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Abstract

We consider the weighted L, solvability for divergence and nondivergence form parabolic equations
with partially bounded mean oscillation (BMO) coeflicients and certain positive potentials. As an
application, global regularity in Morrey spaces for divergence form parabolic operators with partially
BMO coefficients on a bounded domain is established.
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1. Introduction

We are concerned about the parabolic divergence and nondivergence equations of the
form

Lu(t, x) = —u,(t, x) + a” (1, Otay (1, %) + (1, u, (¢, %) + c(t, Du(t, x),  (1.1)
and

LH(Z, X) = _ut(t’ X) + (aij(t’ x)ux,-(t’ -x) + ai(t9 .X')M(l, x))xj (1 2)
+b(t, X)u (1, x) + c(t, X)u(t, x). ‘
We assume that the coefficients of these operators are bounded and measurable, and
a'/ are uniformly elliptic, i.e. for some K > 0 and ¢ € (0, 1],

b+l <K, laY| <87, 6P <aleg; <o (1.3)
For equations with uniformly continuous leading coeflicients, the solvability is
classical. The L, theory of second-order equations with discontinuous coefficients

was studied extensively in the last two decades. One important class of discontinuous
coeflicients contains functions with vanishing mean oscillation (VMO), the study of
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which was started in [6] about 20 years ago and continued in [2, 7, 9]. On the
other hand, the Morrey space theory of second-order equations with discontinuous
coeflicients was also studied in [11, 12, 20, 30]. In addition Dintelmann et al. [10]
studied the mixed weighted inequalities for higher-order parabolic systems with VMO
coeflicients independent of 7, and Munckenhoupt weights independent of 7. Recently,
Tang [32] studied WP -solvability of the Cauchy—Dirichlet problem for nondivergence
parabolic equations with bounded mean oscillation (BMO) coeflicients and parameter
A>0.

Recently, Krylov [25, 26] gave a unified approach to investigate the L,-solvability
of both divergence and nondivergence form parabolic and elliptic equations with
a'/ € VMO in the spatial variables (and measurable in the time variable in the parabolic
case). This result was later improved and generalized in a series of papers [15-17].

In contrast, the L,(p > 2) theory of elliptic and parabolic equations with partially
BMO coefficients is quite new, and was originated in [24]. Later, this result was
improved and generalized in [13, 14].

The main purpose of this paper is to show the weighted L, solvability for divergence
and nondivergence form parabolic operators with partially BMO coefficients and
certain positive potentials. Furthermore, as an application, we establish global
regularity in Morrey spaces for divergence form parabolic operators with partially
BMO coefficients on a bounded domain.

We now give a brief outline of this paper. In the next section, we introduce
some notation and some definitions. In Section 3, we establish the weighted L,
solvability for divergence and nondivergence form parabolic equations with VMO,
coefficients and certain positive potentials. In Section 4, we establish the weighted L”
solvability for divergence and nondivergence form parabolic equations with partially
BMO coefficients and certain positive potentials by using the main results in Section 3.
In Section 5, we further establish the weighted L? solvability for divergence and
nondivergence form parabolic equations with hierarchically partially BMO coefficients
and certain positive potentials by using the main results in Section 4. The weighted
L? solvability on half spaces for divergence with partial BMO coefficients and
nondivergence form parabolic equations with VMO, coefficients are obtained in
Sections 6 and 7. In Section 8, by using the main results in Sections 3, 4, 6 and
7, we establish global regularity in Morrey spaces for divergence and nondivergence
form parabolic equations in a bounded domain. It should be pointed out that we only
consider parabolic equations without potential in Sections 6—8, unless more technical
assumptions need to be imposed on the potentials. Finally, in Section 9, we obtain
the boundedness for some Schrodinger-type operators by using the main results in
Section 5.

Finally, it should be pointed out that our proof in this paper follows from
[15-19, 25, 26], and our results generalize the corresponding results in [15-18, 25, 26],
and generalize and improve some well-known results in [10-12, 20-22, 30] in some
ways. In addition, our results in the elliptic equation case are also true.
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2. Preliminaries

Letd > 1 be an integer. A typical point in R**! is denoted by (¢,x) = (1, x',...,x%) =
(¢, x', x'). We set

Diu=uy, Djju=uyy, Ou=u,.

By Du and D*u we mean the gradient and the Hessian matrix of u, with respect to the
x variable. On many occasions we need to take these objects relative to only part of
variables. We also use the following notation:

Dyu=uy, Du=u,, Dpsu=uny, Dyivit=1uyy, D2u:uxx.

For a function f(z, x) in R¥*!, we set

o = é fD b, 0 dxdt,

and

l/p
1Sz, @) = ( f@ If(t,X)I"w(t,x)dxdt) ,

where D is open subset in R**! and |D)| is the d + 1-dimensional Lebesgue measure of
P and w is a nonnegative function. For —oo < § < T < oo, we denote

Wy ((S,T) x RY) = {u: u,u,, Du,D*u € L, ,((S,T) x RY)},
Hy (S, T)XRY) = (1 - & +3) *W)2((S,T) xRY,
H (S, T) xR = (1= 2 +08)' L, ((S,T) xRY).

We also use the abbreviations L, = L, ,(R*"), H o =H ;,w(R‘”l) and so on. For
any T € (—o0, 0], we denote

Ry = (-o0,T), R&'=Ry xR

For any integer k > 1 and x € R¥, we denote by B¥(x) the k-dimensional cube
{y eRk: max Iy — x| < r}.
1

Set
Ok(t,x)=(t— 7,0 x Bi(x), Bf=B0), 0Of=0K0,0).
In case k = d or d = 1, we use the abbreviations
B.(x)=Bl(x), Q.(t,x)= 0%t x),
B/(x)=B"'(x), Qut.x)=0"(tx),
Q=1{0,(t,x): (t,x) e R*!, r e (0, )}
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For a function g defined on R%*!, we denote its parabolic maximal and sharp function,
respectively, by

1
Mg(t,x)= sup —flg(s,y)ldyds,
ocavee 191 Jo

§ 1
g'(t,x)= sup

— f lg(s,y) — (g)oldy ds.
oe@:meo 19 Jo

We now introduce weight classes A, from [31]. We define the weight class A,(R?*1)
(1 < p < o) as consisting of all nonnegative locally integrable functions w on R¢*! for
which

1

, plp’
Ay() := sup — f wl, x)dxdt( f W 1P(1, %) dxdt) <o, (D)
0eQ |Q|p 0 (9]

where 1/p + 1/p’ = 1. The function w is said to belong to the weight class of A;(R%*")
on R%*! for which

Aj(w) :=sup L f w(t, x)dx dt( sup [w(t, y)]_l) < 00, (2.2)
0@ 101 Jo (1y)€0
In what follows, we will write 10, (¢, x) = Q,,(t, x) for any A > 0. Given a Lebesgue
measurable set E and a weight w, let w(E) = fE wdx.
Now, we recall some properties for the classical A p(Rd“) Muckenhoupt weights
w € AR = Up=1 Ap(Rd“).
Lemmva 2.1. Ifw € Ap(Rd+1), then there exists a positive constant c,, such that

() fweA,forl<p<oo, then w(2Q) < co,w(Q);

(i) ifweA, for 1 <p <oo, then there exists € >0 such that w € A,,_E(Rd“) for
p—e>1;

(iii) if1 < py <py<oo, thenA, CA,;

(iv) we€A,ifand only if ™1/ €EAy;

(v)  the Hardy-Littlewood maximal operator M is bounded on L, if w € A, with
p e, c0)

Lemma 2.1 was proved in [22, 31].

3. VMO, coeflicients
We first give the definition of VMO, function introduced by Krylov in [25, 26].
Denote

!
osc(a, Qr(x, 1) = r 2B, ()| f f la(s,y) — a(s, )| dy dz ds,
t-r2 Jy,z€B.(x)

a?Q(X) = Sup Sup Oscx(as Qr(xs t))? aﬂ(X) = aag)()'
(x,H)eR4*! r<R

This definition is either naturally modified if a is independent of ¢ as in the elliptic
operators or is kept as is.
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AssumpTION 3.1. We assume that a € VMO,, that is

oo _
1 0,

lim a

R—0
For convenience of stating our results we take any continuous function 1(R) on [0, c0),
such that n(0) = 0 and afe(x) < n(R) for all R € (0, 00). Obviously, a € VMO, if a depends
only on ¢. In this section, we always assume that Assumption 3.1 holds.

Krylov [25, 26] obtained an L, theory of divergence and nondivergence form
parabolic equations with the main coefficients belonging to the class VMO,. In this
section, we will study the weighted L, spaces theory for parabolic type equations with
VMO coefficients and certain positive potentials V satisfying the following conditions

IV2(V(t, ) D) + [V, V(t, )] + 10, V(2 x)| < %V(r, x) (3.1

or

V. V(0| + 18,V ) < %Wx, B (32)

holds for all (x,7) € R*! and the positive constants dy, Cy are independent of V, A, and
A:= inf V(@ x)>1.

(1.x)eRd+1
We remark that a typical example is V(z, x) = (1 + |x]* + 2)* with @ >0 and 1 > 1
or V(t,x) = (1 + x> + £*)* + A with @ < 0 and A > 1. Another interesting example is
V(t, x) = A VIHREP+2/2) with 1 > 1 and ¢ € R. Obviously, in the two examples above,
both V satisfy (3.1) and (3.2).
We first state the result for nondivergence form parabolic equations.

THEOREM 3.2. Let V satisfy (3.1), w € Ap(Rd”) with 1 < p < co. Then for any T €
(—o00, +00] the following holds.

()  Foranyue W (R,

||Vu||vaw(R(;+1) +1l \/Vux”l‘p,w(R?-l) + “uxx”L,,,w(R‘%”)

(3.3)
+ “ut”Lp,w(R[-[i-H) S N“(L - V)u“Lp,w(Rgfl)'

provided that V > Ay, where Ay, N depending only on p, K, d, d, Cy, g, and w.
(i) Forany V(t,x)=A1> Ay = A(p,K,d,d,n,w) and f € Lp,w(R‘;”), there exists a
unique solution u € W;,’Z,(R‘%“) of equation Lu — dlu = f in R‘;“.
(iii) In the case that '/ = a(t), b’ = ¢ = 0 and V(t, x) = A, we can take Ay = 0 in (i)
and (i1).

We remark that Bramanti et al. [3] obtained the global W2P estimates for
nondivergence elliptic operators with potentials satisfying a reverse Holder condition.
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To prove Theorem 3.2, we need the following Lemma.

Lemma 3.3. Let 1 < p < o0 and w € A,(R™"). There exists a constant N depending
onlyon p,q,d,o,K and A,(w), such that for any u € Cg"(R‘“l)
||Mxx||Lp,m(Rd+l) + ||ut||L,,,w(Rd+l) < N(||Lu||L,,,u,(Rd+l) + ||ux||L,,,w(Rd+1) + ||M||L1,,M(Rd+1))~ (3.4)

Proor. Note that we included ||u,|| LRI and ||u|| Lo (RI+1) ON the right-hand side.
Therefore, while (3.4) holds we may certainly assume that b’ = ¢ = 0. Since u; =
Lu — da'u;j, we only need to estimate u,.

Since w € A,(RY*!), then there exist ¢,v > 1 such that w € Ar (R by

Lemma 2.1(i). If u € C§°(Qr), then by Lemma 5.3 in [16], using the Feﬁerman—Stem
theorem on sharp functions, and the Hardy—Littlewood maximal function theorem

d+2
ezl iy < Nl iz, gty < NUKSDMYFl - gany

+ Ny(k™" 4 K2 DR il v

where k >4 and 1/u + 1/v = 1, where N; are determined by p, q, K, v,d, ¢, A,(w) and
the function 7. We choose a large k = k(N,, d) and small R = R(N,, d, p, K, n) so that

Nz(k_l " kd+2/q771/(/Jq)(R)) <1/2.

Hence, we have
letxxllz, ,wasry < NIfIL,  ®ey

provided that & is large enough and R is small enough.
After that (3.4) is derived by a standard procedure using partitions of unity. The
proof is finished. O

Proor oF THEOREM 3.2. First we assume T = co. We now prove (3.3). We follow the
same pattern as in the proof of Theorem 4.1 of [25]. To prove (3.3) observe that

letellr, ety < NLutllp, , westy + Clltxellz, , waeety + Clluxllz, vy + Ul we),

p.w

SO
Lully, ,®ety < ILu = Vullg, wey + IVl ®e)-

Hence, from Lemma 3.3, we only need to prove that for large A,
IVally, ety + I Vil ety < CINL = Vully,, geey. (3.5)

We will use a method introduced by Agmon. Consider the space R*? = {(t,7) =
(t,x,y) : t,y € R, x € R"} and the function

ult, z) = u(t, N)EQ) cos(v(t, x)y), (3.6)
where v(t, x) = YV(t, x) and £ is a C’(R)-function, & # 0. Also introduce the operator

Lu(t,2) = L(x, Du(t, 2) + uy(t, 2).
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Finally, set

B.(z0) = {lz— 20l < 1}, Onlz0,10) = (to — 1%, 1) X B (20)-

For any r € (0, ), (20, ) € R¥?, set Q, = 0,(z0, t). For appropriate a(t) we have

la(t, x) — a(t)| dzdt < f f la(x, t) — a(t)| dz dt
0, (t1o=12,10) J|x—xo|<r,ly—yol<r

=2r la(t, x) — a(r)| dzdr < Cr*3al™.
0, (x0,10)

Since a € VMO,(R*?) and w € A,(R%*?), it follows that (3.4) holds with &, L, and
R9*2  respectively. Now, since v(x, f) > 1, we then have

(3.7)

f ) sin(v(z, ))I” dy = Cy > 0,
R

where the constant C; is independent of x, f and v.
Hence, by (3.1), we have

00, < € [ bt e 00) snots, 0Pt 0

<C fR N8, OLED) cos (v, x)y))
=& (y) cos(v(t, )P w(t, x) dz

<C f [t (2, )P w(t, x)dz + C f lu(t, )& WIPw(t, x) dz
R+l R+

+C f Ju(t, )8, XV (x, Y EWIP 1, ) dz
Rd+1
+C f lu(t, X)v(t, X)y& WP w(t, x) dz
Ré+1
<C (1, DI w(t, x) dz + C f lue (2, )1 w(t, x) dx
Rd+1 R

+Cf lu(t, )%, )P w(t, x) dx,
Rd

where C is a positive constant independent of x, ¢ and v.
From this, taking 4y > 2C, then

3/2
D oy S Ol ooy + 20 (3:8)

here and in what follows, we write
AP — P
||M(t, )”Lp,uJ(Rd) M jl;d |M(t, -x)l Cl)(t, -x) dx’

INP = p
”M(t, )”Lp»w(R‘”l) N fRdH |u(t’ x7y)| a)(t7 x) dxdy
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Similarly,

102)EN] gy < € fR [y (1, 2) = u(t, 2126 () sin(v(, )y)
+&7(3) cosv(t, OVIPw(t, ) dz + CIE L

(3.9)
< C|mzz(f, .)”ip_w(Rd*]) + C”(V”)(ta .)”Zp,w(Rd)
S C|mzz(l‘, .)”ip,w(RlH])’
taking Ao > 2C, where C is a positive constant independent of x, ¢ and v.
Combining (3.8) and (3.9), we obtain
HOP0)E M o e + f 0@
fR Lpu(R?) R Lpu(R?) (3.10)

< NP
_le;lmﬂ(t’ )”LP'M(R‘”])dt'

Thus, the left-hand side of (3.5) is estimated through the left-hand side (3.4) written for
u, L, and R%*2 in place of u, L, and R**!, respectively. Hence, by (3.1) and Lemma 3.3,
we obtain

el sy < N (VT sy + il ey + vl oy + Wl o

< N (I = Vol gty + ol o
+ ||qux||Lp,w(Rd+1) + ||VM||LP_w(Rf’+1) + ”Vx”Hvaw(Rd“)

+ Ve oty + il o

1
< N(H(L - V)u”L/,ym(Rd*l) + F”VM):HLM(WH)
0

+ ||Vu||Lp,m(Rd+l) + %”VZMHLP_M(R"*])) .
0
By this and (3.10), for large 4y, we prove (3.5).

Thus, (i) is proved for 7' = co. For general T € (—o0, co], we use the fact u = v for
t<T, where v € W;:Z) solves (L — V)v = y;«r (L — V)u. Assertion (ii) is established
from assertion (i) by the method of continuity. Finally, we prove assertion (iii). If
A =0, assertion (iii) is easily proved by Theorem 5.1 in [26]. In the case A > 0, adapting
the same proof of (3.3), and using Theorem 5.1 in [26], we can prove that

/l”u“Lp_w(RﬂT’*l) + \/z”ux“Lp’w(R“T’”) + ””xxHL,,,w(R”T’”) + ”ut”LP.w(R‘?l)
< NIL = Dull,,,, ra)
provided that 2 > Ay, where N, Ay depending only on p, K, d, 6,1 and w. Let w(t, x) =
w(tdy/A, x \Ap/A), it is easy to see that @ satisfies the same properties in Lemma 2.1
as w. So,
/l”u“Lp@(R‘;“) + ‘ﬁnux“L/,@(Rf;*') + ||Mxx||LM(RI;+') + ||Mt||Lm(Rf}+')
< NIL = Dl e 3.11)
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provided that A > Ay, where N, 1o depending only on p, K, d, 6,77 and w. Using a scaling
and by (3.11)

x—>X\//l()//l, t— tly/A
we obtain the estimate for any A > 0. The proof is finished. O
Now, we consider the divergence form parabolic equations.

Tueorem 3.4. Let V satisfy (3.2), w € A,(R™") with 1 < p < 0. Then for any T €
(—00, +00] the following assertions hold.

(i) ForueWw) R, f=(1 ... f)eL, R, g€ Ly ,(RFY), and
Lu—Vu=divf +g.

Then there exist constants Ao, N depending only on p, K, d, 6, Cy, 69, n and w,
such that

VV

IVl ooy + el ey < N(|| Fll, ey + ) (3.12)

Lp,w (R‘;H )

provided that V > Ay.

(i) Forany V(t,x)=A> Ay =A(p,K,d,0,n,w) and f, g € L,,,w(R”Tl”), then there
exists an unique solution u € H ,l,w(R?”) of equation Lu— Au=divf + gin R‘;”
and satisfying

||ut||1-1,;41w(R{1f_+') + A”””LPM(R{;’,“) + \//_l”Mx”LFYw(RGI’,*‘)
< NVl ety + el aony)-

(iii) In the case that aV = a'/(f), d = b' = c = 0 and V(t, x) = A, we can take Ao = 0 in
assertions (1) and (ii).

To prove Theorem 3.4, we need the following result.

Lemma 3.5. Let 1 < p < o0,w € Ap(R™), d =b'=0,¢ =0, Lu=divf, where f =
(f', ..., fY. There exists a constants € > 0 and N < co depending only on p,d, s and
A, (w), such that ifa?e(x) < € for some R > 0, then for any u € C7(Qg) we have

luxllz,, rery < NIIfllL, R

Proor. Similar to the proof of Lemma 3.3, by Lemma 7.3 in [16], using the
Fefferman—Stein theorem on sharp functions, and the Hardy-Littlewood maximal
function theorem, we can obtain the desired result. O

Proor or THEOREM 3.4. First we assume 7' = co. We now prove (3.10). We follow

the same pattern as in the proof of Theorem 4.4 of [26]. Similar to the proof
of Theorem 3.2, we use a method introduced by Agmon. We first assume that
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u € C3(Qry2), where R is the same as in Lemma 3.5. Consider the space R2 =
{(t,z) = (t,x,y) : t,y € R, x € R?} and the function

u(t,2) = u(t, x)&(y) cos(v(t, x)y),

where v(7,x) = YV(¢, x) and § is an odd C7(—R/2, R/2) function, & # 0. Also introduce
the operator
LM(Z, Z) = ut(ts Z) + (alj(tv X)Mxi(t, Z))Xj + uyy(t» Z)'

As in the proof of Theorem 3.2 one checks that ¢*@ is small enough.
Set

F(t, 2) = (fi(t, x) — a/(t, x)u(t, ))E(y) cos(v(t, x)y)
@ (1, X)ult, X)y, (1, OYEQ) sin(v(t, ) fori=1,....d,

and
U1, 2) = (g(t, x) — e(t, X)ult, X))E (y) — 2ult, )EY) + ult, DY)
+ (—=vi(t, Xult, x) + [fi(t, x) — a’ (¢, X)u(t, x)
=’ (t, X)u, (t, ), (1, %) €, ),
where
Y "y
&0 = f &(s)cos(v(t, x)y)ds, & = f & (s) cos(v(t, x)y) ds,
&) =v(x, 1) f &(s)sin(v(t, x)y) ds = =& (y) cos(v(t, x)y) + E,(¥),
and

&) = fy sE(s) sin(v(t, x)s) dss.

Observe that & € C°(R) since £ is odd and has compact support. Furthermore, it is
easy to check that

Li(t,2) = (f(t, D)y, + - + (FU1, 2y + FH 1, 2),) .

We denote by L, , the L, space of functions of z(x, y), note that w is the A,(R%*") of
weighted function with (¢, x) variable and by Lemma 3.3,

n+1

[ maon asn(y, [ CwFeon as [CEeon a). e
—o ' P : o :

Since v(t, x) > 1, then there exist constants C, and C3 independent of x, ¢, v such that

fR , l€(y) sin(v(x, Hy)I” dy = C, > 0, L , l£(y) cos(v(z, X)) dy > C3 > 0.
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From these, we get for each ¢ and v(z, x) > 1 that

letx(t, e, ey < C5' f i1, 0G) cos(v(t, )t 1) dz
Rd+1

< NI OIE

and
1 ,
)@, iy < = [y (1, 2) — u(t, )& (y) cos(v(x, DY)’ w(t, x) dz
Ly ®RD) C3 Rd+1
< NORENE 4l ).
It follows that if A is large enough, then
P P

0y < NI

Hence, by (3.13) for large A

P P
Ivedly | oery +llall, | gy
d+l (3.14)

Tl 14 ~ AP
<N (). [ o ars [ o a)
Now we estimate the right-hand side of (3.14). By (3.2), we have fori =1, ...,d,
PG < NASEN oy + W]y + A I )

and
. r < . r
T < NI, oy

Furthermore,
& = v(t, )" |€() sin(v(t, x)y) — f " £/(s) sin(v(t, x)s) ds|.

which shows that & equals v~! times a uniformly bounded function with support not
wider than that of £ in the coordinate y. Hence,

. . P AP RAY=214 AP
et el < NIt e I8IENE < NG, gy

Similarly,
y

& = —v(t, 1) | YEW) cos((x, 1)y) — f (s£(s)) cos(v(t, x)s) ds|,

which shows that &, equals v~! times a uniformly bounded function with support not
wider than that of £ in the coordinate y. Hence, by (3.2), we obtain

1 = Lf* + a’u = @ 1v) &4t I
Ps

i =0
NS oy + N o+ AT TN ).

w
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Also &, and &} are uniformly bounded with support not wider than that of £. Therefore,
P P
Qugz = ua)tNE < NIt
From these, we have

P+l NP < it \|IP IIP
WP < NUPEN )+ 1

- (3.15)
+/1060||ux(t’ .)“ip,m(Rd) + ”(g/v)(t’ .)Hll),pw(Rd))'

Combining (3.14) and (3.15), we prove (3.12) if u € C(Bg/2). For general u, we adapt
the same proof of Theorem 5.7 in [25], we can obtain the desired result.

Thus, assertion (i) is proved for T = co. For general T € (—co, co], we use the fact
u=vfort<T,whereve W}W solves (L = Vv = y;cr (L - V)u.

Assertion (ii) is established from assertion (i) by the method of continuity once we
prove the following inequality

“MIHH;‘(RfT’”) < N(‘/znf“vaw(R‘;*l) + ||g||prw(Rf;+1))- (3.16)
In fact, it suffices to observe
(I=2+0) " Pu =~ = a+0)""?Dj@uy — fy+ (1 - a+3) " (u+g),
hence, by the weighted L, ,(R&™) of (1 — A +8,)""? and (1 — & + 8,)'/2D;, we have
(1 -4+ 6t)7]/2”t||LP'w(Rg+l) < N(“I"X”LF,W(R‘}”) + /l“uHLp_w(RﬂTf”)
+ Az, ey + I8l R1)-

From this and (3.12), we prove (3.16).

For assertion (iii). If 4 = 0, assertion (iii) is easily proved by Theorem 7.1 in [26].
In the case A > 0, adapting the same proof of (3.3), and using Theorem 7.1 in [26], we
can prove that there exists a constant N, 1o depending only on p, K, d, 6,7 and w, such
that

Allly,, ey + VAl ey < NV, gy + I8l we)

provided that 2 > Ay. Let w(t, x) = w(tdo/A, x VAg/A), clearly, @ satisfies the same
properties in Lemma 2.1 as w. So, there exists a constant N, Ao depending only on
p, K, d,o,n and w, such that

/l||14||Lm(Rf1{+l) + \//_1||ux||LW(RfI{+1) < N(\//_l||f||L,,_£,(Rf11,+1) + ||g||LM(RfII_+1)) (3.17)

provided that A > Ay. Using a scaling and by (3.17)
X = x\Ap/A, t—tdy/A

we obtain the estimate for any A > 0. The proof of Theorem 3.4 is complete. O

As a consequence of Theorem 3.4, we have the following result.
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CoroLLARY 3.6. Let V satisfy (3.2), w € A,,(Rd+1) with 1 < p < oco. Then there exist
constants Ay, N depending only on p, K, d, o, Cy, 6y, and w, such that

”VMHL,,J‘,(R““) + ||\/‘_/Mx||Lp.w(Rd+') < C”h”vam(R"”)’ (3.18)

provided that V > Ay, where u = (£ — V) 'h.
Proor. Let v(x, 1) = VV(x, 1). Note that Lu(x, t) — v*(x, Hu(x, 1) = h(x, 1), then

LU, 1) =V (x, HU(x, 1) = div(auv, )(x, ) + h(x, 1), (3.19)
where U(x, t) = u(x, t)v(x,t) and

Z(x, 1) = h(x, v(x, 1) + u(x, v(x, 1) + a;;(x, Dy, (x, v, (X, 1)
+ B (x, hu(x, vy, (x, 1) + b'(x, Du(x, vy, (x, 1).

Applying (3.12) to (3.19) withu = U, f = (al/m/x1 et ,a”/uvx”) and g =E, by (3.2), we
obtain

”VU”LMJ(R‘”‘) + ”Ux”Lp.w(R‘“‘) < C||llijMVx,-||Lp.w(Rd+l) + ”h/V”Lp.w(Rd“) (3.20)

< C(”VMHLP'U,(R“‘) + ”ux”L,W(R‘“') + ||h||Lp,m(Rd+'))-
Observe that by (3.2) again

2
% u”L,,.m(Rd“) + ”Vux”L,,.m(Rd“) < ||VU||L,W(R4+1) + ||Ux||Lg(Rd+1) + ”quHL,,'w(Rd*')
< VUL, ety + Ukl ety + Clivull,, ra+)-
From this and (3.20), we have

2
)% uHLp_w(R’”‘) + ”VuxHLp_w(R’”]) < C||h||Lp,w(Rd+l),
if Ay is large enough. Thus, (3.18) is proved. O

4. Partially BMO coefficients

We first recall the definition of partially BMO function introduced by [13, 23].

We assume that a'/,ij > 1 are measurable in x' and ¢, and have locally small mean
oscillations in the other variables. In addition, we assume that a'! are measurable in 7
and have locally small mean oscillations in the others. To state the assumptions on a'/
precisely, for R > 0, we denote

1
a,le1 = sup Ssup——— la'l(r, x) = a" (1) dx dt,
(tx)ere+t <R 1Qr(10, X0)| J o, 19,50
1 . ..
afe = sup sup sup ———— ld(r, x) — @’ (t, x")| dx dt,

(to.10)eRe1 <R (i j)#(1,1) 1Qr(T0s X0)| J0,(1,x0)
where for each Q,(ty, xo),
1

1
a (t,x)dx,
|B(x0)| Lr(xg)

1
a'l(,x") = a'l(x',yhdy, G, ) #(1,1).
1B (x0)| JB,(x)

We shall impose part of the following assumption on the leading coefficients.

a'l(n=
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AssumpTioN 4.1 (y). There exists a positive constant Ry such that ay! + aio <7.

Now, we first consider the divergence form parabolic equations.

Tueorem 4.2. Let V satisfy (3.2), w € A,(R¥™1) with 1 < p < co. Then there exists a

constant y > 0 such that under Assumption 4.1(y), for any T € (—oo, +0] the following
holds.

(i) Forue W) R, f=(f1 ... f)eL,,RY), g € Ly, (R, and
Lu—Vu=divf +g.

Then there exist constants Ay, N depending only on p,K,d,d, Cy, by, y and w,
such that

INVully, ety + el ey < NAFL, ey + 18/ VVIIL,, e

provided that V > Ay.

(i) Forany V(t,x) = A> Ay = Ay(p,K,d,d,y,w)and f,g € Lp,w(R‘;“), there exists a
unique solution u € W;,M(R‘;”) of the equation Lu — Au = divf + g in R‘;“ and
satisfying

el gy + Al ey + VAledly, ety < NS, ey + gz, gaen)-
(iii) In the case that a'' = a''(t), '/ = a’(t,x"), ij>1, b/ =c=0and V(t,x) = A, we
can take Ay = 0 in assertions (1) and (i1).

To prove Theorem 4.2, we need the following results.

Levva 4.3. Let 1 < p < oo,w € Ap(R™), @' =b' =0, ¢ =0, Lu=divf, where f =
(fY ..., fY. Alsolet o > 1 and > 1 such that 1/t + 1/o =1 and w € Ary(R*")
for some q > 1 and qt < p. Then there exists a constant y; > 0 such that under
Assumption 4.1(y ), such that

(itx = ()0, 1010,y < NK 2 (1) gy 0.0 + NGK™ + K2 r) ' )(IDUIT) 7

4.1
for any k >4, r € (0,0), and (t,x) € R™!, there exists a constant N depending only
on q,p,d,0,Co, 00,0 and Ap(w).

Proor. By Proposition 6.4 in [17], and by using the technique of freezing coefficients
(see the proof of Lemma 7.3 of [16]), we can prove (4.1). O
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Levmva 4.4. Let 1 < p < oco,w € A,(R™), a' =b' =0,c =0, Lu=divf, where f =
(f',..., fY). Then exists a constant y > 0 such that a}% <y for some Ry € (0, 1], there
exist p € [1,00) and N depending only on p,K,d, 6,60 and w, for u € C§ vanishing
outside Q,-1g,, we have

lletll,,, vaty < NUIfllL, , weey + el we))-
Proor. We can obtain the desired result in the same way as in the proof of Lemma 3.6
in [17]. We omit the details. O

As the consequence of Lemmas 4.3 and 4.4.

ProposITION 4.5. Let 1 < p < o0, w € Ap(R™), a' =b' =0,c =0, Lu =divf, where
f=(f"..., f%. Then exists a constant y > 0 such that a}% <y for some Ry € (0, 1],

there exists N depending only on p, K, d, 6 and w for u € C3(Q,-1g,), we have

lletxllz, ety < NSz, )
Next, we set
Lu =—-u, + Di(a”Dju),
where the coefficient a'! = a'!(r) and @’/ = a'/(t, x") for ij > 1.

Levma 4.6. Let 1 < p < oo, w € Ap(Rd”), a=b=0,c=0, k>8, Lu=divf, where
f= (fl, .. ,fd). Then the following assertion holds for any T € (—o0, 0],

% RE1))s (4.2)

d+2 -1
”ux'”L,,,m(Rfl{”) < N(k( + )/p“f”L,;_w(R;{“) +k / |ux||Ll,1m(

where N depends only on p,d, 6 and w.

Proor. By Proposition 6.4 in [17], and using Fefferman—Stein theorem on sharp
functions, and the Hardy-Littlewood maximal function theorem, we can prove
4.2). O

Levmmva 4.7. Let T € (—c0,00], | < p<oo,w € AP(Rd”), ad=b=0,¢c=0, Lu—Au=
divg + f in R, where 1> 0 and f, g € Lp,w(R‘;“). Then there exists a constant N
depending only on p,K,d, 6 and w, such that

Valluwlly,, gy + Al oo,
< N(\/Z”Dx’M”LF_w(RdTH) + \/Z”gHprw(Rt;“) + ||f||prm(RlT’+l))-
In particular, if A=0and f =0, then
”uxHLp,w(RGTM) < N(”Dx’u”prm(R?l) + ||g||prm(Rf;+1))- (4.3)

Proor. The case when A = 0 and f = 0 follows by just letting 4 — O after the estimate
A is proved. O

As the proof of Lemma 3.4 in [17], we can obtain the desired result. We omit the
details. Applying Lemma 4.4 and (4.3) of Lemma 4.7, we have the following result.
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ProposiTION 4.8. Let T € (—00,0], 1 < p<oo,w € A,,(Rd“), Lu—du= divg + f in
R‘;”, where 1> 0 and f,g € Lp,w(R‘;”). Then there exists a constant N depending
only on p,K,d, 6 and w, such that

Valludly,, gy + Alully, gty < NOVAUgll, gy + 11l ga))-
Proor. In fact, in the case a’ = b’ = 0,c = 0, by (4.2) and (4.3), we have

”uxHLp,w(RﬂTM) < N”g”prw(prly (4.4)

Adapting the same arguments in the proof of Lemma 3.3, using (4.4), we obtain
\/Z”ux”LP@(Rfli_“) + /l”u”LW(Rgfl) < N(\/z”g”LW(R{;H) + ||f||Lp,m(R;f,+1)) 4.5)

provided that A > Ay, where the constants N, 1y depend only on p,d,d and w, and

w(t, x) = w(tdo/ A, x VAo /).
Using a scaling and by (4.5)

x—>X\//l()//l, t— tly/A
we obtain the estimate for any A > 0. The proof of Proposition 4.5 is complete. O

Now we are ready to prove Theorem 4.9.

Proor or Theorem 4.2. To prove assertion (i), for T = co and u € C, this in turn is
obtained from Theorem 4.2 and an idea from Agmon; see also the proof of Lemma 3.3.
For general T € (—co, 0], we use the fact u = v for t < T, where v € W;,w solves
(L -V = xir(L — V)u. Assertion (ii) is established from assertion (i) by the method
of continuity. Assertion (iii) is proved by Proposition 4.5.

Next, we consider the nondivergence form parabolic equations.

THeorREM 4.9. Let V satisfy (3.1), w € Ap(Rd“) with 1 < p < co. Then there exists a
constant y > 0 depending only on p, K,d, 6 and w such that under Assumption 4.1(y),
forany T € (—oo, +0] the following assertions hold.

(i) Foranyue W,l,fj(R‘;”),

||V”||L,,_w(RfT’“) + ”\/‘_/”xHLp,m(R‘%”) + ||uxx||Lp.m(R‘%”)
+ ||u,||vaw(RI;+1) < N||(L- V)u||LW(R.;+1)
provided that V > Ay, where Ay, N depending only on p, K, d, 5, Cy, 6y, y and w.
(i) Forany V(t,x) = A> Ay = A(p,K,d,d,y,w) and f € Lp,w(R‘;”), there exists a
unique solution u € Wzl,f)(R‘;“) of the equation Lu — Au = f in R4
(iii) In the case that a'' = a''(t), '/ = d'(t,x"), b/ = ¢ = 0 and V(t, x) = A, we can
take Ay = 0 in assertions (1) and (ii).

To prove Theorem 4.9, we need the following results.
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Lemma 4.10. Let 1 < p<oo,w € A,,(Rd+1), b/ =0,c = 0. Then there exists a constant
v1 > 0 depending only on p, K,d, 6 and w such that under Assumption 4.1(y) for any
u € Cy’(Qr,) and for any T € (—o0, +o0], we have

||D2u||Lp,w(Rc;+1) + ||Mt||vaw(RﬂTf+l) < N(”LM”LW(Rf;H) + ||Diru||prw(R§+l))7 (4.6)

where there exists a constant N depending only on p,K,d, ¢ and w. In particular, in
the case d = 1, we have

2
[|D u||LF’w(R¢;+1) + ”u’HLp,w(R"TM) < N”LMHL,,,&,(R‘}”)'
Proor. We write
—u; + a“D%u + Ag_qu=Lu + 2(6’7 - aij)Diju.
ij>1
By Theorem 3.2, we have
2
1D u”Lp.w(R‘%”) + ||uz||vaw(Rg+1) < N(“LMHLW(R;M) + ”Dxx’u”vam(RdT*l))-

Finally, to conclude the proof of (4.6) it suffices to note that w(z, x) = w(e’t, ex!, x') €
A,(R¥ 1y and A, (wf) < 8PA ,(w) for any € > 0,

”Dx]x’u”prw(R‘;“) < E(”ut”LF’m(R‘?') + HD%””LM(R‘;“))

12 4.7)
+N(d, P Ap(w))f ”Dx’u”L,,_w(Rf,’,“)’
where we use the notation
“Dxlx’u”vawf(R‘;*l) < NI, - A)u||1‘,,,mf(Rt;+1) < N(“ut“LWE(Rg”)
2 2
+ ”DlMHL,,,ws(Rf;”) + ”Dx'MHL,,,ws(R‘;”))
by scaling in x! with € and ¢ with €2. O

Levmma 4.11. Let 1 < p< oo, wE Ap(Rd”), b'=0, ¢c=0. Then there exists a
constant 'y > 0 such that under Assumption 4.1(y) for any u € Cy’(Qg,) and for any
T € (—o0, +00], we have

2
[|D u”Lp_w(RfII,“) + ”utHLp,w(R{l]ﬂ) < N”Lu”L,,,u,(Rf,’.“)-

Proor. The case d = 1 follows from Lemma 4.6. For case the d > 2, by Lemma 4.6
and using the proof of Lemma 3.7 in [17], we can obtain the desired result. O

Finally, we are ready to prove Theorem 4.9.

Proor oF THEOREM 4.9. To prove assertion (i), for T = co and u € C°, this in turn is
obtained from Lemmas 4.10 and 4.11 for the case in Assumption 4.1(7y) and Theorem
4.2 in [17], and an idea from Agmon; see also the proof of Theorem 3.2. For
general T € (—oo, co0], we use the fact u =v for t < T, where v € W,l,f, solves (L —
Vv = xi<r(L — V)u. Assertion (ii) is established from assertion (i) by the method of
continuity. By using assertion (iii) of Theorem 3.2 and assertion (iii) of Theorem 4.2,
and adapting the proof of Theorem 3.1 in [17], we can prove assertion (iii) (see also
the proof of Theorem 5.2 below).
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5. Hierarchically partially BMO coefficients

We consider in this section parabolic equations with more general coefficients
introduced in [14]. The assumption is that for ij > 1, a" are measurable in
(¢, x',...,x") and BMO in the other coordinates, where

T = max(i, ]) - 1.

In addition, we suppose a'! is measurable in # and BMO in the other coordinates. More
precisely assumptions are related below.
We recall the definition of a}! in Section 3. For R > 0, we denote

ap = sup sup sup ———— la¥ — a"|dxdt,
(tox0)eRe! <R (i.jy#(1,1) 19 (105 X0)| J0,(1,x0)

1
d—mij, mii+1
B )

Xf i Ty dy
B @)

a’l =ai@,x',..., )=

We impose the following assumptions on a’/.
AssumpTion 5.1 (y). There exists a positive constant Ry such that ay! +aj, <.

Clearly the assumptions above are weaker than those in Theorems 4.2 and 4.9 in
terms of the regularity of @'/ for i > 2 or j > 2. Now, we first consider the divergence
form parabolic equations.

THEOREM 5.2. Let V satisfy (3.2), w € AP(Rd“) with 1 < p < oco. Then there exists
a constant y = y(d, K, 6, p, w) > 0 such that under Assumption 5.1(7y) for any T €
(—00, +00] the following assertions hold.
(i) Forue W) R&) f=(f1....f)eL,,(REY), g € L, ,(RF), and
Lu—-Vu=divf +g.
Then there exist constants Ay, N depending only on p, K, d, d, Cy, 09,y and w,
such that
INVully, gty + llly, ey < NI
provided that V > 2.
(i) Forany V(t,x)=A1> Ay =(p,K,6,y,w) and f, g € Lp,w(R‘%“), there exists a
unique solution u € Wpl,w(R‘;“) of the equation Lu — Au = divf + g in R‘;“ and
satisfying

®erty + g/ VWV, wan))

Pw

el oty + Al ey + VAlltsllp s
< NVl gy + 8l )

(iii) In the case that a'' = a''(¢), a" = d’(t,x",...,x), ij>1, bl=c=0 and
V(t, x) = A, we can take Ay = 0 in assertions (1) and (i1).
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For simplicity, we only give a proof of Theorem 5.2 whend > 3, ord > 3 and 7;; is
placed by 7;; = min(r;;, 2). The general case can be proved by an induction.
We first give the following result.

LEMMA 5.3. Letl < p<oo,weA (Rd“) a' =b' =0, ¢ = 0. Then there exist constants
ur > 1,0<vy; <1 and N depending only on p,K,d,d and w such that, under
Assumption 5.1(y2) with;j in place of mjj, for any T € (—oco, +00], for u € Cy’ vanishing
outside Q,-1g, satisfying Lu =divf, where f € Lp,w(R‘}“), we have

d
Il gy < NI, ey + D 1Dl g )
=3

Proor. Similar to the proof Corollary 6.4 in [14], we can obtain the desired result. We
omit the details. O

Following the lines of Sections 5 and 6 in [17], we have the next estimate of mean
oscillations.

LEvMMA 5.4. Let 1 < g < oo, ad=b=0,c=0, o,7€(1,) satisfying 1/o+ 1/t =1.
Assume u € Cy and Lu = divf, where f € Lyjo.. Then under Assumption 5.1(y)
with m;; in place of n;j, there exist an a = a(d, d) € (0, 1) and a positive constant N
depending only d, o, q and § such that

(It — () 0,a0Doem < N2 0000

+ NG+ K2 )Y (IDul ™

for any k> 4, r € (0, 00), and (t, x) € R¥!, provided that u vanishes outside Okg,-
Using Lemmas 5.3 and 5.4, we immediately obtain the following result.

PrOPOSITION 5.5. Let 1 < p< oo, ad =b'=0, c=0and w e Ap(Rd”). Let uy and y,
be the constants in Theorem 5.2. Then exists a constant y, € (0,7y,] depending only
ond, p,6 and w such that under Assumption 5.1(y,) with m;; in place of n;j, for any
ue CSO(QM‘RO) and f € Lp’w(R‘;“) satisfying Lu = divf, we have

||D”||Lp.w(RfT’+l) < N”f”Lp.w(RfT”l)-

Now, we are ready to prove Theorem 5.2.

Proor oF TueoreEM 5.2. Recall that for simplicity we replace n;; in the assumption by
7;;. The general case can be done by an induction.

To prove assertion (i), for 7 = co and u € Cy’, this in turn is obtained from
Theorem 5.2 and an idea from Agmon; see also the proof of Theorem 3.4. For
general T € (—oo, c0], we use the fact u = v for t < T, where v € W1 solves (L —
V) = yi<r(L — V)u. Assertion (ii) is established from assertion (i) by the method
of continuity. The proof of assertion (iii) is similar to that of assertion (iii) of
Theorem 4.2, we omit the details here. As a consequence Theorem 5.2, we give the
following result which will be used in Section 8.
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COROLLARY 5.6. Let V satisfy (3.2), w € A,,(Rd+1) with 1 < p < co. Then there exist
constants Ay, N depending only on p, K, d, o, Cy, 6y, n and w, such that

IVaullg,, ey + INVillz,  weery < Cllkllz, , gaety

p.w(
provided that V > Ay, where u = (£ — V)™ 'h.
Next, we consider the nondivergence form parabolic equations.

TuEOREM 5.7. Let V satisfy (3.1), w € A,,(Rd+1) with 1 < p < co. Then there exists
a constant y = y(d, p, K, 6, w) > 0 such that under Assumption 5.1(y) for any T €
(—00, +00] the following assertions hold.

(i) Foranyuce W,],fu(R‘;”),
IVuly, ey + INVidly, ey + litlln,, + il gty < CUE = Vyully, gas)

provided that V > Ay, where Ay, N depending only on p, K, d, 9, Cy, 69,y and w.
(i) Forany V(t,x) = A1> Ay = Ay(p, K, d, 6,7y, w) and f € Lp,w(R‘;“), there exists a
unique solution u € W[I,ZZ,(R‘;”) of the equation Lu — Au = f in R4
(iii) In the case that a'' = a''(t), a"/ = a'(t,x',...,xX"), ij>1, b/ =c=0 and
V(t, x) = A, we can take Ay = 0 in assertions (i) and (ii).

Next we only consider the situation that Assumption 5.1 holds. For the remaining
case that the proof of Assumption 5.2 is similar, see also the proof of Theorem 6.9
in [17].

Now, we first consider the following equation

Lou = —u, + ClijDiju,

where a'! = a''(¢) and a”/ = a'(t, x") for ij > 1.

Lemvia 5.8. Let 1 < p < 00, w € Ap(R¥*!), T € (=00, 00]. Then for any u € Wy, (Re)
and A > 0, we have

2
/l”u”Lp,m(RdT”) + \/EHD””LP,M(R;”) +1ID ””L,,.M(R‘T’*‘) + ||ut||L1}.w(R€[I‘+])
< N||L0u||prw(Rl;+1), (5.1)

where the constant N depends only on K, p,d,5 and w. Moreover, for any f €
Lp,w(R?”) and A > 0 there is a unique u € W;jz,(R?”) solving

Lou—Au=f inR&

Proor. Similar to the proof of Theorem 6.11 in [14], we can obtain the desired result.
‘We omit the details. O

In the sequel, we only consider the case d = 3, or d > 3 and 7;; is replaced by 7;; in
Assumption 5.1. Like before, the general case follows by induction.
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LemMa 59. Let 1 < p<oo,w € A,,(Rd“), bl =0,c =0. Then there exist constants
v2, M2 and N, depending only on K,d,o,p and A,(w) such that under
Assumption 5.1(7y,) with 7 in place of n, for any u € CSO(Qﬂ;lRO) we have

d

2 2
D%l ey + Wl oory < NILull, ooy + N O IDRul, gy (5.2)
i=3

Proor. Set f = Lu. Note that u satisfies

2 d
—U; + ZaijDiju-l‘ZDizM:f-i‘ Z (6ij—aij)Diju.
i=3

i,j=1 max(i,j)>2

The coefficients on the left-hand side above satisfy Assumption 4.1. Thus, by Theorem
3.5in [17] and Lemma 4.6, for y, sufficiently small and p; sufficiently large depending
only d, 6, p and w,

||D2M||L,,_M<Rd+1) + el re)
< N(||Lu||vaw(Rd+1) + Z “Diju”Lp,w(RdH))'
max(i,j)>2
By an inequality similar to (4.6), we get (5.2). Proposition 5.5 is proved. O
Proor oF THEOREM 5.7. To prove assertion (i), for T = co and u € C°, this in turn is
obtained from Theorem 6.12 in [17] and Lemma 5.9, and an idea from Agmon; see
also the proof of Theorem 3.2. For general T € (—co, o], we use the fact u = v for

t<T, where v € W,',f) solves (L — V)v = y;«r(L — V)u. Assertion (ii) is established
from assertion (i) by the method of continuity. Assertion (iii) is proved by Lemma 5.8.

6. Divergence equations on a half space

The object of this section is to establish the solvability of parabolic divergence
equations on a half space.

TheoREM 6.1. Let 1 < p < 0o, w € A,(R¥"),Q =R? and T € (—o0, c0]. Then there is
a constant y = y(d, K, 8, p, w) > 0 such that under Assumption 4.1(7y) the following
assertions hold.

(i) Assumeuc 7’{[1,@(97), 8 € L, ,(Qr). There exists positive g and N, depending
only ond,d, p,y and w, such that

et @) + VAP, 0 + Al 0
< NVllgllz, ) + NIfllL, @ (6.1)
provided that A > Ay and,

{Lu—/lu=divg+f in Qr,

u=0, on (—o0, T) X Q. 62)
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(i) Forany A > Ay and f, g € L), ,(Qr), there exists a unique u € ‘H}E’M(QT) of (6.2)
satisfying (6.1).

THEOREM 6.2. The assertions of Theorem 6.1 hold true if (6.2) is replaced by

{.[:u—/lu:divg+f in Qp,

aliju+alu=g1, on (—o0, T) X 0Q. 6.3)

We shall use the idea of odd/even extensions. For this purpose, we need the
following lemma.

Lemma 6.3. Let 1 < p < o0, w € Ap(R™) and —c0o < S < T < o0. Define i(t, x', x’) =
w(t,|x1], x"). Then:

(1) @ has the same properties in Lemma 2.1 as w;

(i1) afunction u belongs to 7’([],@((5 ,T) X RY) if and only if its even extension u with

respect to x' belongs to H ;’ (S, T)x Rﬁ); moreover, there exists N = N(d) > 0
such that

N lledllge; 1 (s, ey < Mtllgst s myxrey < Nlledlgt s ryxre)s 6.4)

N7 el s ety < WL s, ryxiey < Nl skt (6.5)

N IDul, s, ryxrty < WD, s, 7xkey < NPl 5. rxrety-— (6:6)

(iii) a function u belongs to 7—(;@((3’ ,T) % R‘f) and vanishes on (S, T) X 6Ri if and

only if its odd extension u with respect to x' belongs to (H]i,a,((S ,T) x RY);
moreover, we have (6.4)—(6.0).

Next, we prove Theorems 6.1 and 6.2.

Proor orF THEOREM 6.1. Define

a1, x) = sgn(xHa (1, x|, x') fori=1, j>2,0rj=1,i>2

a’(1,x) = a’(t,1x"],x'), otherwise,
and _ . ]

al(t,x) = sgn(xNa't, x|, x), @, x)=d@|x'|,x), j=2,

b'(t, x) = sgn(xNa'(t, [x"], x), bI(t,x) =al(t,Ix',x), j=2,

o(t, x) = c(t,|x'], X), ft,x) = sgn(xl)f(t, Ix!], x),

21(t,x) = sgn(xNg (4, Ix'], x), gt %) = gt Ix", x),  j=2.
Clearly, if a", d', I/, ¢ satisfy Assumption 4.1(y), then the new coefficients a"/ @, b,c
satisfy Assumption 4.1(4y). Moreover, f,g € L, 5(R%™"). Let L be the divergence form
parabolic operator with coefficients @/, a’, b',c.

Due to Theorem 4.2 we can find y > 0 and 4y > O such that there exists a unique

solution u € 7—(1;(17)((8, T)x RY) of

Lu—Au=divg+f inRE!, 6.7)
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provided that A > Ay. By the definition of the coefficients and the data, we have
Lu(t,—x", x') — Au(t,—x",x') = -divg — f in R4,

Consequently, —u(t, —x', x’) is also a solution to (6.7). By the uniqueness of the

solution, we obtain u(t, x) = —u(t, —x', x’). This implies that, as a function on R,

u has zero trace on the boundary and clearly u satisfies (6.2). The existence of the the

solution is proved.

On the other hand, it is easy to see that if u € 7{[',@((5 ,T) X Ri) is a solution to
(7.2), then its odd extension with respect to x' is a solution to (6.7). So the uniqueness
follows from Theorem 4.2. Using (4.1) and Theorem 6.1, we can prove (6.1). The
theorem is proved. O

ProOF OF THEOREM 6.2. We define @/, 7, b, ¢ and @ as in the proof of Theorem 6.1.
Let £ be the divergence form parabolic operator with coefficients a”/,d@', b, c. Different
from above, we define

ft, 0 = ft 15, %),
21t x) = sgngi (4, x|, X'), gt x) = gt 1x'], x), j=2.
Recall that @ satisfy Assumption 4.1(4y). Clearly, f,3 € Ly.(REY). By Theorem 4.2,
we can find y > 0 and A > 0 such that there exists a unique solution u € ‘H;@((S ,T) X
Rﬁ) of (6.7) provided that A > Ay. By the definition of the coefficients and the data, we
have
’ ’ o= 7 d
Lu(t,—x', x') — Au(t,-x',x') =divg + f inR&".
Consequently, u(t, —x', x') is also a solution to (6.7). By the uniqueness of the solution,
we get u(t, x) = u(t, —x', x'). _
Let p’ =p/(p—1). Forany h € ‘H; (=00, T) X R‘i), denote £ to be its even

extension with respect to x!. Since u satisfies (6.7), then

/‘(@)—1/(;)-1)(

T
f (=t h—a"Dju-Dih =@ - Dih + b'Diu - h + (¢ — A)u - h)dxdt
oo VR (6.8)

T
:f f(—§,~D,~h+f-h)dxdt.
—oco JRY

By the definition of @/, %, b, ¢, % and f as well as the evenness of u and h, all terms
inside the integrals in (6.8) are even with respect to x'. Thus, (6.8) implies

T
f f (=t -h—d"Dju-Dih —a" - Dih + b'Diu - h + (¢ — Au - h) dx dt
VR (6.9)
:f (—gi - Dih + f - h)dxdt.
—o0 R4
Since h € H), (S, T) x RY) is arbitrary, by the definition u solves (6.3). This proves
the existence of the solution.
The uniqueness is obvious by using (6.9). Using (4.1) and Theorem 6.1, we can
prove (6.1). The theorem is proved. O
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7. Nondivergence equations on a half space

The object of this section is to establish the solvability of nondivergence equations
on a half space.
We first set
Lu = —u, + a’Dju,
where the entries of coefficient matrices '/ are measurable function of only 7 € R, i.e.
al = a'(t) satistying (1.3). With this operator £ we have the following theorem.

THEOREM 7.1. Let 1 < p < 00,Q = Ri and T € (—oo, 0]. Then there is a constant
Ry = Ry(d, K, 6, p, w) > 0 such that under Assumption 3.1(Ry) the following assertions
hold.

(i) Assume u € W[l,’2(QT). There exist positive constants Ay and N, depending only
ond, o, p, Ry, such that

) _
Alledlz, @) + VAIDUllL ) + 1Dl @) + itz 0p) < NlILu = Audllr, ),

(7.1)

provided that A > Ay and
u=0, on(—co0,T)X0Q. (7.2)
(i) For any A > Ay and f € L,(Qr), there exists a unique u € W,l,’Z(QT) satisfying

Lu—u=f.
Theorem 7.1 is proved in [18].
As the applications of Theorem 7.1, we have the following results for 1 < p < co.

Levmva 7.2. LetO<r<R<coandu € W;:IZOC(QT) satisfy (7.2). Then

lletell L, 0p) + ||D2u||Lp(Q;) < N(ILullz,0y) + 1DullL,cop) + llull, o)),
where N = N(K,d,6,r,R) and QF = O, N(R? X (=0, T)).

Proor. See the proof of Lemma 5.2 in [26] or Lemma 7.1 in [18]. O

Lemma 7.3. Let 0 < r < R < o0 and u € C (Qr) satisfy (7.2). Assume that Lu =0 in

loc
Qy. Then for any multi-index y, we have

sup [D"u| + sup |D”u;| < N(||Dullr, o1y + llullz,01))s
o o
where N = N(K, |yl, d, 6,1, R).
Proor. See the proof of Lemma 5.8 in [26]. O

LemMaA 7.4. Let u € C® (Qr) satisfy (7.2). Assume that Lu— Au =0 in Q5. Then for

loc
any multi-index y, we have

2 2
sup | D7 (D?u)| + sup |D7u,| < NIz, z) + 1Dullz,c0p) + VAlullz, o).
o7 o7

where N = N(K, |y|, p,d, 6,r, R).
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Proor. See the proof of Lemmas 5.9 in [26]. |

Lemma 7.5. Let 1 > 0,k > 2 and r € (0, 00). Let u € C}; (Qr) satisfy (7.2). Assume that
Lu—Au=0in Qf. Then

1
10 Jor
where N = N(|y|, K, p,d, 6,1, R).

ID?u(t, x) — (D*u)o: P dx dt < Nk™P(ID*ul” + A*|Dul’),,.,

Proor. See the proof of Lemma 5.10 in [26]. O
By using the results above, we can obtain the following result.
ProposiTion 7.6. Let k > 4 and r € (0,0). Let u € C}; (Qr) satisfy (7.2). Then
1
10
where N = N(K, d, 6, p).

f \D?u(t, x) — (D*u) g+ |P dx dt < Nk™P(ID*ul” + A*\Dul’),,,,
of

By using Theorem 7.1, and adapting the standard process (compare with the proof
of Theorem 5.1 in [15]), we can the main result in this section.

Tueorem 7.7. Let 1 < p < 00, w € W(R¥!Y), Q=R? and T € (-0, 0]. Then there is
a constant Ry = Ry(K, d, 6, p, w) > 0 such that under Assumption 3.1(Ry) the following
assertions hold.

(i) Assumeue€ W:,fu(QT). There exist positive constants Ay and N, depending only
ond, K,d, p, Ry and w, such that

Allullz, @ + ‘//_1||DM||L,,,M(QT) + ||D2M||LM(QT) + |z, @ < NllLu — Aully, @),
provided that A > Ay and
u=0 on(-00,T) X 0Q.
(i) For any A > Ay and f € L, ,(Qr), there exists a unique u € W;:Z,(QT) satisfying
Lu—Au=f.
8. Equations on Morrey spaces

The object of this section is to establish the nondivergence and divergence
equations’ solvability results on Morrey spaces.

First of all we start with the definition of Morrey spaces. Let Q be an open set in
R™! Let1 < p<ocoand0<p<d+2. We say that a locally integral function f(z, x)
belongs to the Morrey space LP#(Q) if

1
WAV s = SUP  — |f (& VIP dydt < oo,
Lré@) (t,X)€Q,r>0 r 0,(1,X)NQ
2
“f”wéﬁ(g) =1 fllzrs) + I fillrsy + IDfllrsq) + IID° fllrsq) < oo,

https://doi.org/10.1017/51446788714000020 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788714000020

[26] Weighted L, solvability for parabolic equations 421

and
Hy Q) = (1 -8 +0) "W 2Q),  H, (@) =(1-a+8) "L Q).
In addition, we give some definitions that are slightly different from Section 2:
B (x)={yeR%:|[x—yl<r}, Qut.x)=(t—r"1)XBy(x),
Bi(X)={yeR" ¥ —y|<rh, Qut.x)= (-1 1) X Bi(x),
01 (t,%) = Qu(t, X) [ JRY X (=00,T)), T € (~00,00].

We next consider the nondivergence equation on Morrey spaces. Applying
Theorem 3.2, we have the following result.

THEOREM 8.1. Let 1 < p<oo, 0<B<d+2, Q= R? and T € (o0, o). Then there is
a constant Ry = Ry(d, K, B, 0, p) > 0 such that under Assumption 3.1(Ry) the following
assertions hold.

(i) Assume ue W;’E(QT). There exist positive constants Ay and N, depending only
ond,B,K,0o, p, Ry, such that

2
Allullzrsap) + ‘/71||DM||Lpﬁ(QT) + 1D ullrsayy + lellzrsyy < NllLu — Aullzrsy),

provided that 1 > A.
(i) For any 1> Ay and f € LPP(Qy), there exists a unique u € W;:;(Qr) satisfying
Lu—Au=f.

As the consequence of Theorem 7.7, we have the following result.

TheoreM 8.2. Let 1 <p<oo, 0<fB<d+2, Q=R? and T € (—o0, 0]. Then there is
a constant Ry = Ry(B,d, K, 0, p) > 0 such that under Assumption 3.1(Ry) the following
assertions hold.

(1) Assume u € W;:é(QT). There exist positive constants Ay and N, depending only
ond,B, K, 6, p, Ry, such that

2
Allullzrsp) + ‘/IHDMHLN*(QT) + 1D ullprsyy + tillrrsyy < NllLu — Aullrrspys
provided that 1 > Ay and
u=0 on(-00,T) X 0Q.

(i) For any 1> Ay and f € LPP(Qy), there exists a unique u € W;,’;(QT) satisfying
Lu—Au=f.

By Theorems 8.1 and 8.2, we give one of the main results of this section.

TueorREM 8.3. Let 1 < p <00, 0<fB<d+2, T € (—co0,00] and Q be a C"! bounded
domain with C"' norm bounded by K. Then there is a constant Ry = Ro(d, K, 3, 6, p) >
0 and A9 = 0(d, K, B, 6, p) > 0 such that under Assumption 3.1(Ry) the following
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is true. For any f € LPP(Qr) and A > Ay, there is a unique solution u € W;,’;(QT) to
{Lu—/lu:f in Qr,
u=0 on (—co, T) X 0Q2
and we have
Allullrsyy + \/Z“Du“Ll’«ﬁ(QT) + 1D ullprscyy + Ntdllirecayy < Nllfllrs@ps
where N depends only on d, p, 3,9, K and Ry.

Proor. By Theorem 8.1, we obtain the following interior estimate for any 0 < r < R <
OO,Q,C QRCQT and/lZ/lo

2
Allullzreo,) + ‘//_1||Du||Lﬁﬁ(Q,) + 1D ullrrscg,) + udllrreo, 8.1)
< NI fllersg) + Ntllrscog)-

Similarly, Theorem 8.2 gives a boundary estimate: let0 < r <R < oo, f € L”’B(Q;;) and
Ry be the constant taken from Theorem 8.2. Then under Assumption 3.1(Ry), for any
A= Ao and u € W, 2(Qp), we have
Allullzrecory + VADUllprecor) + 1D ullrecor) + Nutdllrscor)
(8.2)
< NUIfleregy) + lullLrson))s

provided that u = 0 on Q} and
Lu—2Au=f in Q.

It is well known that the ellipticity condition is preserved under a change of variables.
Take typ € (—o0, T), a point xo € JQ and a number 7y = ry(€2), so that

Q[ ) By (x0) = {x € By (x0) : &' > ¢(x)}
in some coordinate system. We now locally flatten the boundary of 4Q by defining
y=xl—p(x) =), y=x:=dx), j>2

under the assumptions of the theorem, ® is a C!*! diffeomorphism in a neighborhood
of xp. It is easily seen that the coefficients of the new operator in the y-coordinates also
satisfy Assumption 3.1 with a possibly different Ry. Thus, we can choose a sufficiently
small Ry such that from (8.2), for Xy = (¢y, xo) and some r; = r1(Q) < ry,
Allzrorng,, xon + VAIDUllL 5,00, (0
2
+ 1D ”HL”»B(QTHQ,‘I(XO)) + ||Mz||m~/3(§zmQ,l (Xo)) (8.3)
< N fllrs@rno, xon + ullrs@rno,, oxon)-

By (8.1) and (8.3), and using a partition of the unity, one completes the proof for a
sufficiently large A. O
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Now we turn to the divergence case. From Theorems 4.2, 6.1 and 6.2, we have the
following results.

THEOREM 8.4. Let 1 < p<oo, 0<B<d+2, Q= R and T € (=00, 0]. Then there
is a constant y = y(d, K, 3,0, p) > 0 such that under Assumption 4.1(y) the following
assertions hold.
(i) Assumeue ‘H[l)ﬁ(QT), f. g € LPP(Qr). There exists positive Ay and N, depending
onlyond, K, o, p,y and B, such that
||ut||Hl‘)Jlj(QT) + \//_1||DM||LP»B(QT) + Allullzrsp) 8.4)
< N Vallglws@r) + Nifls@),

provided that A > Ay and
Lu—Au=divg+f inQr. (8.5)

(i) For any 1> Ay and f,g € LPP(Qr), there exists a unique u € W;’ﬁ(QT) of (8.5)
satisfying (8.4).

THEOREM 8.5. Let l <p<oo, 0<fB<d+2, Q= Ri and T € (—oo,0]. Then there
is a constant y = y(B, K, d, 6, p) > 0 such that under Assumption 4.1(y) the following
assertions hold.

(i) Assumeue W;’ﬁ(QT), f»g € LPP(Qr). There exists positive Ay and N, depending
onlyond,d, K, p,v,B and 0, such that

ladlyc1 ) + VDUl sy + Ulillpscar)

(8.6)
<N ‘/zllglluﬁ(g,o + NI fllesr)s
provided that A > Ay and
Lu—Adu=divg+ f inQr, 8.7)
u=0 on (—o0, T) X 0Q. ’

(i) For any 1> Ay and f,g € LPP(Qr), there exists a unique u € ?{;ﬁ(QT) of (8.7)
satisfying (8.6).

TueEOREM 8.6. The assertions of Theorem 8.5 hold true if (8.7) is replaced by

Lu—Au=divg+ f inQr,
aliju+alu=g| on (—co0, T) X 0QQ.

Now, we assume that the boundary dQ of the domain Q is locally the graph of a
Lipschitz continuous function with small Lipschitz constant. More precisely, we make
the following assumption containing a parameter p € (0, 1], which will be specified
later.
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AssumptionN 8.7 (). There is a constant Ry € (0, 1] such that, for any xy € 9Q and
r € (0, R], there exists a Lipschitz function ¢ : R‘~! — R such that

Q) B,(x0) = {x € By(xo) : 2 > 6(x))
and , ,
wp RO
X'y €BL(x), X' =y |y - X |

in some coordinate system. Note that all C! domain satisfy this assumption for any
6> 0.

We shall impose a little bit more regular assumption on @'/ near the boundary. For
any x € R?, denote
dist(x, 0Q) = inf |x —y|.
yeoQ

AssumpTioN 8.8 (7). There is a constant R; € (0, 1] such that, for any x, € R? with
dist(x, 0Q) < R; and any r € (0, R], we have

!
sup |B, (x0)| f f la” (s, x) = (@")p,(xpl dxds < y.
i t B,(xo)

ij —r2

THEOREM 8.9. Let 1 < p< oo, 0<f<d+2, T €(—00,00] and Q be a bounded domain.
Then there exist constants Ry = Ry(8,d, K, 9, p), 0 = 0(B,d, K, 6, p), vy =v(B,d, K, , p)
and Ay = 0B, d, K, 6, p) > 0 such that under Assumptions 4.1(7y,), 8.7(68) and 8.8(y>)
the following is true. For any f € LP#(Qr) and A > Ay, there is a unique solution
ue H};,ﬁ(QT) to

Lu—Adu=f inQp,
u=20 on (—o0, T) X 0QQ,
and we have

el ) + VAIDuUllray) + Alullrsayy < N VAgllira@y) + Nlflliray),

where N depends only on d, p, 3,6, Ay, K, y1,y2 and 6.

Proor. By Theorems 8.4 and 8.5, and adapting the same arguments in the proof of
Theorem 2.1 in [15] and Theorem 2.10 in [18], we can obtain the desired result. We
omit the details here. O

9. Schrodinger-type operators

In this section, we will study the boundedness for parabolic-type operators such
as V2(L-V)"', V(L-V)l, VI2v (L -V)l, oL - V)L, VPV (L - V),
V2L -V)y 'V, V(L - V)l and V(£ — V)V, with positive potentials V satisfying
(3.1) or (3.2).
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Zhong [33], Shen [29] and Auscher and Ben [1] studied the L,,(Rd) boundedness for
elliptic Schrodinger-type operators (that is, L=—-A+V) with nonnegative potentials
belonging to certain elliptic type reverse Holder class B,(g > 1) (cf. (9.1) without ¢
coordinate, see also [29]), and Okazawa [28] gave a Lp(Rd) estimate for Schrodinger-
type operators with nonnegative potentials V, which satisfy the condition [VV| <
¢,V32. In addition, Kurata and Sugano [27] studied the L,,(R?) and LP#(RY)
boundedness for uniformly elliptic operators L= (aij(x)uxi(x))xi with nonnegative
potentials belonging to a certain elliptic-type reverse Holder class B,(g > 1), where
a'’/ € C* with a € (0, 1] and w belong to a certain class of Muckenhoupt weights.

On the other hand, Gao and Jiang [21] considered the L”-boundedness of the
parabolic Schrodinger-type operator V2(9;, — A + V)~! with certain potentials with
space variable x. Recently, Carbonaro et al. [5] improved Gao and Jiang’s result
above by the potential V with the variables x, #, which is essentially the generalization
to R"! of the condition of Gao and Jiang. More precisely, Carbonaro et al. in [5]
proved L”(R%*!)-boundedness of operators V(d, — A + V)!, V20, — A + V)71, 8,0, —
A+ V) Nif0<V e (PB), for 1 < p < co. We say that a nonnegative locally L? integral
function V(x, 1) on R*! is said to belong to (PB),(1 < p < ) if there exists C > 0 such
that the parabolic-type reverse Holder inequality

(I_élLVpdxdt)l/ng(llandedt) .1

holds for every parabolic cylinder Q in R see [5]. Clearly, V(z, x) = de VIHhF+2/2 ¢
(PB), for any g > 1 if 1> 1, but it satisfies (3.1) and (3.2).
Applying Theorem 5.2 and Lemma 5.3, we have the following result.

TueoreM 9.1. Suppose that V satisfies (3.1), 1 < p < oo and w € Ap(Rd”). There are
constants vy, Ay and N, depending only on p, K,d, 6, Cy, 6y and w, such that under
Assumption 5.1(y) for V = Ay,

VAL =W flle,, + IV = V) flg,,,, + V2V = V)7 £l
+10(L = V)" fllL,,,, < NIfllz,,-
TuEOREM 9.2. Suppose that V satisfies (3.2), 1 < p <ooand w € A,,(Rd”). Then there

are constants vy, o and N, depending only on p, K, d, 5, Cy, 6y and w, such that under
Assumption 5.1(y) for V > Ay,

V(L= V) 'V fl,, + IVPVAL =) f,,
+HIVIEL = V)V, + VL= V) S, < NIflz,,-
As a consequence of Theorems 9.1 and 9.2, we have following results.

p.w

CoroLLARY 9.3. Suppose that V satisfies (3.1), 1 < p <ooand 0<f <d+ 2. There
are constants y, Ay and N, depending only on p,K,d, o, Cy, dog and B, such that under
Assumption 5.1(y) for V > Ay,

IV2(L = V) fllpre + IV = VY flips + IVEV AL = V) fllpe
+10,L = V) fllrs < NI fllpss.
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CoroLLARY 9.4. Suppose that V satisfies (3.2), 1 < p <ocoand 0 <f <d+2. There
are constants vy, Ao and N, depending only on p,K,d, 6, Co, 6y and 3, such that under
Assumption 5.1(y) for V > Ay,

VAL = V)V fllins + IVPVAL = V) fllos
+IV2L = VY Vo flls + V(L = V) flire < NI fllpss.

Finally, we study the boundedness of Schrodinger-type operators on variable L
spaces. We consider a measure function p : R¥! — [1, c0). Let LP©)(R%*!) denotes the
set of measurable functions f on R¢*! such that for some A > 0,

p(t,x)
[ (D g e
Rd+! A

This set becomes a Banach function spaces when equipped with norm

t, p(t.x)
1Al = Il = inf {2 0 f ()

Ré+1 A
These spaces are referred to as variable Lebesgue spaces or, more simply, as variable
L? spaces, since they generalize the standard L? spaces: if p(t, x) = py is constant, then
LPORM!) equals L,,O(Rd“). They have many properties in common with the standard
L? spaces.

These spaces, and the corresponding variable Sobolev spaces, are of interest in their
own right, and also for applications to partial differential equations and the calculus of
variations. (See [8] and references therein.)

For conciseness, define P(R%*!) be the set of measurable functions p : R4 —
[1, o) such that

p_ =inf{p(t,x) : (t,x) e Ry > 1, p, = sup{p(t,x) : (t,x) € R¥"!} < 0.
Let B(R¥!) be the set of p(-) € P(R*!) such that M is bounded on L"), where M
denotes the parabolic Hardy-Littlewood maximal operator; see Section 2.

Combining Corollary 1.11 and Theorem 1.2 in [8], Theorems 9.1 and 9.2 together,
we have following results.

dxdr < 1}.

COROLLARY 9.5. Suppose that V satisfy (3.1), and p(-) € BR¥). There are constants
v, Ay and N, depending only on p(-), K, d, 6, Cy, d¢, such that under Assumption 5.1(y)
forV > Ay,

V3L = V) fllo + IV = V)™ fllo + 1IV2VAL = V) fllo
+10:(L = V)™ fllo < Nllfllso-
COROLLARY 9.6. Suppose that V satisfy (3.2), and p(-) € BR). There are constants

v, Ao and N, depending only on p(-), K, d, 6, Cy, 89, such that under Assumption 5.1(y)
forV = Ay,

V(L = V) 'V fllpo + VPV AL = V) flle
+IVAL= V)V fllpo + 1IVL =) fllgo < NI fllo.
We remark that, in fact, Corollary 1.11 and Theorem 1.2 in [8] are proved in the

elliptic case, but it is easy to see that Corollary 1.11 and Theorem 1.2 in [8] are also
true in the parabolic case.
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