ1 and ρ2 are

union-compatible if ρ = ρ1 ∪ ρ2 is also an interval. We represent a non-empty interval ρ

using the standard notation 〈ρ−, ρ+〉, where the left bracket “〈” is either “[” or “(”, and

the right bracket 〉 is either “]” or “)”. We assume that each rational endpoint is given

as a (not necessary reduced) fraction with an integer numerator and a positive integer

denominator, both encoded in binary. As usual, the brackets “[” and “]” indicate that

the corresponding endpoints are included in the interval, whereas “(” and “)” indicate

that they are not included. Observe that every interval has multiple representations due

to possibly non-reduced fractions. Each representation, however, uniquely determines an

interval and so, if it is clear from the context, we will abuse notation and identify an

interval representation with the unique interval it represents.

We consider a signature consisting of pairwise disjoint countable sets of constants,

variables, and predicates with non-negative integer arities. As usual, a term is either a

constant or a variable. A relational atom is an expression of the form P (s), with P a

predicate and s a tuple of terms whose length matches the arity of P . A metric atom is

2 By this restriction, for example, the set of all rational numbers between 0 and π is not an interval, as
it has no least upper bound in Q. Also note that in contrast to Brandt et al. (2018), we do not require
finite endpoints of intervals to be dyadic rational numbers.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.230

an expression given by the following grammar, where P (s) is a relational atom,
 and ⊥
are logical truth and falsehood respectively, and ♦−, ♦+, �, �, S, and U are MTL operators

that can be indexed with any intervals ρ containing only non-negative rationals:

M ::=
 |⊥ | P (s) | ♦−ρ M | ♦+ρM |�ρM |�ρM |MSρM |MUρM.

We refer to ♦−, �, and S as past operators and we refer to ♦+, �, and U as future operators .

A rule is an expression of the form

M ′←M1 ∧ · · · ∧Mn, for n≥ 1, (1)

with each Mi a metric atom, and M ′ generated by the following grammar:

M ′ ::=⊥ | P (s) |�ρM
′ |�ρM

′.

The conjunction M1 ∧ · · · ∧Mn in Expression (1) is the rule’s body and M ′ is the rule’s

head . A rule mentioning ⊥ in the head is referred to as a ⊥-rule. A rule is forward-

propagating (respectively backwards propagating) if it does not mention
 or ⊥, mentions

only past (respectively, future) operators in the body, and only future (respectively, past)

operators in the head. A rule is safe if each variable in its head also occurs in the body,

and this occurrence is not in a left operand of S or U; for instance, a rule such as

P (x)←Q(x)S[0,0]
 is not safe; in fact, it can be equivalently rewritten as P (x)←

(see the following section on DatalogMTL semantics). A programme is a finite set of safe

rules; it is forward or backwards propagating if so are all its rules.

An expression is ground if it mentions no variables. A fact is an expression of the form

M@ρ with M a ground relational atom and ρ an interval; a dataset is a finite set of facts.

The coalescing of facts M@ρ1 and M@ρ2 with union-compatible intervals ρ1 and ρ2 is

the fact M@(ρ1 ∪ ρ2). The coalescing of a dataset D, denoted by coal(D), is the unique

dataset obtained by iteratively coalescing facts in D until no more facts can be coalesced.

The grounding ground(Π,D) of a programme Π with respect to a dataset D is the set of

all ground rules that can be obtained by assigning constants in Π or D to variables in Π.

The dependency graph of a programme Π is the directed graph GΠ, with a vertex vP for

each predicate P in Π and an edge (vQ, vR) whenever there is a rule in Π mentioning Q

in the body and R in the head. Programme Π is recursive if GΠ has a cycle. A predicate

P is recursive in Π if GΠ has a path ending in vP and including a cycle (the path can

be a self-loop); otherwise, it is non-recursive. A metric atom is non-recursive in Π if so

are all its predicates; otherwise it is recursive. The (non-)recursive fragment of Π is the

subset of rules in Π with (non-)recursive atoms in heads. Furthermore, for a predicate P ,

a rule r is P -relevant in Π if there exists a rule r′ in Π mentioning P or ⊥ in the head

and a path in GΠ starting from a vertex representing the predicate in the head of r and

ending in a vertex representing some predicate from the body of r′.

3.2 Semantics and reasoning problems

An interpretation I is a function which assigns to each time point t a set of ground

relational atoms; if an atom P (c) belongs to this set, we say that P (c) is satisfied at t in

I and we write I, t |= P (c). This extends to arbitrary metric atoms as shown in Table 1.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 231

Table 1. Semantics of ground metric atoms

I, t |= � for each t

I, t |= ⊥ for no t

I, t |= M iff I, t ′ |= M for some t ′ with t − t ′ ∈
I, t |= M iff I, t ′ |= M for some t ′ with t ′ − t ∈
I, t |= ⊟

�

M iff I, t ′ |= M for all t ′ with t − t ′ ∈
I, t |= ⊞ M iff I, t ′ |= M for all t ′ with t ′ − t ∈
I, t |= M1S M2 iff I, t ′ |= M2 for some t ′ with t − t ′ ∈ and I, t ′′ |= M1 for all t ′′ ∈ (t ′, t)
I, t |= M1U M2 iff I, t ′ |= M2 for some t ′ with t ′ − t ∈ and I, t ′′ |= M1 for all t ′′ ∈ (t, t ′)

�

An interpretation I satisfies a fact M@ρ if I, t |= M for all t∈ ρ. Interpretation I

satisfies a ground rule r if, whenever I satisfies each body atom of r at a time point t,

then I also satisfies the head of r at t. Interpretation I satisfies a (non-ground) rule r

if it satisfies each ground instance of r. Interpretation I is a model of a programme Π

if it satisfies each rule in Π, and it is a model of a dataset D if it satisfies each fact in

D. Each dataset D has a unique least model ID, and we say that dataset D represents

interpretation ID. Programme Π and dataset D are consistent if they have a model, and

they entail a fact M@ρ if each model of both Π and D is a model of M@ρ.

Consistency checking is the problem of checking whether a given programme and a

dataset admit a common model. Fact entailment is the problem of checking whether a

programme and a dataset entail a given relational fact. Consistency checking and fact

entailment in DatalogMTL reduce to the complements of each other. Specifically, to check

whether a programme Π and a dataset D are inconsistent, it suffices to check whether

they entail fact P@0, for P a fresh proposition occurring neither in Π nor in D. In turn,

to check whether Π and D entail a fact P (c)@ρ, it suffices to check whether the following

programme and dataset are inconsistent, with P ′ a fresh predicate of the same arity

as P , x a tuple of distinct variables, and t an arbitrary time point belonging to the

interval ρ:

Π′′ = Π∪ {⊥← P ′(x)∧�ρ1
P (x)∧�ρ2

P (x)}, D′′ = D∪ {P ′(c)@t}.
Intervals ρ1 and ρ2 are constructed using ρ and t; for example, if ρ= [t1, t2), then ρ1 =

[0, t− t1] and ρ2 = [0, t2 − t), whereas if t2 =∞, then t2 − t stands for ∞.

3.3 Fixpoint characterisation and the canonical interpretation

Each pair of a consistent programme Π and a dataset D admits a unique least model,

which we refer to as their canonical interpretation CΠ,D (Brandt et al. 2018). As in plain

Datalog, we can construct this interpretation by applying rules of Π to D in a forward-

chaining manner until a fixpoint is reached. Unlike plain Datalog, however, the fixpoint

in DatalogMTL may only be reachable after infinitely many materialisation steps; for

example, given a fact P@0, the rule �1P ← P propagates P to all positive integers,

which requires ω materialisation steps.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.232

Materialisation is performed using the immediate consequence operator TΠ; intuitively,

TΠ(I) can be seen as the interpretation obtained from I by adding all relational facts

that can be derived by applying once all rules in Π which are not ⊥-rules in all possible

ways to I. Formally, we define TΠ, for a programme Π, as the operator mapping each

interpretation I to the least interpretation containing I and satisfying the following

property for each ground instance r of a rule in Π that is not a ⊥-rule: whenever I

satisfies each body atom of r at a time point t, then TΠ(I) satisfies the head of r at t.

Subsequent applications of TΠ to the (least) model ID of D define the following sequence

of interpretations, for all ordinals α:

T 0
Π(ID) = ID,

Tα
Π (ID) = TΠ

(
Tα−1
Π (ID)

)
, for α a successor ordinal,

Tα
Π (ID) =

⋃
β<α

T β
Π(ID), for α a limit ordinal.

The canonical interpretation is obtained after at most ω1 (i.e. the first uncountable

ordinal) applications of TΠ; that is, CΠ,D = Tω1

Π (ID) (Brandt et al. 2017); in turn, if Π

and D are consistent then CΠ,D is the least common model of Π and D. Furthermore,

⊥-rules can be treated as constraints, and so Π and D are consistent if and only if CΠ,D

is a model of all ⊥-rules in Π.

Although the timeline in DatalogMTL is dense, it can be divided into regularly dis-

tributed intervals which are uniform in the sense that, in the canonical interpretation,

the same relational atoms hold in all time points belonging to the same interval. This

observation was first exploited to partition the rational timeline, for a programme Π

and dataset D, into punctual intervals [i · d, i · d] and open intervals ((i− 1) · d, i · d), for

each i∈Z, where d is the greatest common divisor (gcd) of the numbers occurring as

interval endpoints in Π and D (Brandt et al. 2018). Later, an alternative partitioning of

the timeline was proposed (Wa�lȩga et al. 2019a), where punctual intervals of the form

[i · d, i · d] are replaced with punctual intervals [t + i · d′, t+ i · d′], for all rational numbers

t in D, i∈Z, and d′ the gcd of numbers occurring in Π; in turn, open intervals of the

form ((i− 1) · d, i · d) were replaced with open intervals located between the new punctual

intervals. Below we present example partitionings of the timeline into intervals stemming

from both discretisation methods, for the case where the only rationals occurring in D

are 1
2 and 2

3 and the gcd of Π is 1 (therefore, d = 1
6 and d′ = 1). The second partitioning

has the advantage that the gcd is computed independently from D; this was exploited to

devise reasoning techniques with a better computational behaviour in data size (Wa�lȩga

et al. 2019a).

0 1 2 311
2 12

3 21
2 22

3
1
2

2
3

1 2 311
6 12

6 13
6 14

6 15
6 21

6 22
6 23

6 24
6 25

60 1
6

2
6

3
6

4
6

5
6

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 233

Procedure 1: Näıve(Π,D, P (c)@ρ)

Input: A program Π, a dataset D , and a fact P(c)@
Output: Either inconst, or a pair of a truth value and a dataset

1 Initialise N dna0/ot D ′ to D ;
2 loop
3 N := Π[D ′]; // derive new facts
4 C := coal(D ′ ∪N); // add new facts to partial materialisation
5 if the least model of D ′ does not satisfy some ⊥-rule in Π then return inconst;

// inconsistency is derived
6 if D ′ |= P(c)@ then return (true,D ′); // input fact is derived
7 if C = D ′ then return (false,D ′); // fixpoint is reached
8 D ′ := C ;

4 Reasoning techniques for DatalogMTL

In this section we recapitulate different techniques available for reasoning in DatalogMTL,

which we take as a starting point for the development of our approach; we present a

variant of the näıve materialisation procedure (Wa�lȩga et al. 2023,2021), the reduction

of DatalogMTL reasoning to LTL satisfiability proposed by Brandt et al. (2018), and

the automata-based procedure exploited by Wa�lȩga et al. 2019a to establish optimal

complexity bounds for reasoning.

4.1 Näıve materialisation

The fixpoint characterisation from Section 3.3 suggests the näıve materialisation-based

approach specified in Procedure 1. For a programme Π, a dataset D, and a fact P (c)@ρ,

the procedure applies the immediate consequence operator TΠ to ID (Lines 3, 4, and 8)

until one of the following holds:

– the partial materialisation of Π and D yields inconsistency due to satisfaction of

the body of some ⊥-rule, in which case inconst is returned (Line 5),

– the partial materialisation entails the input fact P (c)@ρ, in which case the truth

value true and the obtained partial materialisation are returned (Line 6), or

– the application of TΠ reaches a fixpoint and the obtained materialisation does not

satisfy P (c)@ρ nor yields an inconsistency, in which case the value false and the

full materialisation are returned (Line 8).

Example 4.1.

As a running example, consider the input fact R1(c1, c2)@[4, 4], the dataset

Dex = {R1(c1, c2)@[0, 1], R2(c1, c2)@[1, 2], R3(c2, c3)@[2, 3], R5(c2)@[0, 1]},
and the programme Πex consisting of the following rules:

R1(x, y)←♦−[1,1] R1(x, y), (r1)

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.234

�[1,1]R5(y)←R2(x, y)∧�[1,2]R3(y, z), (r2)

R4(x)←♦−[0,1] R5(x), (r3)

R6(y)←R1(x, y)∧�[0,2]R4(y)∧R5(y). (r4)

In näıve materialisation, rules are applied by first identifying the facts that can ground

the rule body, and then determining the maximal intervals for which all the ground body

atoms hold simultaneously. For instance, Rule r2 in Example 4.1 is applied to Dex by

matching R2(c1, c2) and R3(c2, c3) to the rule’s body atoms, and determining that [1, 1]

is the maximal interval in which the body atoms R2(c1, c2) and �[1,2]R3(c2, c3) hold

together. As a result, the head �[1,1]R5(c2)@[1, 1] holds, and so the fact R5(c2)@[2, 2] is

derived. We formalise it below.

Definition 4.2.

Let r be a rule of the form M ′←M1 ∧ · · · ∧Mn for some n≥ 1, which is not a ⊥-rule,

and let D be a dataset. The set of instances for r and D is defined as follows:

instr[D] = {(M1σ@ρ1, . . . , Mnσ@ρn) | σ is a substitution and, for each i∈ {1, . . . , n}
ρi is a subset-maximal interval such that D |= Miσ@ρi}.

The set r[D] of facts derived by r from D is defined as follows:

r[D] = {Mσ@ρ | σ is a substitution, M is the relational atom in M ′σ, and

there is (M1σ@ρ1, . . . , Mnσ@ρn)∈ instr[D] such that ρ is the unique

subset-maximal interval satisfying M ′σ@(ρ1 ∩ . . .∩ ρn) |= Mσ@ρ}. (2)

The set of facts derived from D by one-step application of Π is

Π[D] =
⋃
r∈Π

r[D]. (3)

By Definition 4.2, the set N of facts derived by Procedure 1 in Line

3 in the first iteration of the loop on our running example is Πex[Dex] =

{R1(c1, c2)@[1, 2], R4(c2)@[0, 2], R5(c2)@[2, 2]}. The partial materialisation D1
ex that

will be passed on to the next materialisation step is obtained in Line 4 as D1
ex =

coal(Dex ∪Πex[Dex]) where, as we described in Section 3.1, coal(D) is the unique dataset

obtained by exhaustively coalescing facts in D. In our example, R1(c1, c2)@[0, 1] in and

R1(c1, c2)@[1, 2] will be coalesced into R1(c1, c2)@[0, 2]. Thus,

D1
ex = {R1(c1, c2)@[0, 2], R2(c1, c2)@[1, 2], R3(c2, c3)@[2, 3],

R4(c2)@[0, 2], R5(c2)@[0, 1], R5(c2)@[2, 2]}.
In the second round, rules are applied to D1

ex. The application of r1 derives

R1(c1, c2)@[1, 3] (from R1(c1, c2)@[0, 2]) and the application of r2 rederives a redun-

dant fact R5(c2)@[2, 2]. In contrast to the previous step, Rule r4 can now be applied

to derive the new fact R6(c2)@[2, 2]. Finally, r3 derives the new fact R4(c2)@[2, 3] and

rederives R4(c2)@[0, 2]. After coalescing, the second step of materialisation yields the

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 235

following partial materialisation:

D2
ex = {R1(c1, c2)@[0, 3], R2(c1, c2)@[1, 2], R3(c2, c3)@[2, 3],

R4(c2)@[0, 3], R5(c2)@[0, 1], R5(c2)@[2, 2], R6(c2)@[2, 2]}.
In the third materialisation step, rules are applied to D2

ex, and derive the new fact

R1(c1, c2)@[1, 4] using Rule r1, as well as all facts which were already derived in the sec-

ond materialisation step (with the only exception of R1(c1, c2)@[1, 3]). After coalescing

we obtain:

D3
ex = {R1(c1, c2)@[0, 4], R2(c1, c2)@[1, 2], R3(c2, c3)@[2, 3],

R4(c2)@[0, 3], R5(c2)@[0, 1], R5(c2)@[2, 2], R6(c2)@[2, 2]}.
At this point, the algorithm detects that D3

ex entails the input fact R1(c1, c2)@[4, 4] and

stops.

Procedure 1 is both sound and complete. To show this, for each k ∈N, let Nk and Dk

denote the contents of, respectively, N and D in Procedure 1 upon the completion of

the kth iteration of the loop. Then we prove soundness by showing inductively on k ∈N,

that IDk
⊆ T k

Π(ID).

Theorem 4.3 (Soundness).

Consider Procedure 1 running on input Π and D. Upon the completion of the kth (for

some k ∈N) iteration of the loop of Procedure 1, it holds that I
D
′ ⊆ T k

Π(ID).

By Theorem 4.3, if the least model I
D
′ of D′ is not a model of a ⊥-rule in Π, then the

canonical interpretation CΠ,D is also not a model of such a rule; thus, if the algorithm

returns inconst, then Π and D are inconsistent. Next, to show completeness, we prove

inductively that T k
Π(ID)⊆ IDk

.

Theorem 4.4 (Completeness).

Consider Procedure 1 running on input Π and D. For each k ∈N, upon the completion

of the kth iteration of the loop of Procedure 1, it holds that T k
Π(ID)⊆ I

D
′ .

If Π and D are inconsistent, the canonical interpretation CΠ,D is not a model of some

⊥-rule r in Π; thus, there is an ordinal α such that Tα
Π (ID) is also not a model of r, in

which case Theorem 4.4 ensures that the algorithm returns inconst, as required.

Furthermore, if a fixpoint is reached without encountering an inconsistency, then our

procedure ensures that the input fact is not entailed and also that we have obtained a

representation of the full canonical interpretation which can be kept in memory and sub-

sequently exploited for checking entailment of any other fact. The procedure is, however,

not always terminating as reaching a fixpoint may require infinitely many rounds of rule

applications.

4.2 Translation to LTL

The discretisation of the rational timeline described in Section 3.3 was exploited by

Brandt et al. (2018) to reduce reasoning in DatalogMTL to reasoning in LTL. The reduc-

tion transforms a programme Π and a dataset D into an LTL formula ϕΠ,D such that Π

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.236

and D are consistent if and only if ϕΠ,D is LTL-satisfiable. Here, LTL is a propositional

modal logic interpreted over the integer time points and equipped with temporal opera-

tors ©P for at the previous time point , �P for always in the past , S for since, ©F for

at the next time point , �F for always in the future, and U for until . An LTL formula ϕ

is satisfiable if it holds at time point 0 in some LTL model.

Since, in contrast to DatalogMTL, the language of LTL is propositional, the first step

in the translation is to ground Π with all constants occurring in Π or D. Then, every

relational atom P (c) occurring in the grounding of Π with constants from Π and D is

translated into a propositional symbol P c. Moreover, the MTL operators occurring in Π

are rewritten using LTL operators. Both the grounding of the input programme Π and

the translation of the MTL operators (with binary-encoded numbers) into sequences of

LTL operators yield an exponential blow-up. For instance, assume that Π mentions an

atom �[0,60)A(x), both Π and D mention constants c1, . . . , cn, and that interval (0, 60)

contains m intervals after discretising the timeline. Then �(0,60)A(x) is translated to

an LTL formula containing n conjuncts (one conjunct for each ci), each of the form

©FA
ci ∧©F ©F Aci ∧ · · · ∧©F · · · ©F︸ ︷︷ ︸

m

Aci . Consequently, ϕΠ,D is exponentially large.

Since satisfiability checking in LTL is PSpace-complete, this approach provides a (worst-

case optimal) ExpSpace reasoning procedure for DatalogMTL.

4.3 Automata-based reasoning

An alternative approach to exploit the time discretisation of DatalogMTL is to directly

apply automata-based techniques, without the need of constructing an LTL formula. Such

automata-based constructions are well-studied in the context of LTL, where checking

satisfiability of a formula ϕ reduces to checking non-emptiness of a generalised non-

deterministic B FC;chi automaton where states are sets of formulas relevant to ϕ, the

alphabet consists of sets of propositions, and the transition relation and accepting con-

ditions ensure that words accepted by the automaton are exactly the models of ϕ (Baier

and Katoen 2008).

This technique can be adapted to the DatalogMTL setting (Wa�lȩga et al. 2021); each

state now represents ground metric atoms holding at all time points within a fragment of

the timeline called a window . Since the timeline can be discretised in DatalogMTL, each

window can be finitely represented as a sequence consisting of sets of metric atoms which

hold in the consecutive intervals from the window. Additionally, for such a sequence to

be a state of the automaton, it is required that the involved metric atoms are locally

consistent ; for example, if �[0,∞)A – which states that A holds always in the future –

holds in some interval ρ, then �[0,∞)A needs to hold also in all the intervals in the window

which are to the right of ρ in the timeline. The remaining components of the automaton

are defined analogously to the case of LTL.

Consistency checking in DatalogMTL reduces to checking non-emptiness of (pairs

of) automata, and this reduction provides a PSpace upper bound for data complex-

ity (Wa�lȩga et al. 2021). In particular, automata states are polynomially large in the size

of the dataset since windows can be chosen so that the number of intervals in each win-

dow is polynomially large. Moreover, the number of ground metric atoms that can hold

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 237

in each of these intervals is also polynomially bounded. Thus, each state is polynomi-

ally representable and non-emptiness of the automata can be checked with the standard

“on-the-fly” approach (Baier and Katoen 2008) in PSpace.

5 Our practical reasoning algorithm

In this section we propose a scalable approach for deciding both consistency and fact

entailment in DatalogMTL. The key elements of our approach are as follows:

– an optimised materialisation procedure using a seminäıve strategy which efficiently

applies the immediate consequence operator while minimising repeated inferences,

– a realisation of the automata-based reasoning approach, and

– an effective way of combining materialisation with automata-based reasoning that

aims at resorting to materialisation-based reasoning whenever possible.

In the remainder of this section we discuss each of the key components of our approach

in detail. For convenience of presentation, and without loss of generality, we will assume

that input programmes do not contain rules whose body is vacuously satisfied (i.e. sat-

isfied in the empty interpretation). Observe that each such rule can be formulated as a

fact and added to the input dataset instead; for example, rule P ←
 is equivalent to a

fact P@(−∞,∞).

5.1 Seminäıve materialisation

In this section we present a seminäıve materialisation procedure for DatalogMTL.

Analogously to the classical seminäıve algorithm for plain Datalog (Abiteboul et al.

1995), the main idea behind our procedure is to keep track of newly derived facts in

each materialisation step by storing them in a set Δ, and to make sure that each rule

application in the following materialisation step involve at least one fact in Δ. In this

way, the procedure will consider each instance (for a rule and dataset, as we introduced

in Definition 4.2) at most once throughout its entire execution, and so, such a procedure

is said to enjoy the non-repetition property. The same fact, however, can still be derived

multiple times by different instances; this type of redundancy is difficult to prevent and

is not addressed by the standard seminäıve strategy.

Our aim is to lift the seminäıve rule evaluation strategy to the setting of DatalogMTL.

As we have seen in Section 4.1, a rule instance can be considered multiple times in the

näıve materialisation procedure; for example, the instance (♦−[0,1] R5(c2)@[0, 2]) of Rule

r3 in Example 4.1 is considered by the näıve materialisation procedure in Section 4.1

both in the first and second materialisation steps to derive R4(c2)@[0, 2] since the näıve

procedure cannot detect that the fact R5(c2)@[0, 1] used to instantiate r3 in the second

step had previously been used to instantiate r2. Preventing such redundant computations,

however, involves certain challenges. First, by including in Δ just newly derived facts as

in Datalog, we may overlook information obtained by coalescing newly derived facts with

previously derived ones. Second, restricting application to relevant rule instances requires

consideration of the semantics of metric operators in rule bodies.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.238

Procedure 2: Seminäıve Π,D, P (c)@ρ)

Input: A program Π, a dataset D , and a fact P(c)@
Output: Either inconst, or a pair of a truth value and a dataset

1 Initialise N htobdna,0/ot ∅and D ′ to D ;
2 loop
3 N := Π[D ′ ···∅];
4 C := coal(D ′ ∪N);
5 ∅:= {M@ ∈ C | M@ entails some fact in N which is not entailed by D ′};
6 if the least model of D ′ does not satisfy some ⊥-rule in Π then return inconst;
7 if D ′ |= P(c)@ then return (true,D ′);
8 if ∅= / 0then return (false,D ′);
9 D ′ := C ;

Procedure 2 extends the seminäıve strategy to the setting of DatalogMTL while over-

coming the aforementioned difficulties. Analogously to the näıve approach, each iteration

of the main loop captures a single materialisation step consisting of a round of rule appli-

cations (Line 3) followed by the coalescing of relevant facts (Line 4); as before, dataset

D′ stores the partial materialisation resulting from each iteration and is initialised as the

input dataset, whereas the dataset N stores the facts obtained as a result of rule appli-

cation and is initialised as empty. Following the rationale behind the seminäıve strategy

for Datalog, newly derived information in each materialisation step is now stored as a

dataset Δ, which is initialised as the input dataset D and which is suitably maintained

in each iteration (Line 5); furthermore, Procedure 2 ensures in Line 3 that only rule

instances for which it is essential to involve facts from Δ (as formalised in the following

definition) are taken into account during rule application.

Definition 5.1.

Let r be a rule of the form M ′←M1 ∧ · · · ∧Mn, for some n≥ 1, and let D and Δ be

datasets. The set of instances for r and D relative to Δ is defined as follows:

instr[D···Δ] = {(M1σ@ρ1, . . . , Mnσ@ρn)∈ instr[D] |D \Δ �|= Miσ@ρi,

for some i∈ {1, . . . , n}}.
The set r[D···Δ] of facts derived by r from D relative to Δ is defined analogously to r[D] in

Definition 4.2, with the exception that instr[D] is replaced with instr[D]···Δ in Expression

(2). Finally, the set Π[D···Δ] of facts derived from D by one-step seminäıve application of

Π is defined as Π[D] in Expression (3), by replacing r[D] with r[D···Δ].

In each materialisation step, Procedure 2 exploits Definition 5.1 to identify as relevant

those rule instances with some “new” element (i.e. one that cannot be entailed without

the facts in Δ). The facts derived by such relevant rule instances in each iteration are

stored in set N (Line 3).

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 239

As in the näıve approach, rule application is followed by a coalescing step where the

partial materialisation is updated with the facts derived from rule application (Line 4). In

contrast to the näıve approach, however, Procedure 2 needs to maintain set Δ to ensure

that it captures only new facts. This is achieved in Line 5, where a fact in the updated

partial materialisation is considered new if it entails a fact in N that was not already

entailed by the previous partial materialisation. The procedure terminates in Line 6 if an

inconsistency has been derived, in Line 7 if the input fact has been derived, or in Line 8

if Δ is empty. Otherwise, the procedure carries over the updated partial materialisation

and the set of newly derived facts to the next materialisation step.

We next illustrate the application of the procedure to Dex and Πex and our example

fact R1(c1, c2)@4 from Example 4.1. In the first materialisation step, all input facts are

considered as newly derived (i.e. Δ = D) and hence N = Π[D′···Δ] = Π[D′] and the result

of coalescing coincides with the partial materialisation computed by the näıve procedure

(i.e. C = D1
ex). Then, the procedure identifies as new all facts in D1

ex which are not entailed

by Dex, namely:

Δ = {R1(c1, c2)@[0, 2], R4(c2)@[0, 2], R5(c2)@[2, 2]}.
In the second step, rule evaluation is performed in Line 3; since Δ is used for

this, the procedure no longer considers the redundant instance (R2(c1, c2)@[0, 2],

�[1,2]R3(c2, c3)@[1, 2]) of r2, since �[1,2]R3(c2, c3)@[1, 2] is entailed already by D1
ex \Δ.

Similarly, the redundant instance (♦−[0,1] R5(c2)@[0, 2]) of Rule r3 is not considered, as

D1
ex \Δ |=♦−[0,1] R5(c2)@[0, 2]. In contrast, all non-redundant facts derived by the näıve

strategy are also derived by the seminäıve procedure and after coalescing dataset C = D2
ex.

The set Δ is now updated as follows:

Δ = {R1(c2, c2)@[0, 3], R4(c2)@[0, 3], R6(c2)@[2, 2]}.
In particular, note that Δ contains the coalesced fact R4(c2)@[0, 3] instead of fact

R4(c2)@[2, 3] derived from rule application. Datasets Δ and D′ = D2
ex are passed on to

the third materialisation step, where all redundant computations identified in Section 4.1

are avoided with the only exception of fact R6(c2)@[2, 2], which is re-derived using the

instance of r4 consisting of R1(c2, c2)@[0, 3], �[0,2]R4(c2)@[2, 3], and R5(c2)@[2, 2]. Note

that this is a new instance which was not used in previous iterations, and hence it does

not violate the non-repetition property. Note also that, as with the näıve strategy, our

seminäıve procedure terminates on our running example in this materialisation step since

input fact R1(c1, c2)@[4, 4] has been derived.

We conclude this section by establishing correctness of our procedure, similarly as we

did in Theorems 4.3 and 4.4 for the näıve strategy from Procedure 1.

Theorem 5.2 (Soundness).

Consider Procedure 2 running on input Π and D. Upon the completion of the kth (for

some k ∈N) iteration of the loop of Procedure 2, it holds that I
D
′ ⊆ T k

Π(ID).

Completeness is proved by induction on the number k of iterations of the main loop.

In particular, we show that if T k+1
Π (ID) satisfies a new fact M@t, then there must be

a rule r and an instance in instr[Dk
···Δk] witnessing the derivation of M@t. Note that

since instr[Dk
···Δk]⊆ instr[Dk], it requires strengthening the argument from the proof of

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.240

Theorem 4.4, where it was sufficient to show that such an instance is in instr[Dk]. This

will imply that each fact satisfied by T k+1
Π (ID) is derived in the k + 1st iteration of our

procedure.

Theorem 5.3 (Completeness).

Consider Procedure 2 with input programme Π and input dataset D. For each k ∈N,

upon the completion of the kth iteration of the loop of Procedure 2, it holds that

T k
Π(ID)⊆ I

D
′ .

5.2 Optimised seminäıve evaluation

Although the seminäıve procedure enjoys the non-repetition property, it can still re-

derive facts already obtained in previous materialisation steps; as a result, it can incur

in a potentially large number of redundant computations. In particular, as discussed in

Section 5.1, fact R6(c2)@[2, 2] is re-derived using Rule r4 in the third materialisation

step of our running example, and (if the procedure did not terminate) it would also be

re-derived in all subsequent materialisation steps (by different instances of Rule r4).

In this section, we present an optimised variant of our seminäıve procedure which

further reduces the number of redundant computations performed during materialisation.

The main idea is to disregard rules during the execution of the procedure as soon as we can

be certain that their application will never derive new facts in subsequent materialisation

steps. In our example, Rule r4 can be discarded after the second materialisation step

as its application will only continue to re-derive fact R6(c2)@[2, 2] in each subsequent

materialisation step.

To this end, we will exploit the distinction between recursive and non-recursive predi-

cates in a programme, as defined in Section 3. In the case of our Example 4.1, predicates

R2, R3, R4, and R5 are non-recursive, whereas R1 and R6 are recursive, since in the

dependency graph of the programme Πex – depicted below – only vertices corresponding

to R1 and R6 can be reached by paths containing a cycle. Hence, Rules r2 and r3 are

non-recursive in Πex since their heads mention non-recursive predicates, whereas r1 and

r4 are recursive.

•vR1

•vR2

•vR3
•

vR4

•
vR5

•
vR6

Now, in contrast to recursive predicates, for which new facts can be derived in each

materialisation step, the materialisation of non-recursive predicates will be completed

after linearly many materialisation steps; from then on, the rules will no longer derive any

new facts involving these predicates. This observation can be exploited to optimise our

seminäıve evaluation as follows. Assume that the procedure has fully materialised all non-

recursive predicates in the input programme. At this point, we can safely discard all non-

recursive rules; furthermore, we can also discard a recursive rule r with a non-recursive

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 241

body atom M if the current partial materialisation does not entail any grounding of M

(in this case, r cannot apply in further materialisation steps). An additional optimisation

applies to forward-propagating programmes, where rules cannot propagate information

“backwards” along the timeline; in this case, we can compute the maximal time points

for which each non-recursive body atom in r may possibly hold, select the minimum tr
amongst such values, and discard r as soon as we can determine that the materialisation

up to time point tr has been fully completed.

In the case of our Example 4.1, materialisation of the non-recursive predicates R2,

R3, R4, and R5 is complete after two materialisation steps. Hence, at this point we can

disregard non-recursive Rules r2 and r3 and focus on the recursive forward-propagating

Rules r1 and r4. Furthermore, the maximum time point at which the non-recursive pred-

icates R4 and R5 from r4 can hold are 3 and 2, respectively, and hence tr4 = 2; as upon

the completion of the second materialisation step we can be certain that the remaining

body atom of r6, namely R1, has been materialised up to tr6 , we can discard the rule

r6. In subsequent materialisation steps we can apply only Rule r1, thus avoiding many

redundant computations.

Procedure 3 implements these ideas by extending our seminäıve materialisation from

Lines 3–8. In particular, in each materialisation step, the procedure checks whether all

non-recursive predicates have been fully materialised (Line 9), in which case it removes

all non-recursive rules from the input programme as well as all recursive rules with an

unsatisfied non-recursive body atom (Lines 10–12). It also sets the flag to 1, which acti-

vates the additional optimisation for forward-propagating programmes, which is applied

in Lines 13–18.

We conclude this section by establishing correctness of our procedure. We first observe

that, as soon as the algorithm switches the flag to 1, we can be certain that all facts with

non-recursive predicates have been fully materialised.

Lemma 5.4.

Consider Procedure 3 running on input programme Π and dataset D. Whenever flag = 1,

dataset D′ satisfies all facts over a non-recursive predicate in Π that are entailed by Π

and D.

This lemma shows us that once the flag is changed to 1, Procedure 3 can safely ignore

all the non-recursive rules, as they can no longer be used to derive any new facts. Thus,

such rules are deleted from Π in Line 12. The deletion of rules in Line 18, on the other

hand, is based on a simple observation that a derivation of a new fact M@t by a forward-

propagating programme is based only on facts holding at time points smaller-or-equal

to t. Thus, if for a forward-propagating programme Π′ (condition in Line 13) it holds

that I
D
′ and T

Π
′(I

D
′) satisfy the same facts within (−∞, tr] (condition in Line 18),

then I
D
′ and Tα

Π
′(ID

′) will coincide over (−∞, tr], for each ordinal number α. By the

construction, tr is the maximum time point in which the body of rule r can hold, so if

the above conditions are satisfied, we can safely delete r from the programme in Line 18.

Consequently, we obtain the following result.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.242

Procedure 3: OptimisedSeminäıve Π,D, P (c)@ρ))

Input: A program Π, a dataset D , and a fact P(c)@
Output: Either inconst, or a pair of a truth value and a dataset

1 Initialise N ,0/ot Δ and D ′ to D , Π′ to Π, f lag to 0, and Sr (for each r ∈ Π) to the set of
body atoms in r that are non-recursive in Π;

2 loop
3 N := Π′[D ′ ···Δ];
4 C := coal(D ′ ∪N);
5 Δ := {M@ ∈ C | M@ entails some fact in N but which is not entailed by D ′};
6 if the least model of D ′ does not satisfy some ⊥-rule in Π then return inconst;
7 if D ′ |= P(c)@ then return (true,D ′);
8 if Δ = /0 then return (false,D ′);
9 if f lag = 0 and the datasets D ′ and C satisfy the same facts with non-recursive in Π′

predicates then
10 Set f lag to 1 and Π′ to the recursive fragment of Π;
11 for each r ∈ Π′ do
12 if there is M ∈ Sr such that D ′ �|= M @t, for each substitution and time

point t then Π′ := Π′ \ {r};
13 if f lag = 1 and Π′ is forward propagating then
14 for each r ∈ Π′ do
15 for each M ∈ Sr do
16 tM

max := maximum right endpoint amongst all intervals satisfying
D ′ |= M @ , for some substitution ;

17 tr := minimum value in {tM
max | M ∈ Sr};

18 if for each M@ ∈ C with overlapping (−∞, tr], there is M@ ′ ∈ D ′ with
∩ (−∞, tr] ⊆ ′ then Π′ := Π′ \ {r};

19 D ′ := C ;

Lemma 5.5.

Whenever Procedure 3 removes a rule r from Π′ in either Line 12 or 18, C
Π
′
,C

= C
Π
′\{r},C.

Finally, using Lemma 5.5 together with the soundness and completeness of our sem-

inäıve evaluation (established in Theorems 5.2 and 5.3), we can show soundness and

completeness of the optimised version of the procedure.

Theorem 5.6 (Soundness and Completeness).

Consider Procedure 3 with input programme Π and input dataset D. For each k ∈N, upon

the completion of the kth iteration of the loop of Procedure 2, it holds that T k
Π(ID) = I

D
′ .

Note that our optimisation for forward-propagating programmes in Lines 13–18 can

be adopted in a straightforward way for backwards-propagating programmes, as these

cases are symmetric.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 243

Algorithm 4: Practical reasoning algorithm

Input: A programme Π, a dataset D, and a fact P (c)@ρ
Output: Either inconst, or a pair of a truth value and a dataset

1 Π′ := the set of P -relevant rules in Π;
2 D′ := the set of facts in D which mention predicates occurring in Π′;
3 Out := OptimisedSeminäıveHalt(Π′,D′, P (c)@ρ);
4 if Out = (Π′′,D′′) then assign Π′ := Π′′ and D′ :=D′′

5 else return Out;
6 Run two threads in parallel:
7 Thread 1:
8 return OptimisedSeminäıve(Π′,D′, P (c)@ρ);
9 Thread 2:
10 Π′′,D′′ := EntailToInconsist(Π′,D′, P (c)@ρ);
11 b := AutomataProcedure(Π′′,D′′);
12 return the negation of (b,D′);

We conclude this section by recalling that Procedure 3 is non-terminating, as it is

possible for the main loop to run for an unbounded number of iterations. In our approach,

we will also exploit a terminating (but incomplete) variant of the procedure, which we call

OptimisedSeminäıveHalt. This variant is obtained by adding an additional termination

condition just before Line 19 which breaks the loop and returns Π′ and D′ (without a

truth value) if the flag has been set to 1. Thus, such a variant of the procedure ensures

termination with a (partial) materialisation once all the non-recursive predicates in the

input programme have been fully materialised, and also returns a subset of relevant rules

in the programme.

5.3 Combining materialisation and automata

We are now ready to provide a practical and scalable reasoning algorithm combining

optimised seminäıve materialisation and automata construction. Our algorithm delegates

the bulk of the computation to the materialisation component and resorts to automata-

based techniques only as needed to ensure termination and completeness.

Our approach is summarised in Algorithm 4. When given as input a programme Π, a

dataset D, and a fact P (c)@ρ, the algorithm starts by identifying the subset Π′ of the

input rules and the subset D′ of the input data that are relevant to deriving the input fact

P (c)@ρ (Lines 1 and 2). This optimisation is based on the observation that a programme

Π and dataset D entail a fact of the form P (c)@ρ if and only if so do the subset ΠP of

P -relevant rules in Π and the subset DP of facts in D mentioning only predicates from

ΠP . Then, the algorithm proceeds according to the following steps.

1. Pre-materialise Π′ and D′ using the terminating (but possibly incomplete) version

of the seminäıve materialisation procedure OptimisedSeminäıveHalt discussed at

the end of Section 5.2. If the procedure terminates because an inconsistency has

been found, or the input fact has been derived, or a fixpoint has been reached,

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.244

then we can terminate and report output (Line 5); otherwise, we have obtained a

partial materialisation where non-recursive predicates have been fully materialised

and we can proceed to the next stage.

2. Run two threads in parallel. In the first (possibly non-terminating) thread, con-

tinue performing optimised semi-näıve materialisation until the input fact (or an

inconsistency) is derived or a fixpoint is reached. In turn, in the second thread we

resort to automata-based techniques applied to the partial materialisation obtained

in the first stage of the algorithm; in particular, this second thread applies in Line

10 the reduction from fact entailment to inconsistency checking as described in

Section 3.2, and then applies in Line 11 the automata-based decision procedure of

(Wa�lȩga et al. 2019a), as described in Section 4.3.

It follows directly from the results proved earlier in this section and the theoretical

results of Wa�lȩga et al. (2019a) that Algorithm 4 is sound, complete, and terminat-

ing. Furthermore, the algorithm is designed so that, on the one hand, materialisation is

favoured over automata-based reasoning and, on the other hand, the automata construc-

tion relies on a recursive programme that is as small as possible as well as on a partial

materialisation that is as complete as possible. The favourable computational behaviour

of this approach will be confirmed by our experiments.

6 Implementation and evaluation

We have implemented our practical decision procedure from Algorithm 4 in a system

called MeTeoR. Our system is implemented in Python 3.8 and does not depend on third-

party libraries. MeTeoR is available for download and its demo can also be accessed via an

online interface.3 In this section, we describe the implementation choices made in MeTeoR

and report the results of an extensive empirical evaluation on available benchmarks.

6.1 Implementation details

A scalable implementation of materialisation-based reasoning requires suitable represen-

tation and storage schemes for facts. In MeTeoR, we associate to each ground relational

atom a list of intervals sorted by their left endpoints, which provides a compact account

of all facts mentioning a given relational atom. Each ground relational atom is further

indexed by a composite key consisting of its predicate and its tuple of constants. This

layout is useful for fact coalescing and fact entailment checking; for instance, to check

if a fact M@ρ is entailed by a dataset D, it suffices to find and interval ρ′ such that

M@ρ′ ∈D and ρ⊆ ρ′; this can be achieved by first scanning the sorted list of intervals

for M using the index and checking if ρ is a subset of one of these intervals. Additionally,

each ground relational atom is also indexed by each of its term arguments to facilitate

joins. Finally, when a fact is inserted into the dataset, the corresponding list of intervals

is sorted to facilitate subsequent operations.

3 The version of MeToeR used in this paper is available at https://github.com/wdimmy/
DatalogMTL˙Practical˙Reasoning and its online demo is available at https://meteor.cs.ox.ac.uk/.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 245

MeTeoR also implements an optimised version of (temporal) joins, which are required

to evaluate rules with multiple body atoms. A näıve implementation of the join of metric

atoms M1, . . . , Mn occurring in the body of a rule would require computing all intersec-

tions of intervals ρ1, . . . , ρn such that Mi@ρi occurs in the so-far constructed dataset,

for each i∈ {1, . . . , n}. Since each Mi may hold in multiple intervals in the dataset, the

näıve approach is ineffective in practice. In contrast, we implemented a variant of the

classical sort-merge join algorithm: we first sort all n lists of intervals corresponding to

M1, . . . , Mn, and then scan the sorted lists to compute the intersections, which improves

performance. Our approach to temporal joins can be seen as a generalisation of the idea

sketched by Brandt et al. (2018, Section 5), which deals with two metric atoms at a time

but has not been put into practice to the best of our knowledge.

6.2 Baselines and machine configuration

We compared MeTeoR with two baselines: the query rewriting approach by Brandt et al.

(2018) and the reduction to LTL reasoning proposed by Brandt et al. (2018) which was

later implemented by Yang (2022). We could not compare our approach to the temporal

extension of the Vadalog system recently proposed by Bellomarini et al. (2022) as the

system is not accessible.

The query rewriting approach by Brandt et al. (2018) is based on rewriting a tar-

get predicate P with respect to an input programme Π into an SQL query that, when

evaluated over the input dataset D, provides the set of all facts with maximal intervals

over P entailed by Π and D. The only implementation of this approach that we are

aware of is the extension of the Ontop system described by Kalaycı et al. (2018); this

implementation, however, is no longer available4 and hence we have produced our own

implementation. Following Brandt et al. (2018), we used temporary tables (instead of

subqueries) to compute the extensions of predicates appearing in Π on the fly, which has

two implications. First, we usually have not just one SQL query but a set of queries for

computing the final result; second, similarly to MeTeoR, the approach essentially works

bottom-up rather than top-down. The implementation by Brandt et al. (2018) provides

two variants for coalescing: the first one uses standard SQL queries by Zhou et al. (2006),

whereas the second one implements coalescing explicitly. For our baseline we adopted the

standard SQL approach, which is less dependent on implementation details. Finally, we

chose Postgresql 10.18 as the underpinning database for all our baseline experiments.

As shown by Brandt et al. (2018), DatalogMTL reasoning can be reduced to LTL

reasoning by means of an exponential translation. This approach has been implemented

by Yang (2022) using BLACK (Geatti et al. 2019) as the LTL reasoner of choice, and we

used their implementation as a baseline for our experiments.

All experiments have been conducted on a Dell PowerEdge R730 server with 512 GB

RAM and two Intel Xeon E5-2640 2.6 GHz processors running Fedora 33, kernel version

5.8.17. In each experiment, we verified that the answers returned by MeTeoR and the

baselines coincide.

4 Personal communication with the authors.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.246

6.3 Benchmarks

The Temporal LUBM Benchmark is an extension of the Lehigh University Benchmark

(Guo et al. 2005) with temporal rules and data, which we developed (Wang et al. 2022a).

LUBM’s data generator, which provides means for generating datasets of different sizes,

has been extended to randomly assign an interval to each generated fact; the rational

endpoints of each interval belong to a range, which is a parameter. In addition, the plain

Datalog rules from the OWL 2 RL fragment of LUBM have been extended with 29 rules

involving recursion and mentioning all metric operators in DatalogMTL. The resulting

DatalogMTL programme is denoted by ΠL.

The Weather Benchmark is based on freely available data with meteorological obser-

vations in the US (Maurer et al. 2002);5 in particular, we used a dataset DW consisting

of 397 million temporal facts spanning over the years 1949–2010, and then considered

smaller subsets of this dataset. Similar data was used in experiments of Brandt et al.

(2018), however the format of data has slightly changed, so we adapted their (non-

recursive) programme (consisting of 4 rules) for detecting US states affected by excessive

heat and heavy wind, so that the programme matches the data. The obtained programme

is still non-recursive and, in what follows, it is denoted by ΠW .

The iTemporal Benchmark provides a synthetic generator for DatalogMTL pro-

grammes and datasets (Bellomarini et al. 2022).6 The benchmark can generate different

types of DatalogMTL programmes and equips them with datasets. We used iTemporal to

generate 10 recursive programmes Π1
I , . . . , Π10

I with different structures and containing

20–30 rules each, as well as corresponding datasets of various size.

6.4 Experiments

In this section, we describe experiments that we performed for benchmarking MeTeoR.7

6.4.1 Automata vs LTL.

Although MeTeoR utilises automata to ensure completeness and termination, we could

have alternatively relied on the translation to LTL implemented by Yang (2022) together

with BLACK (Geatti et al. 2019) as the LTL reasoner of choice. To determine which

choice is favourable, we considered programmes Π1
I , . . . , Π10

I from the iTempora bench-

mark, together with datasets containing 1, 000 facts each. For each pair of a dataset and a

programme, we constructed 10 query facts; these facts were generated by first randomly

choosing a predicate that appears in a programme or in a dataset; second, constants

are randomly chosen among those present in the programme and in the dataset; third,

an interval for the fact is generated. Next, we performed fact entailment by first reduc-

ing to inconsistency checking and then either applying the automata-based approach

or constructing an LTL formula and checking it’s satisfiability with BLACK. Average

running times per 10 query facts for both approaches are reported in Figure 1 (left),

5 https://www.engr.scu.edu/emaurer/gridded˙obs/index˙gridded˙obs.html
6 https://github.com/kglab-tuwien/iTemporal.git
7 All the datasets and programmes that we used in the experiments are available together with exploited
MeTeoR implementation at https://github.com/wdimmy/DatalogMTL˙Practical˙Reasoning.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 247

0 500 1,000 1,500 2,000
0

500

1,000

1,500

2,000

ΠE
I

ΠM
I

ΠH
I

Run time (s) for LTL

R
un

tim
e
(s
)f

or
au

to
m

at
a

1,000 2,000 3,000 4,000 5,000
0

1,000

2,000

3,000

4,000

5,000

Data size

R
un

tim
e
(s
)f

or
au

to
m

at
a

ΠE
I ΠM

I ΠH
I

Fig. 1. Comparison of automata- and LTL-based approaches (left) and scalability of the
automata approach (right).

where each point represents the running times for the automata-based approach (verti-

cal coordinate) and LTL-based approach (horizontal coordinate) for a single programme

and dataset. We can observe that the automata-based approach is consistently about an

order of magnitude faster, which justifies our choice over an LTL-based reasoner.

6.4.2 Scalability of automata.

We have conducted scalability experiments to understand the practical limitations of the

automata-based approach. Based on the results from the previous experiment, we chose

an “easy” programme ΠE
I , a “medium” programme ΠM

I , and a “hard” programme ΠH
I

amongst programmes Π1
I , . . . , Π10

I , as depicted in Figure 1 (left). We used iTemporal to

generate increasing size datasets for these programmes and we randomly generated query

facts as in the previous experiment. The runtimes of automata-based approach for such

inputs are summarised in Figure 1 (right), where we observe that the automata-based

procedure is able to solve non-trivial problems, but struggles to scale beyond datasets

with a few thousand temporal facts.

6.4.3 Comparison of materialisation strategies.

We compared the näıve, seminäıve, and optimised seminäıve materialisation procedures

described in Sections 4.1, 5.1, and 5.2, respectively. To this end, for each of the pro-

grammes ΠE
i , ΠM

i , and ΠH
i we used iTemporal to generate a dataset containing one

million facts. In Figure 2 we present running time and memory consumption (measured

as the maximum number of facts stored in memory) over the first 30 materialisation steps

in each case. As we can see, the seminäıve procedure consistently outperforms the näıve

approach both in terms of running time and memory consumption, especially as materi-

alisation progresses. In turn, the optimised seminäıve approach disregards rules after 6th,

7th, and 8th materialisation steps for ΠE
I , ΠM

I , and ΠH
I , respectively; from then onwards,

the optimised procedure outperforms the basic seminäıve procedure. We can note that

after several steps of materialisation the memory usage stabilises; the number of facts in

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.248

0 10 20 30
0

50

100

150

200
ΠE

I

R
un

tim
e
(s
)

Naïve Seminaïve Optimised seminaïve

0 10 20 30
0

50

100

150

200
ΠM

I

0 10 20 30
0

50

100

150

200
ΠH

I

0 10 20 30
1 ·105

2 ·105

3 ·105

4 ·105

5 ·105

M
ax

.m
em

or
y

us
ag

e

0 10 20 30
1 ·105

2 ·105

3 ·105

4 ·105

5 ·105

Number of iterations

0 10 20 30
1 ·105

2 ·105

3 ·105

4 ·105

5 ·105

Fig. 2. Comparison of time and memory consumption in various materialisation strategies.

memory stops increasing but their intervals keep growing. This behaviour seems to be

specific to programmes we used in this experiment.

6.4.4 Scalability of optimised seminäıve materialisation.

Our previous experiments provide evidence of the superiority of optimised seminäıve

materialisation over the two alternative approaches. We further evaluated the scalability

of optimised seminäıve materialisation as the size of the data increases. To this end, we

considered the three iTemporal programmes ΠE
I , ΠM

I , and ΠH
I as well as programme

ΠL from the Temporal LUBM Benchmark, and ΠW from the Weather Benchmark. In

Figure 3 we show running times and memory consumption after the first 10 material-

isation steps for datasets with up to 10 million temporal facts. We note here that the

programme ΠW is non-recursive and its full materialisation is obtained already after 3

materialisation steps; all other programmes are recursive. Our results suggest that the

optimised seminäıve materialisation procedure exhibits favourable scalability behaviour

as data size increases.

6.4.5 Comparison with query rewriting.

We compared the performance of MeTeoR with the query rewriting baseline. As the latter

does not support recursive programmes, we considered non-recursive programmes only.

For this, we generated non-recursive subsets of the programme ΠL from the Temporal

LUBM Benchmark and two subsets of the programme ΠW from the Weather Benchmark.

In particular, we considered fragments Π1
L (with 5 rules), Π2

L (10 rules), and Π3
L (21 rules)

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 249

2M 4M 6M 8M 10M
0

500

1,000

1,500

2,000

2,500

Data size

R
un

tim
e
(s
)

ΠW ΠE
I ΠM

I ΠL ΠH
I

2M 4M 6M 8M 10M
1 ·106

5 ·106

9 ·106

1.3 ·107

Data size

M
ax

.m
em

or
y

us
ag

e

Fig. 3. Scalability of our optimised seminäıve materialisation.

0 4 8 12 16 20 24
0

4

8

12

16

20

24

Run time (s) for query rewriting

R
un

tim
e
(s
)f

or
M

eT
eo

R

Π1
L Π2

L Π3
L

0 4 8 12 16 20 24
0

4

8

12

16

20

24

Run time (s) for query rewriting

R
un

tim
e
(s
)f

or
M

eT
eo

R

Π1
W Π2

W

Fig. 4. Comparison between meTeoR and the query rewriting baseline.

of ΠL with rules relevant (see the end of Section 3.1 for the precise definition of this

notion) to predicates ResearchAssistant , Lecturer , and FullProfessorCandidate, respec-

tively. For the Weather Benchmark we used fragments Π1
W and Π2

W (each with 2 rules)

of ΠW , with rules relevant to predicates HeatAffectedState and HeavyWindAffectedState,

respectively. For each programme we generated a collection of datasets with 100, 000 facts

each and compared the runtime of MeTeoR with the baseline in the task of computing all

entailed facts over the predicates mentioned above. Note that since the programmes are

non-recursive, MeTeoR runs only (optimised seminäıve) materialisation without exploit-

ing automata. Figure 4 presents results, where each point represents the running times

for MeTeoR (vertical coordinate) and the baseline (horizontal coordinate) for particular

pairs of a programme and a dataset; MeTeoR consistently outperformed the baseline.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.250

6.4.6 Usage of materialisation and automata in meTeoR.

Our previous experiments provide strong indication that the optimised seminäıve mate-

rialisation algorithm implemented in MeTeoR is more scalable than the automata-based

component and that it can successfully deal with complex rules and datasets containing

millions of temporal facts. Next, we assess whether Algorithm 4 is indeed effective in dele-

gating most of the reasoning workload to the scalable materialisation component. To this

end, we considered programmes Π1
I , . . . , Π10

I generated by iTemporal together with their

corresponding datasets with 1000 facts each. For each pair of a programme and a dataset

we randomly generated 100 query facts and checked, for which facts entailment can be

checked by MeTeoR using materialisation (i.e. Algorithm 4 terminates in either Line 3 or

Line 8) and for which by the automata component (i.e. Algorithm 4 terminates in Line

12). It turned out that in 99.7% cases MeTeoR decided entailment using materialisation

only, and so, only in 0.3% cases the automata component was used. Although these results

are obviously biased by the way iTemporal generates programmes and datasets, they do

support our hypothesis that focusing on the materialisation component in MeTeoR can

provide a practically efficient reasoning mechanism.

7 Conclusions

In this paper, we presented a practical reasoning algorithm for full DatalogMTL, which

combines materialisation with an automata-based approach. To achieve favourable per-

formance, our algorithm delegates most of the computations to the materialisation

component, which we optimised using seminäıve reasoning strategies. In turn, the

computationally-expensive automata-based approach is used only to guarantee termi-

nation and completeness of reasoning. We have implemented our algorithm in the

MeTeoR reasoner and made it publicly available. Our extensive evaluation supports our

practicality and scalability claims.

We see many avenues for future research. First, DatalogMTL has been extended with

stratified negation-as-failure (Cucala et al. 2021) and our seminäıve procedure could

be extended accordingly. We are also working on blocking conditions that exploit the

periodic structure of canonical models to ensure termination of materialisation-based

reasoning. Finally, incremental materialisation-based reasoning has been studied in con-

text of Datalog (Motik et al. 2019), and it would be interesting to lift such approaches

to the DatalogMTL setting.

Acknowledgments

Our research was funded by the following EPSRC projects: OASIS (EP/S032347/1), and

UK FIRES (EP/S019111/1), as well as by SIRIUS Centre for Scalable Data Access,

Samsung Research UK, and NSFC grant No. 62206169. For the purpose of Open Access,

the authors have applied a CC BY public copyright licence to any Author Accepted

Manuscript version arising from this submission.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 251

References

Abiteboul, S., Hull, R. and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.

Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Schaub, T., Schuhmann, A. and Vidal,
C. 2021 Linear-time temporal answer set programming. In Theory and Practice of Logic
Programming, 1–55.

Artale, A. and Franconi, E. 1998. A temporal description logic for reasoning about actions
and plans. Journal of Artificial Intelligence Research 9, 463–506.

Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F. and
Zakharyaschev, M. 2015. First-order rewritability of temporal ontology-mediated queries. In
Proc. of the International Joint Conference on Artificial Intelligence, 25 July 2015, 2706–2712.

Baader, F., Borgwardt, S., Koopmann, P., Ozaki, A. and Thost, V. 2017. Metric temporal
description logics with interval-rigid names.In Frontiers of Combining Systems, C. Dixon and
M. Finger, Eds. Springer Verlag, 60–76.

Baier, C. and Katoen, J.-P. 2008. Principles of Model Checking. MIT Press.

Beck, H., Dao-Tran, M. and Eiter, T. 2018. LARS: A logic-based framework for analytic
reasoning over streams. Artificial Intelligence 261, 16–70.

Bellomarini, L., Blasi, L., Nissl, M. and Sallinger, E. 2022, The temporal Vadalog system.
In International Joint Conference on Rules and Reasoning , 130–145.

Bellomarini, L., Nissl, M. and Sallinger, E. 2021. Query evaluation in DatalogMTL –
taming infinite query results. CoRR abs/2109.10691 .

Bellomarini, L., Nissl, M. and Sallinger, E. 2022. iTemporal: An extensible temporal
benchmark generator. In 2022 IEEE 38th International Conference on Data Engineering ,
2021–2033.

Bellomarini, L., Sallinger, E. and Gottlob, G. 2018. The Vadalog system: Datalog-based
reasoning for knowledge graphs. In Proc. of the VLDB Endowment , 975–987.

Brandt, S., Kalaycı, E. G., Kontchakov, R., Ryzhikov, V., Xiao, G. and Zakharyaschev,
M. 2017. Ontology-based data access with a horn fragment of metric temporal logic. In Proc.
of the AAAI Conference on Artificial Intelligence, 1070–1076.

Brandt, S., Kalaycı, E. G., Ryzhikov, V., Xiao, G. and Zakharyaschev, M. 2018. Querying
log data with metric temporal logic. Journal of Artificial Intelligence Research 62, 829–877.

Bry, F., Eisinger, N., Eiter, T., Furche, T., Gottlob, G., Ley, C., Linse, B., Pichler, R.
and Wei, F. 2007. Foundations of rule-based query answering, In Reasoning Web, 1–153.

Cabalar, P., Diéguez, M., Schaub, T. and Schuhmann, A. 2020. Towards metric temporal
answer set programming. Theory and Practice of Logic Programming 20, 5, 783–798.

Carral, D., Dragoste, I., González, L., Jacobs, C. J. H., Krötzsch, M. and Urbani, J.
2019. Vlog: A rule engine for knowledge graphs. In International Semantic Web Conference,
19–35.

Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover,
S., Roveri, M. and Tonetta, S. 2014. The nuXmv symbolic model checker. In Computer
Aided Verification, 334–342.

Ceri, S., Gottlob, G. and Tanca, L. 1989. What you always wanted to know about Datalog
(and never dared to ask). IEEE Transactions on Knowledge and Data Engineering 1, 1, 146–
166.

Chomicki, J. and Imielinski, T. 1988. Temporal deductive databases and infinite objects. In
Proc. of the Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, 61–73.

Cucala, D. J. T., Wa�lȩga, P. A., Cuenca Grau, B. and Kostylev, E. V. 2021. Stratified
negation in Datalog with metric temporal operators. In Proc. of the Thirty-Third AAAI
Conference on Artificial Intelligence, 6488–6495.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.252

Geatti, L., Gigante, N. and Montanari, A. 2019. A sat-based encoding of the one-pass and
tree-shaped tableau system for LTL. In Automated Reasoning with Analytic Tableaux and
Related Methods, 3–20.

Guo, Y., Pan, Z. and Heflin, J. 2005. LUBM: A benchmark for OWL knowledge base systems.
Journal of Web Semantics 3, 2-3, 158–182.

Gutiérrez-Basulto, V., Jung, J. C. and Ozaki, A. 2016. On metric temporal description
logics. In 22nd European Conference on Artificial Intelligence, 837–845.

Kalaycı, E. G., Xiao, G., Ryzhikov, V., Kalayci, T. E. and Calvanese, D. 2018. Ontop-
temporal: a tool for ontology-based query answering over temporal data. In Proc. of the 27th
ACM International Conference on Information and Knowledge Management , 1927–1930.

Kikot, S., Ryzhikov, V., Wa�lȩga, P. A. and Zakharyaschev, M. 2018. On the data com-
plexity of ontology-mediated queries with MTL operators over timed words. In Description
Logics

Kontchakov, R., Pandolfo, L., Pulina, L., Ryzhikov, V. and Zakharyaschev, M. 2016.
Temporal and spatial OBDA with many-dimensional Halpern-Shoham logic. In Proc. of the
International Joint Conference on Artificial Intelligence, 1160–1166.

Koopmann, P. 2019. Ontology-based query answering for probabilistic temporal data. In Proc.
of the AAAI Conference on Artificial Intelligence, 2903–2910.

Koymans, R. 1990. Specifying real-time properties with metric temporal logic. Real-Time
Systems 2, 4, 255–299.

Maurer, E. P., Wood, A. W., Adam, J. C., Lettenmaier, D. P. and Nijssen, B. 2002. A
long-term hydrologically based dataset of land surface fluxes and states for the conterminous
United States. Journal of Climate 15, 22, 3237–3251.

Mori, M., Papotti, P., Bellomarini, L. and Giudice, O. 2022. Neural machine translation
for fact-checking temporal claims. In Proc. of the Fifth Fact Extraction and VERification
Workshop, 78–82.

Motik, B., Nenov, Y., Piro, R. and Horrocks, I. 2019. Maintenance of Datalog materialisa-
tions revisited. Artificial Intelligence 269, 76–136.

Motik, B., Nenov, Y., Piro, R., Horrocks, I. and Olteanu, D. 2014. Parallel materialisa-
tion of Datalog programs in centralised, main-memory RDF systems. In Proc. of the AAAI
Conference on Artificial Intelligence.

Nissl, M. and Sallinger, E. 2022. Modelling smart contracts with datalogmtl. In Proc. of the
Workshops of the EDBT/ICDT .

Raheb, K. E., Mailis, T., Ryzhikov, V., Papapetrou, N. and Ioannidis, Y. E. 2017. Balonse:
Temporal aspects of dance movement and its ontological representation. In European Semantic
Web Conference, 49–64.

Ryzhikov, V., Wa�lȩga, P. A. and Zakharyaschev, M. 2019a. Data complexity and rewritabil-
ity of ontology-mediated queries in metric temporal logic under the event-based semantics. In
International Joint Conferences on Artificial Intelligence, 1851–1857.

Thost, V. 2018. Metric temporal extensions of DL-Lite and interval-rigid names. In Proc. of the
International Conference on Principles of Knowledge Representation and Reasoning , 665–666.

Wa�lȩga, P. A., Cuenca Grau, B., Kaminski, M. and Kostylev, E. V. 2019a. DatalogMTL:
computational complexity and expressive power. In International Joint Conferences on
Artificial Intelligence, 1886–1892.

Wa�lȩga, P. A., Cuenca Grau, B., Kaminski, M. and Kostylev, E. V. 2020. DatalogMTL
over the integer timeline. In Proc. of the International Conference on Principles of Knowledge
Representation and Reasoning , 768–777.

Wa�lȩga, P. A., Cuenca Grau, B., Kaminski, M. and Kostylev, E. V. 2021. Tractable
fragments of Datalog with metric temporal operators. In Proc. of the AAAI Conference on
Artificial Intelligence, 1919–1925.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 253

Wa�lȩga, P. A., Kaminski, M. and Cuenca Grau, B. 2019b. Reasoning over streaming data in
metric temporal Datalog. In Proc. of the AAAI Conference on Artificial Intelligence, 3092–
3099.

Wa�lȩga, P. A., Tena Cucala, D. J., Kostylev, E. V. and Cuenca Grau, B. 2021.
DatalogMTL with negation under stable models semantics. In Proc. of the International
Conference on Principles of Knowledge Representation and Reasoning , 609–618.

Wa�lȩga, P. A., Zawidzki, M. and Cuenca Grau, B. 2021. Finitely materialisable Datalog pro-
grams with metric temporal operators. In Proc. of the International Conference on Principles
of Knowledge Representation and Reasoning , 619–628.

Wa�lȩga, P., Zawidzki, M. and Grau, B. C. 2023. Finite materialisability of datalog programs
with metric temporal operators. Journal of Artificial Intelligence Research. 76, 471–521.

Wang, D., Hu, P., Wa�lȩga, P. A. and Grau, B. C. 2022a. MeTeoR: Practical reasoning
in Datalog with metric temporal operators. In Proc. of the AAAI Conference on Artificial
Intelligence, 5906–5913.

Wang, D., Wa�lȩçga, P. A. and Grau, B. C. 2022. Seminaive materialisation in DatalogMTL.
In International Joint Conference on Rules and Reasoning .

Yang, J. 2022. Translation of datalogMTL into PLTL, M.S. thesis, University of Oxford,UK.

Zhou, X., Wang, F. and Zaniolo, C. 2006. Efficient temporal coalescing query support in
relational database systems. In International Conference on Database and Expert Systems
Applications, 676–686.

Appendix A Proofs

Theorem 4.3: Consider Procedure 1 running on input Π and D. Upon the completion of the kth
(for some k ∈N) iteration of the loop of Procedure 1, it holds that I

D
′ ⊆ T k

Π(ID).

Proof.
For each k ∈N, we let Nk and Dk denote the contents of, respectively, N and D in Procedure
1 upon the completion of the kth iteration of the loop. Thus, it suffices to show, inductively on
k ∈N, that IDk

⊆ T k
Π(ID).

In the base case, we have D0 =D. Moreover, T 0
Π(ID) = ID, and so, ID0 ⊆ T 0

Π(ID), as required.
For the inductive step, we assume that IDk

⊆ T k
Π(ID), for some k ∈N, and that the procedure

enters the k+ 1st iteration of the loop. If the k+ 1st iteration of the loop breaks in Line 7,
then Dk+1 =Dk. By the inductive assumption we have IDk

⊆ T k
Π(ID), and therefore, IDk+1

⊆
T k
Π(ID), and thus, IDk+1

⊆ T k+1
Π (ID). Now, assume that the k+ 1st iteration of the loop does

not break in Line 7. Hence, by Lines 4 and 8, we have Dk+1 = coal(Dk ∪Nk+1). To show that

IDk+1
⊆ T k+1

Π (ID), we assume that IDk+1
|=M@t, for some relational fact M@t. Hence, we

have Dk |=M@t or Nk+1 |=M@t.

Case 1: Dk |=M@t. By the inductive assumption, IDk
⊆ T k

Π(ID), so T k
Π(ID) |=M@t. Clearly,

T k
Π(ID)⊆ T k+1

Π (ID), and so, T k+1
Π (ID) |=M@t, as required.

Case 2: Nk+1 |=M@t. By Line 3 of Procedure 1, we obtain that Nk+1 =Π(Dk). Thus,
by Expression (3) from Definition 4.2, there exists a rule r ∈Π, say of the
form M ′←M1 ∧ · · · ∧Mn, such that r[Dk] |=M@t. Therefore, by Expression (2)
from Definition 4.2, there are a substitution σ and some intervals ρ1, . . . , ρn
such that (M1σ@ρ1, . . . , Mnσ@ρn)∈ instr[Dk] and M ′σ@(ρ1 ∩ · · · ∩ ρn) |=M@t. Since
(M1σ@ρ1, . . . , Mnσ@ρn) belongs to instr[Dk], by Expression (2) from Definition 4.2,
we obtain that Dk |=Mi@ρi, for each i∈ {1, . . . , n}. Therefore, by the definition of
TΠ, we obtain that TΠ(IDk

) |=M ′σ@(ρ1 ∩ · · · ∩ ρn) and so TΠ(IDk
) |=M@t. Finally,

by the inductive assumption, IDk
⊆ T k

Π(ID), so TΠ(IDk
)⊆ T k+1

Π (ID), and therefore we

obtain that T k+1
Π (ID) |=M@t.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

D. Wang et al.254

Theorem 4.4: Consider Procedure 1 running on input Π and D. For each k ∈N, upon the
completion of the kth iteration of the loop of Procedure 1, it holds that T k

Π(ID)⊆ I
D

′ .

Proof.
We use the same symbols Nk and Dk as in the proof of Theorem 4.3 and we define Δk anal-
ogously. We will show, inductively on natural numbers k, that T k

Π(ID)⊆ IDk
. The base case

holds trivially, because we have D0 =D, and so, T 0
Π(ID) = ID0 . For the inductive step assume

that T k
Π(ID)⊆ IDk

, for some k ∈N. Moreover, let T k+1
Π (ID) |=M@t, for some relational fact

M@t. We will show that IDk+1
|=M@t. We have either T k

Π(ID) |=M@t or T k
Π(ID) �|=M@t.

Case 1: T k
Π(ID) |=M@t. Then, by the inductive assumption, IDk

|=M@t. Since Dk+1 |=Dk,
we obtain that IDk+1

|=M@t.

Case 2: T k
Π(ID) �|=M@t. Since T k+1

Π (ID) |=M@t, there exist a rule r ∈Π, say of the form M ′←
M1 ∧ · · · ∧Mn, and a time point t′ such that an application of r at t′ yields M@t.
More precisely, it means that there is a substitution σ such that T k

Π(ID) |=Miσ@t′,
for each i∈ {1, . . . , n}, and M ′σ@t′ |=M@t. Therefore, by the fact that T k

Π(ID)⊆
IDk

and by Expression (2) from Definition 4.2, there need to exist some intervals
ρ1, . . . , ρn such that t′ ∈ ρ1 ∩ · · · ∩ ρn and (M1σ@ρ1, · · · , Mnσ@ρn)∈ instr[Dk]. Thus,
as M ′σ@t′ |=M@t, we obtain by Definition 4.2 that r[Dk] |=M@t, and so, Π[Dk] |=
M@t. Finally, recall that Dk+1 = coal(Dk ∪Nk+1) and Nk+1 =Π[Dk]. Therefore, the
fact that Π[Dk] |=M@t implies that IDk+1

|=M@t.

Theorem 5.2: Consider Procedure 2 running on input Π and D. Upon the completion of the
kth (for some k ∈N) iteration of the loop of Procedure 2, it holds that I

D
′ ⊆ T k

Π(ID).

Proof.
The proof relies on the observation that rule instances processed by seminäıve evaluation are
also processed by the näıve evaluation. In particular, directly by Definition 5.1 we obtain that
instr[D

′···Δ]⊆ instr[D
′], for each r, D′, and Δ. Hence, in each loop iteration, the sets N and C in

Procedure 2 are subsets of the corresponding sets in Procedure 1. Consequently, the same holds
for the set D′, and so, soundness follows from Theorem 4.3.

Theorem 5.3: Consider Procedure 2 with input programme Π and input dataset D. For each
k ∈N, upon the completion of the kth iteration of the loop of Procedure 2, it holds that T k

Π(ID)⊆
I

D
′ .

Proof.
We will use Nk, Δk, and D′

k, for the contents of, respectively, N, Δ, and D′ in Procedure 2
upon the completion of the kth iteration of the loop. Now, as in the proof of Theorem 4.4, we
will show inductively on natural numbers k, that T k

Π(ID)⊆ IDk
.

The only difference with respect to the proof of Theorem 4.4 lies in Case 2, where
we assume that T k

Π(ID) �|=M@t and T k+1
Π (ID) |=M@t, for some relational fact M@t. By

the inductive assumption, as in the proof of Theorem 4.4, there needs to be an instance
(M1σ@ρ1, · · · , Mnσ@ρn) ∈ instr[Dk] of some rule r of the form M ′←M1 ∧ · · · ∧Mn, and a
time point t′ ∈ ρ1 ∩ · · · ∩ ρn such that M ′σ@t′ |=M@t. Now, we argue that this instance is not
only in instr[Dk], but also in instr[Dk

···Δk], namely that (M1σ@ρ1, · · · , Mnσ@ρn)∈ instr[Dk
···Δk].

To this end, by Definition 5.1, it suffices to show that there is i∈ {1, . . . , n} such that
Dk \Δk �|=Miσ@ρi. We will consider two cases, namely, when k= 0 and when k > 0.

Case 2.1: k= 0. By the initialisation (Line 1) of the of Procedure 2,Δ0 =D, so D0 \Δ0 = ∅.
Recall that we assumed in the paper that input programmes do not have rules with
vacuously satisfied bodies, so there needs to exist i∈ {1, . . . , n} such that the empty
interpretation does not satisfy Miσ@ρi, that is, D0 \Δ0 �|=Miσ@ρi.

Case 2.2: k > 0. By Lines 9 and 4, we have Dk = coal(Dk−1 ∪Nk). Moreover, by the defi-
nition of Δ in Line 5, we obtain Dk = coal(Dk−1 ∪Δk). Thus IDk

= IDk−1
∪ IΔk ,

so IDk
\ IΔk = IDk−1

\ IΔk , and therefore IDk
\ IΔk ⊆ IDk−1

. Hence, to show that
for some i∈ {1, . . . , n} we have that Dk \Δk �|= Miσ@ρi, it suffices to show that
Dk−1 �|=Miσ@ρi. Suppose towards a contradiction that Dk−1 |=Miσ@ρi, for all

i∈ {1, . . . , n}. By Theorem 5.2, T k−1
Π (ID) |=Miσ@ρi, for all i∈ {1, . . . , n}. Thus,

T k
Π(ID) |=M@t, which raises a contradiction.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

Practical Reasoning in DatalogMTL 255

Lemma 5.4: Consider Procedure 3 running on input programme Π and dataset D. Whenever
flag= 1, dataset D′ satisfies all facts over a non-recursive predicate in Π that are entailed by Π
and D.

Proof.
In Procedure 3, flag is initialised to 0 and once it is changed to 1 (in Line 10) its value cannot
be reverted. Moreover, the consecutive contents of D′ are obtained by coalescing the previous
contents with facts in N (in Line 4), so once a fact is entailed by D′, it will remain entailed by
all the consecutive contents of D′. Therefore, to prove the lemma, it suffices to consider the step
of computation in which flag becomes 1. Let k be this step and let D′

k, be the contents of D′

upon the completion of the kth iteration of the loop. Hence, we need to show that D′
k satisfies

all the facts which are satisfied in CΠ,D and which mention non-recursive predicates in Π.
For this, we observe that before flag changes to 1, Procedure 3 works as Procedure 2 so,

by Theorems 5.2 and 5.3, we have I
D

′
k
= T k

Π(ID). Hence, as CΠ,D = Tω1
Π (ID), it suffices to

show by a transfinite induction that, for each ordinal α≥ k, the interpretations T k
Π(ID) and

Tα
Π (ID) satisfy the same facts with non-recursive predicates in Π. For the base case assume that

T k+1
Π (ID) |=M@t, for some relational fact M@t whose predicate is non-recursive in Π. Hence,

there is a rule r ∈ ground(Π,D) and a time point t′ such that T k
Π(ID) entails each body atom of

r at t′, and the head of r holding at t′ entails M@t. Thus the head atom of r has a non-recursive
predicate in Π; therefore, by the definition, each body atom in r also mentions only non-recursive
predicates in Π. Now, as T k

Π(ID) �|=M@t, we obtain that T k
Π(ID) and T k−1

Π (ID) do not satisfy
the same relational facts with non-recursive predicates in Π, which directly contradicts the
condition from Line 9. The inductive step for a successor ordinal α uses the same argument;
indeed, if Tα

Π (ID) |=M@t and Tα−1
Π (ID) |=M@t, for some relational fact M@t whose predicate

is non-recursive in Π, then Tα
Π (ID) and Tα−1

Π (ID) do not satisfy the same relational facts with
non-recursive predicates, contradicting the inductive assumption. The inductive step for the
transfinite ordinal α holds trivially as Tα

Π (ID) =
⋃

β<α T β
Π(ID).

Theorem 5.6: Consider Procedure 3 with input programme Π and input dataset D. For each
k ∈N, upon the completion of the kth iteration of the loop of Procedure 2, it holds that T k

Π(ID) =
I

D
′ .

Proof.
If for both Lines 12 and 18, the condition in the “if” statement never applies, then Procedure 3
works in the same way as Procedure 2. Hence, by Theorems 5.2 and 5.3, we get T k

Π(ID) = I
D

′ .
Otherwise, the loop from Procedure 3 works similarly as Procedure 2, except that it can delete
in Lines 12 and 18 some rules. By Lemma 5.5, however, such rules can be safely deleted from
the programme, without losing the properties established in Theorems 5.2 and 5.3.

https://doi.org/10.1017/S1471068424000164 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000164

	Introduction
	Related work
	Preliminaries
	Syntax
	Semantics and reasoning problems
	Fixpoint characterisation and the canonical interpretation

	Reasoning techniques for DatalogMTL
	Na"00EF`ve materialisation
	Translation to LTL
	Automata-based reasoning

	Our practical reasoning algorithm
	Semina"00EF`ve materialisation
	Optimised semina"00EF`ve evaluation
	Combining materialisation and automata

	Implementation and evaluation
	Implementation details
	Baselines and machine configuration
	Benchmarks
	Experiments
	Automata vs LTL.
	Scalability of automata.
	Comparison of materialisation strategies.
	Scalability of optimised semina"00EF`ve materialisation.
	Comparison with query rewriting.
	Usage of materialisation and automata in meTeoR.

	Conclusions
	References

