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Abstract

We consider the weighted Lp solvability for divergence and nondivergence form parabolic equations
with partially bounded mean oscillation (BMO) coefficients and certain positive potentials. As an
application, global regularity in Morrey spaces for divergence form parabolic operators with partially
BMO coefficients on a bounded domain is established.
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1. Introduction
We are concerned about the parabolic divergence and nondivergence equations of the
form

Lu(t, x) = −ut(t, x) + ai j(t, x)uxi x j (t, x) + bi(t, x)uxi (t, x) + c(t, x)u(t, x), (1.1)
and

Lu(t, x) = −ut(t, x) + (ai j(t, x)uxi (t, x) + ai(t, x)u(t, x))x j

+ bi(t, x)uxi (t, x) + c(t, x)u(t, x).
(1.2)

We assume that the coefficients of these operators are bounded and measurable, and
ai j are uniformly elliptic, i.e. for some K > 0 and δ ∈ (0, 1],

|bi| + |c| ≤ K, |ai j| ≤ δ−1, δ|ξ|2 ≤ ai jξiξ j ≤ δ
−1|ξ|2. (1.3)

For equations with uniformly continuous leading coefficients, the solvability is
classical. The Lp theory of second-order equations with discontinuous coefficients
was studied extensively in the last two decades. One important class of discontinuous
coefficients contains functions with vanishing mean oscillation (VMO), the study of

The project is partially supported by NNSF (11271024) of China.
c© 2014 Australian Mathematical Publishing Association Inc. 1446-7887/2014 $16.00

396

https://doi.org/10.1017/S1446788714000020 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000020


[2] Weighted Lp solvability for parabolic equations 397

which was started in [6] about 20 years ago and continued in [2, 7, 9]. On the
other hand, the Morrey space theory of second-order equations with discontinuous
coefficients was also studied in [11, 12, 20, 30]. In addition Dintelmann et al. [10]
studied the mixed weighted inequalities for higher-order parabolic systems with VMO
coefficients independent of t, and Munckenhoupt weights independent of t. Recently,
Tang [32] studied W2,p

ω -solvability of the Cauchy–Dirichlet problem for nondivergence
parabolic equations with bounded mean oscillation (BMO) coefficients and parameter
λ > 0.

Recently, Krylov [25, 26] gave a unified approach to investigate the Lp-solvability
of both divergence and nondivergence form parabolic and elliptic equations with
ai j ∈ VMO in the spatial variables (and measurable in the time variable in the parabolic
case). This result was later improved and generalized in a series of papers [15–17].

In contrast, the Lp(p > 2) theory of elliptic and parabolic equations with partially
BMO coefficients is quite new, and was originated in [24]. Later, this result was
improved and generalized in [13, 14].

The main purpose of this paper is to show the weighted Lp solvability for divergence
and nondivergence form parabolic operators with partially BMO coefficients and
certain positive potentials. Furthermore, as an application, we establish global
regularity in Morrey spaces for divergence form parabolic operators with partially
BMO coefficients on a bounded domain.

We now give a brief outline of this paper. In the next section, we introduce
some notation and some definitions. In Section 3, we establish the weighted Lp

solvability for divergence and nondivergence form parabolic equations with VMOx

coefficients and certain positive potentials. In Section 4, we establish the weighted Lp

solvability for divergence and nondivergence form parabolic equations with partially
BMO coefficients and certain positive potentials by using the main results in Section 3.
In Section 5, we further establish the weighted Lp solvability for divergence and
nondivergence form parabolic equations with hierarchically partially BMO coefficients
and certain positive potentials by using the main results in Section 4. The weighted
Lp solvability on half spaces for divergence with partial BMO coefficients and
nondivergence form parabolic equations with VMOx coefficients are obtained in
Sections 6 and 7. In Section 8, by using the main results in Sections 3, 4, 6 and
7, we establish global regularity in Morrey spaces for divergence and nondivergence
form parabolic equations in a bounded domain. It should be pointed out that we only
consider parabolic equations without potential in Sections 6–8, unless more technical
assumptions need to be imposed on the potentials. Finally, in Section 9, we obtain
the boundedness for some Schrödinger-type operators by using the main results in
Section 5.

Finally, it should be pointed out that our proof in this paper follows from
[15–19, 25, 26], and our results generalize the corresponding results in [15–18, 25, 26],
and generalize and improve some well-known results in [10–12, 20–22, 30] in some
ways. In addition, our results in the elliptic equation case are also true.
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2. Preliminaries

Let d ≥ 1 be an integer. A typical point in Rd+1 is denoted by (t, x) = (t, x1, . . . , xd) =

(t, x1, x′). We set
Diu = uxi , Di ju = uxi x j , ∂tu = ut.

By Du and D2u we mean the gradient and the Hessian matrix of u, with respect to the
x variable. On many occasions we need to take these objects relative to only part of
variables. We also use the following notation:

Dx′u = ux′ , Du = ux, Dx1 x′u = ux1 x′ , Dxx′u = uxx′ , D2u = uxx.

For a function f (t, x) in Rd+1, we set

( f )D =
1
|D|

∫
D

f (t, x) dx dt,

and

‖ f ‖Lp,ω(D) =

(∫
D

| f (t, x)|pω(t, x) dx dt
)1/p

,

whereD is open subset in Rd+1 and |D| is the d + 1-dimensional Lebesgue measure of
D and ω is a nonnegative function. For −∞ ≤ S < T ≤ ∞, we denote

W1,2
p,ω((S ,T ) × Rd) = {u : u, ut,Du,D2u ∈ Lp,ω((S ,T ) × Rd)},

H1
p,ω((S ,T ) × Rd) = (1 − 4 + ∂t)1/2W1,2

p,ω((S ,T ) × Rd),

H−1
p,ω((S ,T ) × Rd) = (1 − 4 + ∂t)1/2Lp,ω((S ,T ) × Rd).

We also use the abbreviations Lp,ω = Lp,ω(Rd+1), H1
p,ω = H1

p,ω(Rd+1) and so on. For
any T ∈ (−∞,∞], we denote

RT = (−∞,T ), Rd+1
T = RT × Rd.

For any integer k ≥ 1 and x ∈ Rk, we denote by Bk
r(x) the k-dimensional cube{

y ∈ Rk : max
i
|yi − xi| < r

}
.

Set
Qk

r(t, x) = (t − r2, t) × Bk
r(x), Bk

r = Bk
r(0), Qk

r = Qk
r(0, 0).

In case k = d or d = 1, we use the abbreviations

Br(x) = Bd
r (x), Qr(t, x) = Qd

r (t, x),
B′r(x′) = Bd−1

r (x′), Q′r(t, x
′) = Qd−1

r (t, x′),
Q = {Qr(t, x) : (t, x) ∈ Rd+1, r ∈ (0,∞)}.
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For a function g defined on Rd+1, we denote its parabolic maximal and sharp function,
respectively, by

Mg(t, x) = sup
Q∈Q:(t,x)∈Q

1
|Q|

∫
Q
|g(s, y)| dy ds,

g](t, x) = sup
Q∈Q:(t,x)∈Q

1
|Q|

∫
Q
|g(s, y) − (g)Q| dy ds.

We now introduce weight classes Ap from [31]. We define the weight class Ap(Rd+1)
(1 < p <∞) as consisting of all nonnegative locally integrable functions ω on Rd+1 for
which

Ap(ω) := sup
Q∈Q

1
|Q|p

∫
Q
ω(t, x)dxdt

(∫
Q
ω−p′/p(t, x) dx dt

)p/p′

<∞, (2.1)

where 1/p + 1/p′ = 1. The function ω is said to belong to the weight class of A1(Rd+1)
on Rd+1 for which

A1(ω) := sup
Q∈Q

1
|Q|

∫
Q
ω(t, x) dx dt

(
sup

(t,y)∈Q
[ω(t, y)]−1

)
<∞. (2.2)

In what follows, we will write λQr(t, x) = Qλr(t, x) for any λ > 0. Given a Lebesgue
measurable set E and a weight ω, let ω(E) =

∫
E ω dx.

Now, we recall some properties for the classical Ap(Rd+1) Muckenhoupt weights
ω ∈ A∞(Rd+1) :=

⋃
p≥1 Ap(Rd+1).

Lemma 2.1. If ω ∈ Ap(Rd+1), then there exists a positive constant cω such that

(i) if ω ∈ Ap for 1 ≤ p <∞, then ω(2Q) ≤ cωω(Q);
(ii) if ω ∈ Ap for 1 < p < ∞, then there exists ε > 0 such that ω ∈ Ap−ε(Rd+1) for

p − ε > 1;
(iii) if 1 ≤ p1 < p2 <∞, then Ap1 ⊂ Ap2 ;
(iv) ω ∈ Ap if and only if ω−1/(p−1) ∈ Ap′;
(v) the Hardy–Littlewood maximal operator M is bounded on Lp,ω if ω ∈ Ap with

p ∈ (1,∞).

Lemma 2.1 was proved in [22, 31].

3. VMOx coefficients
We first give the definition of VMOx function introduced by Krylov in [25, 26].
Denote

oscx(a,Qr(x, t)) = r−2|Br(x)|−2
∫ t

t−r2

∫
y,z∈Br(x)

|a(s, y) − a(s, z)| dy dz ds,

a](x)
R = sup

(x,t)∈Rd+1
sup
r<R

oscx(a,Qr(x, t)), a](x) = a](x)
∞ .

This definition is either naturally modified if a is independent of t as in the elliptic
operators or is kept as is.
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Assumption 3.1. We assume that a ∈ V MOx, that is

lim
R→0

a](x)
R = 0.

For convenience of stating our results we take any continuous function η(R) on [0,∞),
such that η(0) = 0 and a](x)

R ≤ η(R) for all R ∈ (0,∞). Obviously, a ∈ VMOx if a depends
only on t. In this section, we always assume that Assumption 3.1 holds.

Krylov [25, 26] obtained an Lp theory of divergence and nondivergence form
parabolic equations with the main coefficients belonging to the class VMOx. In this
section, we will study the weighted Lp spaces theory for parabolic type equations with
VMO coefficients and certain positive potentials V satisfying the following conditions

|∇2
x(V(t, x)1/2)| + |∇xV(t, x)| + |∂tV(t, x)| ≤

C0

λδ0
V(t, x) (3.1)

or

|∇xV(t, x)| + |∂tV(t, x)| ≤
C0

λδ0
V(x, t) (3.2)

holds for all (x, t) ∈ Rd+1 and the positive constants δ0, C0 are independent of V, λ, and
λ := inf

(t,x)∈Rd+1
V(t, x) ≥ 1.

We remark that a typical example is V(t, x) = (λ + |x|2 + t2)α with α > 0 and λ ≥ 1
or V(t, x) = (λ + |x|2 + t2)α + λ with α ≤ 0 and λ ≥ 1. Another interesting example is
V(t, x) = λec(

√
1+|x|2+t2/λ2) with λ ≥ 1 and c ∈ R. Obviously, in the two examples above,

both V satisfy (3.1) and (3.2).
We first state the result for nondivergence form parabolic equations.

Theorem 3.2. Let V satisfy (3.1), ω ∈ Ap(Rd+1) with 1 < p < ∞. Then for any T ∈
(−∞,+∞] the following holds.

(i) For any u ∈ W1,2
p,ω(Rd+1

T ),

‖Vu‖Lp,ω(Rd+1
T ) + ‖

√
Vux‖Lp,ω(Rd+1

T ) + ‖uxx‖Lp,ω(Rd+1
T )

+ ‖ut‖Lp,ω(Rd+1
T ) ≤ N‖(L − V)u‖Lp,ω(Rd+1

T ).
(3.3)

provided that V ≥ λ0, where λ0,N depending only on p,K, d, δ,C0, δ0, η and ω.
(ii) For any V(t, x) ≡ λ > λ0 = λ0(p, K, d, δ, η, ω) and f ∈ Lp,ω(Rd+1

T ), there exists a
unique solution u ∈ W1,2

p,ω(Rd+1
T ) of equation Lu − λu = f in Rd+1

T .
(iii) In the case that ai j = ai j(t), bi ≡ c ≡ 0 and V(t, x) ≡ λ, we can take λ0 = 0 in (i)

and (ii).

We remark that Bramanti et al. [3] obtained the global W2,p estimates for
nondivergence elliptic operators with potentials satisfying a reverse Hölder condition.
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To prove Theorem 3.2, we need the following Lemma.

Lemma 3.3. Let 1 < p < ∞ and ω ∈ Ap(Rd+1). There exists a constant N depending
only on p, q, d, δ,K and Ap(ω), such that for any u ∈ C∞0 (Rd+1)

‖uxx‖Lp,ω(Rd+1) + ‖ut‖Lp,ω(Rd+1) ≤ N(‖Lu‖Lp,ω(Rd+1) + ‖ux‖Lp,ω(Rd+1) + ‖u‖Lp,ω(Rd+1)). (3.4)

Proof. Note that we included ‖ux‖Lp,ω(Rd+1) and ‖u‖Lp,ω(Rd+1) on the right-hand side.
Therefore, while (3.4) holds we may certainly assume that bi ≡ c ≡ 0. Since ut =

Lu − ai jui j, we only need to estimate uxx.
Since ω ∈ Ap(Rd+1), then there exist q, v > 1 such that ω ∈ A p

qv
(Rd+1) by

Lemma 2.1(ii). If u ∈ C∞0 (QR), then by Lemma 5.3 in [16], using the Fefferman–Stein
theorem on sharp functions, and the Hardy–Littlewood maximal function theorem

‖uxx‖Lp,ω(Rd+1) ≤ N‖u]xx‖Lp,ω(Rd+1) ≤ N1k(d+2)/q‖ f ‖Lp,ω(Rd+1)

+ N2(k−1 + k(d+2)/qη1/(µq)(R))‖uxx‖Lp,ω(Rd+1),

where k ≥ 4 and 1/µ + 1/v = 1, where Ni are determined by p, q,K, v, d, δ, Ap(ω) and
the function η. We choose a large k = k(N2, d) and small R = R(N2, d, p,K, η) so that

N2(k−1 + kd+2/qη1/(µq)(R)) ≤ 1/2.

Hence, we have
‖uxx‖Lp,ω(Rd+1) ≤ N‖ f ‖Lp,ω(Rd+1)

provided that k is large enough and R is small enough.
After that (3.4) is derived by a standard procedure using partitions of unity. The

proof is finished. �

Proof of Theorem 3.2. First we assume T = ∞. We now prove (3.3). We follow the
same pattern as in the proof of Theorem 4.1 of [25]. To prove (3.3) observe that

‖ut‖Lp,ω(Rd+1) ≤ ‖Lu‖Lp,ω(Rd+1) + C‖uxx‖Lp,ω(Rd+1) + C‖ux‖Lp,ω(Rd+1) + ‖u‖Lp,ω(Rd+1),

so
‖Lu‖Lp,ω(Rd+1) ≤ ‖Lu − Vu‖Lp,ω(Rd+1) + ‖Vu‖Lp,ω(Rd+1).

Hence, from Lemma 3.3, we only need to prove that for large λ0

‖Vu‖Lp,ω(Rd+1) + ‖
√

Vux‖Lp,ω(Rd+1) ≤ C‖(L − V)u‖Lp,ω(Rd+1). (3.5)

We will use a method introduced by Agmon. Consider the space Rd+2 = {(t, z) =

(t, x, y) : t, y ∈ R, x ∈ Rn} and the function

ũ(t, z) = u(t, x)ξ(y) cos(ν(t, x)y), (3.6)

where ν(t, x) =
√

V(t, x) and ξ is a C∞0 (R)-function, ξ . 0. Also introduce the operator

L̃u(t, z) = L(x, t)u(t, z) + uyy(t, z).
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Finally, set

B̃r(z0) = {|z − z0| < r}, Q̃r(z0, t0) = (t0 − r2, t0) × B̃r(z0).

For any r ∈ (0,∞), (z0, t0) ∈ Rd+2, set Q̄r = Q̄r(z0, t0). For appropriate ā(t) we have∫
Q̄r

|a(t, x) − ā(t)| dz dt ≤
∫

(t0−r2,t0)

∫
|x−x0 |<r,|y−y0 |<r

|a(x, t) − ā(t)| dz dt

= 2r
∫

Qr(x0,t0)
|a(t, x) − ā(t)| dz dt ≤ Crd+3a](x)

R .
(3.7)

Since a ∈ V MOx(Rd+2) and ω ∈ Ap(Rd+2), it follows that (3.4) holds with ũ, L̃, and
Rd+2, respectively. Now, since ν(x, t) ≥ 1, we then have∫

R
|ξ(y) sin(ν(t, x)y)|p dy ≥ C1 > 0,

where the constant C1 is independent of x, t and ν.
Hence, by (3.1), we have

‖(νux)(t, ·)‖pLp,ω(Rd) ≤ C−1
1

∫
Rd+1
|ux(t, x)ν(t, x)ξ(y) sin(ν(t, x)y)|pω(t, x) dz

≤ C
∫

Rd+1
|ux(t, x)[(ξ(y) cos(ν(t, x)y))′

− ξ′(y) cos(ν(t, x)y)]|pω(t, x) dz

≤ C
∫

Rd+1
|̃uzz(t, z)|pω(t, x) dz + C

∫
Rd+1
|ux(t, x)ξ′(y)|pω(t, x) dz

+ C
∫

Rd+1
|u(t, x)νx(t, x)ν(x, t)y2ξ(y)|pω(t, x) dz

+ C
∫

Rd+1
|u(t, x)νx(t, x)yξ′(y)|pω(t, x) dz

≤ C
∫

Rd+1
|̃uzz(t, z)|pω(t, x) dz + C

∫
Rd
|ux(t, x)|pω(t, x) dx

+ C
∫

Rd
|u(t, x)ν3/2(t, x)|pω(t, x) dx,

where C is a positive constant independent of x, t and ν.
From this, taking λ0 > 2C, then

‖νux(t, ·)‖pLp,ω(Rd) ≤ C‖̃uzz(t, ·)‖Lp,ω(Rd+1) + ‖ν3/2u(t, ·)‖pLp,ω(Rd), (3.8)

here and in what follows, we write

‖u(t, ·)‖pLp,ω(Rd) :=
∫

Rd
|u(t, x)|pω(t, x) dx,

‖u(t, ·)‖pLp,ω(Rd+1) :=
∫

Rd+1
|u(t, x, y)|pω(t, x) dx dy.
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Similarly,

‖(ν2u)(t, ·)‖pLp,ω(Rd) ≤ C
∫

Rd+1
|̃uyy(t, z) − u(t, x)[2ξ′(y) sin(ν(t, x)y)

+ ξ′′(y) cos(ν(t, x)y)]|pω(t, x) dz + C‖(νu)(t, ·)‖pLp,ω(Rd)

≤ C‖̃uzz(t, ·)‖
p
Lp,ω(Rd+1) + C‖(νu)(t, ·)‖pLp,ω(Rd)

≤ C‖̃uzz(t, ·)‖
p
Lp,ω(Rd+1),

(3.9)

taking λ0 > 2C, where C is a positive constant independent of x, t and ν.
Combining (3.8) and (3.9), we obtain∫

R
‖(ν2u)(t, ·)‖pLp,ω(Rd) dt +

∫
R
‖(νux)(t, ·)‖pLp,ω(Rd) dt

≤ C
∫

R
‖̃uzz(t, ·)‖

p
Lp,ω(Rd+1) dt.

(3.10)

Thus, the left-hand side of (3.5) is estimated through the left-hand side (3.4) written for
ũ, L̃, and Rd+2 in place of u, L, and Rd+1, respectively. Hence, by (3.1) and Lemma 3.3,
we obtain

‖̃uzz‖Lp,ω(Rd+2) ≤ N
(
‖L̃ũ‖Lp,ω(Rd+2) + ‖ux‖Lp,ω(Rd+1) + ‖νu‖Lp,ω(Rd+1) + ‖νxu‖Lp,ω(Rd+1)

)
≤ N

(
‖(L − V)u‖Lp,ω(Rd+1) + ‖ux‖Lp,ω(Rd+1)

+ ‖νxux‖Lp,ω(Rd+1) + ‖νu‖Lp,ω(Rd+1) + ‖νxu‖Lp,ω(Rd+1)

+ ‖νxxu‖Lp,ω(Rd+1) + ‖νtu‖Lp,ω(Rd+1)

)
≤ N

(
‖(L − V)u‖Lp,ω(Rd+1) +

1

λδ0
0

‖νux‖Lp,ω(Rd+1)

+ ‖νu‖Lp,ω(Rd+1) +
1

λδ0
0

‖ν2u‖Lp,ω(Rd+1)

)
.

By this and (3.10), for large λ0, we prove (3.5).
Thus, (i) is proved for T = ∞. For general T ∈ (−∞,∞], we use the fact u = v for

t < T , where v ∈ W1,2
p,ω solves (L − V)v = χt<T (L − V)u. Assertion (ii) is established

from assertion (i) by the method of continuity. Finally, we prove assertion (iii). If
λ = 0, assertion (iii) is easily proved by Theorem 5.1 in [26]. In the case λ > 0, adapting
the same proof of (3.3), and using Theorem 5.1 in [26], we can prove that

λ‖u‖Lp,ω(Rd+1
T ) +

√
λ‖ux‖Lp,ω(Rd+1

T ) + ‖uxx‖Lp,ω(Rd+1
T ) + ‖ut‖Lp,ω(Rd+1

T )

≤ N‖(L − λ)u‖Lp,ω(Rd+1
T )

provided that λ ≥ λ0, where N, λ0 depending only on p,K, d, δ, η and ω. Let w̄(t, x) =

ω(tλ0/λ, x
√
λ0/λ), it is easy to see that ω̄ satisfies the same properties in Lemma 2.1

as ω. So,

λ‖u‖Lp,ω̄(Rd+1
T ) +

√
λ‖ux‖Lp,ω̄(Rd+1

T ) + ‖uxx‖Lp,ω̄(Rd+1
T ) + ‖ut‖Lp,ω̄(Rd+1

T )

≤ N‖(L − λ)u‖Lp,ω̄(Rd+1
T ) (3.11)
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provided that λ ≥ λ0, where N, λ0 depending only on p,K,d, δ, η andω. Using a scaling
and by (3.11)

x→ x
√
λ0/λ, t→ tλ0/λ

we obtain the estimate for any λ > 0. The proof is finished. �

Now, we consider the divergence form parabolic equations.

Theorem 3.4. Let V satisfy (3.2), ω ∈ Ap(Rd+1) with 1 < p < ∞. Then for any T ∈
(−∞,+∞] the following assertions hold.

(i) For u ∈ W1
p,ω(Rd+1

T ), f = ( f 1, . . . , f d) ∈ Lp,ω(Rd+1
T ) , g ∈ Lp,ω(Rd+1

T ), and

Lu − Vu = div f + g.

Then there exist constants λ0, N depending only on p, K, d, δ,C0, δ0, η and ω,
such that

‖
√

Vu‖Lp,ω(Rd+1
T ) + ‖ux‖Lp,ω(Rd+1

T ) ≤ N
(
‖ f ‖Lp,ω(Rd+1

T ) +

∥∥∥∥∥ g
√

V

∥∥∥∥∥
Lp,ω(Rd+1

T )

)
(3.12)

provided that V ≥ λ0.
(ii) For any V(t, x) ≡ λ > λ0 = λ0(p, K, d, δ, η, ω) and f , g ∈ Lp,ω(Rd+1

T ), then there
exists an unique solution u ∈ H1

p,ω(Rd+1
T ) of equation Lu − λu = div f + g in Rd+1

T
and satisfying

‖ut‖H−1
p,ω(Rd+1

T ) + λ‖u‖Lp,ω(Rd+1
T ) +

√
λ‖ux‖Lp,ω(Rd+1

T )

≤ N(
√
λ‖ f ‖Lp,ω(Rd+1

T ) + ‖g‖Lp,ω(Rd+1
T )).

(iii) In the case that ai j = ai j(t), ai ≡ bi ≡ c ≡ 0 and V(t, x) ≡ λ, we can take λ0 = 0 in
assertions (i) and (ii).

To prove Theorem 3.4, we need the following result.

Lemma 3.5. Let 1 < p < ∞, ω ∈ Ap(Rd+1), ai = bi = 0, c = 0, Lu = div f , where f =

( f 1, . . . , f d). There exists a constants ε > 0 and N <∞ depending only on p, d, δ and
Ap(ω), such that if a](x)

R < ε for some R > 0, then for any u ∈ C∞0 (QR) we have

‖ux‖Lp,ω(Rd+1) ≤ N‖ f ‖Lp,ω(Rd+1).

Proof. Similar to the proof of Lemma 3.3, by Lemma 7.3 in [16], using the
Fefferman–Stein theorem on sharp functions, and the Hardy–Littlewood maximal
function theorem, we can obtain the desired result. �

Proof of Theorem 3.4. First we assume T = ∞. We now prove (3.10). We follow
the same pattern as in the proof of Theorem 4.4 of [26]. Similar to the proof
of Theorem 3.2, we use a method introduced by Agmon. We first assume that
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u ∈ C∞0 (QR/2), where R is the same as in Lemma 3.5. Consider the space Rd+2 =

{(t, z) = (t, x, y) : t, y ∈ R, x ∈ Rd} and the function

ũ(t, z) = u(t, x)ξ(y) cos(ν(t, x)y),

where ν(t, x) =
√

V(t, x) and ξ is an odd C∞0 (−R/2,R/2) function, ξ . 0. Also introduce
the operator

L̃u(t, z) = ut(t, z) + (ai j(t, x)uxi (t, z))x j + uyy(t, z).

As in the proof of Theorem 3.2 one checks that a](z) is small enough.
Set

f̃ i(t, z) = ( f i(t, x) − a j(t, x)u(t, x))ξ(y) cos(ν(t, x)y)
+ a ji(t, x)u(t, x)νx j (t, x)yξ(y) sin(ν(t, x)y) for i = 1, . . . , d,

and

f̃ d+1(t, z) = (g(t, x) − c(t, x)u(t, x))ξt
1(y) − 2u(t, x)ξt

2(y) + u(t, x)ξt
3(y)

+ (−νt(t, x)u(t, x) + [ f i(t, x) − a j(t, x)u(t, x)
− a ji(t, x)ux j (t, x)]νxi (t, x)) ξt

4(y),

where

ξt
1(y) =

∫ y

−∞

ξ(s) cos(ν(t, x)y) ds, ξt
3 =

∫ y

−∞

ξ′′(s) cos(ν(t, x)y) ds,

ξt
2(y) = ν(x, t)

∫ y

−∞

ξ′(s) sin(ν(t, x)y) ds = −ξ′(y) cos(ν(t, x)y) + ξt
3(y),

and

ξt
4(y) =

∫ y

−∞

sξ(s) sin(ν(t, x)s) ds.

Observe that ξi ∈ C∞0 (R) since ξ is odd and has compact support. Furthermore, it is
easy to check that

L̃ũ(t, z) = (( f̃ i(t, z))xi + · · · + ( f̃ d(t, z))xd + ( f̃ d+1(t, z))y) .

We denote by L̃p,ω the Lp,ω space of functions of z(x, y), note that ω is the Ap(Rd+1) of
weighted function with (t, x) variable and by Lemma 3.3,∫ ∞

−∞

‖̃uz(t, ·)‖
p
L̃p,ω

dt ≤ N
(n+1∑

i=1

∫ ∞

−∞

‖ f̃ i(t, ·)‖p
L̃p,ω

dt +

∫ ∞

−∞

‖̃u(t, ·)‖p
L̃p,ω

dt
)
. (3.13)

Since ν(t, x) ≥ 1, then there exist constants C2 and C3 independent of x, t, ν such that∫
Rd
|ξ(y) sin(ν(x, t)y)|p dy ≥ C2 > 0,

∫
Rd
|ξ(y) cos(ν(t, x)y)|p dy ≥ C3 > 0.
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From these, we get for each t and ν(t, x) ≥ 1 that

‖ux(t, ·)‖Lp,ω(Rd) ≤ C−1
2

∫
Rd+1
|ux(t, x)ξ(y) cos(ν(t, x)y)|pω(t, x) dz

≤ N‖̃uz(t, ·)‖
p
L̃p,ω

,

and

‖(νu)(t, ·)‖pLp,ω(Rd) ≤
1

C3

∫
Rd+1
|̃uy(t, z) − u(t, x)ξ′(y) cos(ν(x, t)y)|pω(t, x) dz

≤ N(‖̃uz(t, ·)‖
p
L̃p,ω

+ ‖u‖pLp,ω(Rd)).

It follows that if λ0 is large enough, then

‖(νu)(t, ·)‖pLp,ω(Rd) ≤ N‖̃uz(t, ·)‖
p
L̃p,ω

.

Hence, by (3.13) for large λ0

‖νu‖pLp,ω(Rd+1) + ‖ux‖
p
Lp,ω(Rd+1)

≤ N
(d+1∑

i=1

∫ ∞

−∞

‖ f̃ i(t, ·)‖q
L̃p,ω

dt +

∫ ∞

−∞

‖̃u(t, ·)‖p
L̃p,ω

dt
)
.

(3.14)

Now we estimate the right-hand side of (3.14). By (3.2), we have for i = 1, . . . , d,

‖ f̃ i(t, ·)‖p
L̃p,ω
≤ N(‖ f i(t, ·)‖pLp,ω(Rd) + ‖u(t, ·)‖pLp,ω(Rd) + λ−δ0

0 ‖νu(t, ·)‖pLp,ω(Rd)),

and
‖̃u(t, ·)‖p

L̃p,ω
≤ N‖u(t, ·)‖pLp,ω(Rd).

Furthermore,

ξt
1 = ν(t, x)−1

[
ξ(y) sin(ν(t, x)y) −

∫ y

−∞

ξ′(s) sin(ν(t, x)s) ds
]
,

which shows that ξ1 equals ν−1 times a uniformly bounded function with support not
wider than that of ξ in the coordinate y. Hence,

‖c(t, ·)u(t, ·)ξ1‖
p
L̃p,ω
≤ N‖u(t, ·)‖pLp,ω(Rd), ‖g(t, ·)ξt

1‖
p
L̃p,ω
≤ N‖(g/ν)(t, ·)‖pLp,ω(Rd).

Similarly,

ξt
4 = −ν(t, x)−1

[
yξ(y) cos(ν(x, t)y) −

∫ y

−∞

(sξ(s))′ cos(ν(t, x)s) ds
]
,

which shows that ξt
4 equals ν−1 times a uniformly bounded function with support not

wider than that of ξ in the coordinate y. Hence, by (3.2), we obtain

‖(νtu − [ f i + a ju − a jiux j ]νxi ) ξ4(t, ·)‖p
L̃p,ω

≤ N(‖ f i(t, ·)‖pLp,ω(Rd) + ‖u(t, ·)‖pLp,ω(Rd) + λ−δ0
0 ‖ux(t, ·)‖pLp,ω(Rd)).
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Also ξt
2 and ξt

3 are uniformly bounded with support not wider than that of ξ. Therefore,

‖(2uξ2 − uξ3)(t, ·)‖p
L̃p,ω
≤ N‖u(t, ·)‖pLp,ω(Rd).

From these, we have

‖ f̃ d+1(t, ·)‖p
L̃p,ω
≤ N(‖ f i(t, ·)‖pLp,ω(Rd) + ‖u(t, ·)‖pLp,ω(Rd)

+λ−δ0
0 ‖ux(t, ·)‖pLp,ω(Rd) + ‖(g/ν)(t, ·)‖pLp,ω(Rd)).

(3.15)

Combining (3.14) and (3.15), we prove (3.12) if u ∈ C∞0 (BR/2). For general u, we adapt
the same proof of Theorem 5.7 in [25], we can obtain the desired result.

Thus, assertion (i) is proved for T = ∞. For general T ∈ (−∞,∞], we use the fact
u = v for t < T , where v ∈ W1

p,ω solves (L − V)v = χt<T (L − V)u.
Assertion (ii) is established from assertion (i) by the method of continuity once we

prove the following inequality

‖ut‖H−1
ω (Rd+1

T ) ≤ N(
√
λ‖ f ‖Lp,ω(Rd+1

T ) + ‖g‖Lp,ω(Rd+1
T )). (3.16)

In fact, it suffices to observe

(1 − 4 + ∂t)−1/2ut = −(1 − 4 + ∂t)−1/2D j(ai juxi − f j) + (1 − 4 + ∂t)−1/2(λu + g),

hence, by the weighted Lp,ω(Rd+1
T ) of (1 − 4 + ∂t)−1/2 and (1 − 4 + ∂t)−1/2D j, we have

‖(1 − 4 + ∂t)−1/2ut‖Lp,ω(Rd+1
T ) ≤ N(‖ux‖Lp,ω(Rd+1

T ) + λ‖u‖Lp,ω(Rd+1
T )

+ ‖ f ‖Lp,ω(Rd+1) + ‖g‖Lp,ω(Rd+1)).

From this and (3.12), we prove (3.16).
For assertion (iii). If λ = 0, assertion (iii) is easily proved by Theorem 7.1 in [26].

In the case λ > 0, adapting the same proof of (3.3), and using Theorem 7.1 in [26], we
can prove that there exists a constant N, λ0 depending only on p,K, d, δ, η and ω, such
that

λ‖u‖Lp,ω(Rd+1
T ) +

√
λ‖ux‖Lp,ω(Rd+1

T ) ≤ N(
√
λ‖ f ‖Lp,ω(Rd+1

T ) + ‖g‖Lp,ω(Rd+1
T ))

provided that λ ≥ λ0. Let w̄(t, x) = ω(tλ0/λ, x
√
λ0/λ), clearly, ω̄ satisfies the same

properties in Lemma 2.1 as ω. So, there exists a constant N, λ0 depending only on
p,K, d, δ, η and ω, such that

λ‖u‖Lp,ω̄(Rd+1
T ) +

√
λ‖ux‖Lp,ω̄(Rd+1

T ) ≤ N(
√
λ‖ f ‖Lp,ω̄(Rd+1

T ) + ‖g‖Lp,ω̄(Rd+1
T )) (3.17)

provided that λ ≥ λ0. Using a scaling and by (3.17)

x→ x
√
λ0/λ, t→ tλ0/λ

we obtain the estimate for any λ > 0. The proof of Theorem 3.4 is complete. �

As a consequence of Theorem 3.4, we have the following result.
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Corollary 3.6. Let V satisfy (3.2), ω ∈ Ap(Rd+1) with 1 < p < ∞. Then there exist
constants λ0,N depending only on p,K, d, δ,C0, δ0, η and ω, such that

‖Vu‖Lp,ω(Rd+1) + ‖
√

Vux‖Lp,ω(Rd+1) ≤ C‖h‖Lp,ω(Rd+1), (3.18)

provided that V ≥ λ0, where u = (L − V)−1h.

Proof. Let ν(x, t) =
√

V(x, t). Note that Lu(x, t) − ν2(x, t)u(x, t) = h(x, t), then

LU(x, t) − ν2(x, t)U(x, t) = div(ai juνxi )(x, t) + h̃(x, t), (3.19)

where U(x, t) = u(x, t)ν(x, t) and

h̃(x, t) = h(x, t)ν(x, t) + u(x, t)νt(x, t) + ai j(x, t)uxi (x, t)νx j (x, t)

+ b̂i(x, t)u(x, t)νx j (x, t) + bi(x, t)u(x, t)νxi (x, t).

Applying (3.12) to (3.19) with u = U, f = (a1 juνx1 , . . . , a
n juνxn ) and g = h̃, by (3.2), we

obtain
‖νU‖Lp,ω(Rd+1) + ‖Ux‖Lp,ω(Rd+1) ≤ C‖ai juνxi‖Lp,ω(Rd+1) + ‖̃h/ν‖Lp,ω(Rd+1)

≤ C(‖νu‖Lp,ω(Rd+1) + ‖ux‖Lp,ω(Rd+1) + ‖h‖Lp,ω(Rd+1)).
(3.20)

Observe that by (3.2) again

‖ν2u‖Lp,ω(Rd+1) + ‖νux‖Lp,ω(Rd+1) ≤ ‖νU‖Lp,ω(Rd+1) + ‖Ux‖Lp
ω(Rd+1) + ‖νxu‖Lp,ω(Rd+1)

≤ ‖νU‖Lp,ω(Rd+1) + ‖Ux‖Lp,ω(Rd+1) + C‖νu‖Lp,ω(Rd+1).

From this and (3.20), we have

‖ν2u‖Lp,ω(Rd+1) + ‖νux‖Lp,ω(Rd+1) ≤ C‖h‖Lp,ω(Rd+1),

if λ0 is large enough. Thus, (3.18) is proved. �

4. Partially BMO coefficients
We first recall the definition of partially BMO function introduced by [13, 23].
We assume that ai j, i j > 1 are measurable in x1 and t, and have locally small mean

oscillations in the other variables. In addition, we assume that a11 are measurable in t
and have locally small mean oscillations in the others. To state the assumptions on ai j

precisely, for R > 0, we denote

a11
R = sup

(t0,x0)∈Rd+1
sup
r≤R

1
|Qr(t0, x0)|

∫
Qr(t0,x0)

|a11(t, x) − ā11(t)| dx dt,

a]R = sup
(t0,x0)∈Rd+1

sup
r≤R

sup
(i, j),(1,1)

1
|Qr(t0, x0)|

∫
Qr(t0,x0)

|ai j(t, x) − āi j(t, x1)| dx dt,

where for each Qr(t0, x0),

ā11(t) =
1

|Br(x0)|

∫
Br(x0)

a11(t, x) dx,

ā11(t, x1) =
1

|Br(x0)|

∫
Br(x0)

a11(t, x1, y′) dy′, (i, j) , (1, 1).

We shall impose part of the following assumption on the leading coefficients.
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Assumption 4.1 (γ). There exists a positive constant R0 such that a11
R0

+ a]R0
≤ γ.

Now, we first consider the divergence form parabolic equations.

Theorem 4.2. Let V satisfy (3.2), ω ∈ Ap(Rd+1) with 1 < p < ∞. Then there exists a
constant γ > 0 such that under Assumption 4.1(γ), for any T ∈ (−∞,+∞] the following
holds.

(i) For u ∈ W1
p,ω(Rd+1

T ), f = ( f 1, . . . , f d) ∈ Lp,ω(Rd+1
T ), g ∈ Lp,ω(Rd+1

T ), and

Lu − Vu = div f + g.

Then there exist constants λ0, N depending only on p, K, d, δ,C0, δ0, γ and ω,
such that

‖
√

Vu‖Lp,ω(Rd+1
T ) + ‖ux‖Lp,ω(Rd+1

T ) ≤ N(‖ f ‖Lp,ω(Rd+1
T ) + ‖g/

√
V‖Lp,ω(Rd+1

T ))

provided that V ≥ λ0.
(ii) For any V(t, x) ≡ λ > λ0 = λ0(p,K, d, δ, γ, ω) and f , g ∈ Lp,ω(Rd+1

T ), there exists a
unique solution u ∈ H1

p,ω(Rd+1
T ) of the equation Lu − λu = div f + g in Rd+1

T and
satisfying

‖ut‖H−1
p,ω(Rd+1

T ) + λ‖u‖Lp,ω(Rd+1
T ) +

√
λ‖ux‖Lp,ω(Rd+1

T ) ≤ N(
√
λ‖ f ‖Lp,ω(Rd+1

T ) + ‖g‖Lp,ω(Rd+1
T )).

(iii) In the case that a11 = a11(t), ai j = ai j(t, x1), i j > 1, b j ≡ c ≡ 0 and V(t, x) ≡ λ, we
can take λ0 = 0 in assertions (i) and (ii).

To prove Theorem 4.2, we need the following results.

Lemma 4.3. Let 1 < p < ∞, ω ∈ Ap(Rd+1), ai = bi = 0, c = 0, Lu = div f , where f =

( f 1, . . . , f d). Also let σ > 1 and τ > 1 such that 1/τ + 1/σ = 1 and ω ∈ Ap/(qτ)(Rd+1)
for some q > 1 and qτ < p. Then there exists a constant γ1 > 0 such that under
Assumption 4.1(γ1), such that

(|ux′ − (ux′)Qr(t,x)|
q)Qr(t,x) ≤ Nkd+2(| f |q)Qkr(t,x) + N(k−q + kd+2(γ1)1/σ)(|Du|qτ)1/τ

Qkr(t,x)
(4.1)

for any k ≥ 4, r ∈ (0,∞), and (t, x) ∈ Rd+1, there exists a constant N depending only
on q, p, d, δ,C0, δ0, σ and Ap(ω).

Proof. By Proposition 6.4 in [17], and by using the technique of freezing coefficients
(see the proof of Lemma 7.3 of [16]), we can prove (4.1). �
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Lemma 4.4. Let 1 < p < ∞, ω ∈ Ap(Rd+1), ai = bi = 0, c = 0, Lu = div f , where f =

( f 1, . . . , f d). Then exists a constant γ > 0 such that a11
R0
≤ γ for some R0 ∈ (0, 1], there

exist µ ∈ [1,∞) and N depending only on p, K, d, δ, δ0 and ω, for u ∈ C∞0 vanishing
outside Qµ−1R0 , we have

‖ux‖Lp,ω(Rd+1) ≤ N(‖ f ‖Lp,ω(Rd+1) + ‖ux′‖Lp,ω(Rd+1)).

Proof. We can obtain the desired result in the same way as in the proof of Lemma 3.6
in [17]. We omit the details. �

As the consequence of Lemmas 4.3 and 4.4.

Proposition 4.5. Let 1 < p < ∞, ω ∈ Ap(Rd+1), ai = bi = 0, c = 0, Lu = div f , where
f = ( f 1, . . . , f d). Then exists a constant γ > 0 such that a11

R0
≤ γ for some R0 ∈ (0, 1],

there exists N depending only on p,K, d, δ and ω for u ∈ C∞0 (Qµ−1R0 ), we have

‖ux‖Lp,ω(Rd+1) ≤ N‖ f ‖Lp,ω(Rd+1).

Next, we set
L̄u = −ut + Di(ai jD ju),

where the coefficient a11 = a11(t) and ai j = ai j(t, x1) for i j > 1.

Lemma 4.6. Let 1 < p <∞, ω ∈ Ap(Rd+1), ai = bi = 0, c = 0, k ≥ 8, L̄u = div f , where
f = ( f 1, . . . , f d). Then the following assertion holds for any T ∈ (−∞,∞],

‖ux′‖Lp,ω(Rd+1
T ) ≤ N(k(d+2)/p‖ f ‖Lp,ω(Rd+1

T ) + k−1/2‖ux‖Lp,ω(Rd+1
T )), (4.2)

where N depends only on p, d, δ and ω.

Proof. By Proposition 6.4 in [17], and using Fefferman–Stein theorem on sharp
functions, and the Hardy–Littlewood maximal function theorem, we can prove
(4.2). �

Lemma 4.7. Let T ∈ (−∞,∞], 1 < p <∞, ω ∈ Ap(Rd+1), ai = bi = 0, c = 0, L̄u − λu =

divg + f in Rd+1
T , where λ ≥ 0 and f , g ∈ Lp,ω(Rd+1

T ). Then there exists a constant N
depending only on p,K, d, δ and ω, such that

√
λ‖ux‖Lp,ω(Rd+1

T ) + λ‖u‖Lp,ω(Rd+1
T )

≤ N(
√
λ‖Dx′u‖Lp,ω(Rd+1

T ) +
√
λ‖g‖Lp,ω(Rd+1

T ) + ‖ f ‖Lp,ω(Rd+1
T )).

In particular, if λ = 0 and f = 0, then

‖ux‖Lp,ω(Rd+1
T ) ≤ N(‖Dx′u‖Lp,ω(Rd+1

T ) + ‖g‖Lp,ω(Rd+1
T )). (4.3)

Proof. The case when λ = 0 and f = 0 follows by just letting λ→ 0 after the estimate
λ is proved. �

As the proof of Lemma 3.4 in [17], we can obtain the desired result. We omit the
details. Applying Lemma 4.4 and (4.3) of Lemma 4.7, we have the following result.
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Proposition 4.8. Let T ∈ (−∞,∞], 1 < p < ∞, ω ∈ Ap(Rd+1), L̄u − λu = divg + f in
Rd+1

T , where λ ≥ 0 and f , g ∈ Lp,ω(Rd+1
T ). Then there exists a constant N depending

only on p,K, d, δ and ω, such that
√
λ‖ux‖Lp,ω(Rd+1

T ) + λ‖u‖Lp,ω(Rd+1
T ) ≤ N(

√
λ‖g‖Lp,ω(Rd+1

T ) + ‖ f ‖Lp,ω(Rd+1
T )).

Proof. In fact, in the case ai = bi = 0, c = 0, by (4.2) and (4.3), we have

‖ux‖Lp,ω(Rd+1
T ) ≤ N‖g‖Lp,ω(Rd+1

T ). (4.4)

Adapting the same arguments in the proof of Lemma 3.3, using (4.4), we obtain
√
λ‖ux‖Lp,ω̄(Rd+1

T ) + λ‖u‖Lp,ω̄(Rd+1
T ) ≤ N(

√
λ‖g‖Lp,ω̄(Rd+1

T ) + ‖ f ‖Lp,ω̄(Rd+1
T )) (4.5)

provided that λ ≥ λ0, where the constants N, λ0 depend only on p, δ, d and ω, and
w̄(t, x) = ω(tλ0/λ, x

√
λ0/λ).

Using a scaling and by (4.5)

x→ x
√
λ0/λ, t→ tλ0/λ

we obtain the estimate for any λ > 0. The proof of Proposition 4.5 is complete. �

Now we are ready to prove Theorem 4.9.

Proof of Theorem 4.2. To prove assertion (i), for T = ∞ and u ∈ C∞0 , this in turn is
obtained from Theorem 4.2 and an idea from Agmon; see also the proof of Lemma 3.3.
For general T ∈ (−∞,∞], we use the fact u = v for t < T , where v ∈ W1

p,ω solves
(L− V)v = χt<T (L− V)u.Assertion (ii) is established from assertion (i) by the method
of continuity. Assertion (iii) is proved by Proposition 4.5.

Next, we consider the nondivergence form parabolic equations.

Theorem 4.9. Let V satisfy (3.1), ω ∈ Ap(Rd+1) with 1 < p < ∞. Then there exists a
constant γ > 0 depending only on p,K, d, δ and ω such that under Assumption 4.1(γ),
for any T ∈ (−∞,+∞] the following assertions hold.

(i) For any u ∈ W1,2
p,ω(Rd+1

T ),

‖Vu‖Lp,ω(Rd+1
T ) + ‖

√
Vux‖Lp,ω(Rd+1

T ) + ‖uxx‖Lp,ω(Rd+1
T )

+ ‖ut‖Lp,ω(Rd+1
T ) ≤ N‖(L − V)u‖Lp,ω(Rd+1

T )

provided that V ≥ λ0, where λ0,N depending only on p,K, d, δ,C0, δ0, γ and ω.
(ii) For any V(t, x) ≡ λ > λ0 = λ0(p, K, d, δ, γ, ω) and f ∈ Lp,ω(Rd+1

T ), there exists a
unique solution u ∈ W1,2

p,ω(Rd+1
T ) of the equation Lu − λu = f in Rd+1

T .
(iii) In the case that a11 = a11(t), ai j = ai j(t, x1), b j ≡ c ≡ 0 and V(t, x) ≡ λ, we can

take λ0 = 0 in assertions (i) and (ii).

To prove Theorem 4.9, we need the following results.
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Lemma 4.10. Let 1 < p <∞, ω ∈ Ap(Rd+1), b j = 0, c = 0. Then there exists a constant
γ1 > 0 depending only on p,K, d, δ and ω such that under Assumption 4.1(γ1) for any
u ∈ C∞0 (QR0 ) and for any T ∈ (−∞,+∞], we have

‖D2u‖Lp,ω(Rd+1
T ) + ‖ut‖Lp,ω(Rd+1

T ) ≤ N(‖Lu‖Lp,ω(Rd+1
T ) + ‖D2

x′u‖Lp,ω(Rd+1
T )), (4.6)

where there exists a constant N depending only on p, K, d, δ and ω. In particular, in
the case d = 1, we have

‖D2u‖Lp,ω(Rd+1
T ) + ‖ut‖Lp,ω(Rd+1

T ) ≤ N‖Lu‖Lp,ω(Rd+1
T ).

Proof. We write

−ut + a11D2
1u + 4d−1u = Lu +

∑
i j>1

(δi j − ai j)Di ju.

By Theorem 3.2, we have

‖D2u‖Lp,ω(Rd+1
T ) + ‖ut‖Lp,ω(Rd+1

T ) ≤ N(‖Lu‖Lp,ω(Rd+1
T ) + ‖Dxx′u‖Lp,ω(Rd+1

T )).

Finally, to conclude the proof of (4.6) it suffices to note that ωε(t, x) = ω(ε2t, εx1, x′) ∈
Ap(Rd+1) and Ap(ωε) ≤ 8pAp(ω) for any ε > 0,

‖Dx1 x′u‖Lp,ω(Rd+1
T ) ≤ ε(‖ut‖Lp,ω(Rd+1

T ) + ‖D2
1u‖Lp,ω(Rd+1

T ))

+ N(d, p, Ap(ω))ε−1‖D2
x′u‖Lp,ω(Rd+1

T ),
(4.7)

where we use the notation

‖Dx1 x′u‖Lp,ωε (Rd+1
T ) ≤ N‖(∂t − 4)u‖Lp,ωε (Rd+1

T ) ≤ N(‖ut‖Lp,ωε (Rd+1
T )

+ ‖D2
1u‖Lp,ωε (Rd+1

T ) + ‖D2
x′u‖Lp,ωε (Rd+1

T ))

by scaling in x1 with ε and t with ε2. �

Lemma 4.11. Let 1 < p < ∞, ω ∈ Ap(Rd+1), bi = 0, c = 0. Then there exists a
constant γ > 0 such that under Assumption 4.1(γ) for any u ∈ C∞0 (QR0 ) and for any
T ∈ (−∞,+∞], we have

‖D2u‖Lp,ω(Rd+1
T ) + ‖ut‖Lp,ω(Rd+1

T ) ≤ N‖Lu‖Lp,ω(Rd+1
T ).

Proof. The case d = 1 follows from Lemma 4.6. For case the d ≥ 2, by Lemma 4.6
and using the proof of Lemma 3.7 in [17], we can obtain the desired result. �

Finally, we are ready to prove Theorem 4.9.

Proof of Theorem 4.9. To prove assertion (i), for T = ∞ and u ∈ C∞0 , this in turn is
obtained from Lemmas 4.10 and 4.11 for the case in Assumption 4.1(γ) and Theorem
4.2 in [17], and an idea from Agmon; see also the proof of Theorem 3.2. For
general T ∈ (−∞,∞], we use the fact u = v for t < T , where v ∈ W1,2

p,ω solves (L −
V)v = χt<T (L − V)u. Assertion (ii) is established from assertion (i) by the method of
continuity. By using assertion (iii) of Theorem 3.2 and assertion (iii) of Theorem 4.2,
and adapting the proof of Theorem 3.1 in [17], we can prove assertion (iii) (see also
the proof of Theorem 5.2 below).
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5. Hierarchically partially BMO coefficients
We consider in this section parabolic equations with more general coefficients

introduced in [14]. The assumption is that for i j > 1, ai j are measurable in
(t, x1, . . . , xπi j ) and BMO in the other coordinates, where

πi j = max(i, j) − 1.

In addition, we suppose a11 is measurable in t and BMO in the other coordinates. More
precisely assumptions are related below.

We recall the definition of a11
R in Section 3. For R > 0, we denote

a∗R = sup
(t0,x0)∈Rd+1

sup
r≤R

sup
(i, j),(1,1)

1
|Qr(t0, x0)|

∫
Qr(t0,x0)

|ai j − āi j| dx dt,

āi j = āi j(t, x1, . . . , xπi j ) =
1

|Bd−πi j
r (xπi j+1

0 , . . . , xd
0)|

×

∫
B

d−πi j
r (x

πi j+1
0 ,...,xd

0)
|ai j(t, x1, . . . , xπi j , yπi j , . . . , yd)| dyπi j+1 · · · dyd.

We impose the following assumptions on ai j.

Assumption 5.1 (γ). There exists a positive constant R0 such that a11
R0

+ a∗R0
≤ γ.

Clearly the assumptions above are weaker than those in Theorems 4.2 and 4.9 in
terms of the regularity of ai j for i > 2 or j > 2. Now, we first consider the divergence
form parabolic equations.

Theorem 5.2. Let V satisfy (3.2), ω ∈ Ap(Rd+1) with 1 < p < ∞. Then there exists
a constant γ = γ(d, K, δ, p, ω) > 0 such that under Assumption 5.1(γ) for any T ∈
(−∞,+∞] the following assertions hold.

(i) For u ∈ W1
p,ω(Rd+1

T ) f = ( f 1, . . . , f d) ∈ Lp,ω(Rd+1
T ), g ∈ Lp,ω(Rd+1

T ), and

Lu − Vu = div f + g.

Then there exist constants λ0, N depending only on p, K, d, δ,C0, δ0, γ and ω,
such that

‖
√

Vu‖Lp,ω(Rd+1
T ) + ‖ux‖Lp,ω(Rd+1

T ) ≤ N(‖ f ‖Lp,ω(Rd+1
T ) + ‖g/

√
V‖Lp,ω(Rd+1

T ))

provided that V ≥ λ0.
(ii) For any V(t, x) ≡ λ > λ0 = λ0(p, K, δ, γ, ω) and f , g ∈ Lp,ω(Rd+1

T ), there exists a
unique solution u ∈ H1

p,ω(Rd+1
T ) of the equation Lu − λu = div f + g in Rd+1

T and
satisfying

‖ut‖H−1
p,ω(Rd+1

T ) + λ‖u‖Lp,ω(Rd+1
T ) +

√
λ‖ux‖Lp,ω(Rd+1

T )

≤ N(
√
λ‖ f ‖Lp,ω(Rd+1

T ) + ‖g‖Lp,ω(Rd+1
T ))

(iii) In the case that a11 = a11(t), ai j = ai j(t, x1, . . . , xπi j ), i j > 1, b j ≡ c ≡ 0 and
V(t, x) ≡ λ, we can take λ0 = 0 in assertions (i) and (ii).
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For simplicity, we only give a proof of Theorem 5.2 when d ≥ 3, or d > 3 and πi j is
placed by π̃i j = min(πi j, 2). The general case can be proved by an induction.

We first give the following result.

Lemma 5.3. Let 1 < p <∞, ω ∈ Ap(Rd+1), ai = bi = 0, c = 0. Then there exist constants
µ1 > 1, 0 < γ1 < 1 and N depending only on p, K, d, δ and ω such that, under
Assumption 5.1(γ2) with π̃i j in place of πi j, for any T ∈ (−∞,+∞], for u ∈C∞0 vanishing
outside Qµ−1

1 R0
satisfying Lu = div f , where f ∈ Lp,ω(Rd+1

T ), we have

‖ux‖Lp,ω(Rd+1
T ) ≤ N

(
‖ f ‖Lp,ω(Rd+1

T ) +

d∑
j=3

‖D ju‖Lp,ω(Rd+1
T )

)
.

Proof. Similar to the proof Corollary 6.4 in [14], we can obtain the desired result. We
omit the details. �

Following the lines of Sections 5 and 6 in [17], we have the next estimate of mean
oscillations.

Lemma 5.4. Let 1 < q <∞, ai = bi = 0, c = 0, σ, τ ∈ (1,∞) satisfying 1/σ + 1/τ = 1.
Assume u ∈ C∞0 and Lu = div f , where f ∈ Lq,loc. Then under Assumption 5.1(γ)
with πi j in place of πi j, there exist an α = α(d, δ) ∈ (0, 1) and a positive constant N
depending only d, σ, q and δ such that

(|ux′ − (ux′)Qr(t,x)|
q)Qr(t,x) ≤ Nkd+2(| f |q)Qkr(t,x)

+ N(k−qα + kd+2(γ1)1/σ)(|Du|qτ)1/τ
Qkr(t,x)

for any k ≥ 4, r ∈ (0,∞), and (t, x) ∈ Rd+1, provided that u vanishes outside QR0 .

Using Lemmas 5.3 and 5.4, we immediately obtain the following result.

Proposition 5.5. Let 1 < p < ∞, ai = bi = 0, c = 0 and ω ∈ Ap(Rd+1). Let µ1 and γ1
be the constants in Theorem 5.2. Then exists a constant γ2 ∈ (0, γ1] depending only
on d, p, δ and ω such that under Assumption 5.1(γ2) with π̃i j in place of πi j, for any
u ∈ C∞0 (Qµ−1

1 R0
) and f ∈ Lp,ω(Rd+1

T ) satisfying Lu = div f , we have

‖Du‖Lp,ω(Rd+1
T ) ≤ N‖ f ‖Lp,ω(Rd+1

T ).

Now, we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Recall that for simplicity we replace πi j in the assumption by
π̃i j. The general case can be done by an induction.

To prove assertion (i), for T = ∞ and u ∈ C∞0 , this in turn is obtained from
Theorem 5.2 and an idea from Agmon; see also the proof of Theorem 3.4. For
general T ∈ (−∞,∞], we use the fact u = v for t < T , where v ∈ W1

p,ω solves (L −
V)v = χt<T (L − V)u. Assertion (ii) is established from assertion (i) by the method
of continuity. The proof of assertion (iii) is similar to that of assertion (iii) of
Theorem 4.2, we omit the details here. As a consequence Theorem 5.2, we give the
following result which will be used in Section 8.
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Corollary 5.6. Let V satisfy (3.2), ω ∈ Ap(Rd+1) with 1 < p < ∞. Then there exist
constants λ0,N depending only on p,K, d, δ,C0, δ0, η and ω, such that

‖Vu‖Lp,ω(Rd+1) + ‖
√

Vux‖Lp,ω(Rd+1) ≤ C‖h‖Lp,ω(Rd+1)

provided that V ≥ λ0, where u = (L − V)−1h.

Next, we consider the nondivergence form parabolic equations.

Theorem 5.7. Let V satisfy (3.1), ω ∈ Ap(Rd+1) with 1 < p < ∞. Then there exists
a constant γ = γ(d, p, K, δ, ω) > 0 such that under Assumption 5.1(γ) for any T ∈
(−∞,+∞] the following assertions hold.

(i) For any u ∈ W1,2
p,ω(Rd+1

T ),

‖Vu‖Lp,ω(Rd+1
T ) + ‖

√
Vux‖Lp,ω(Rd+1

T ) + ‖uxx‖Lp,ω + ‖ut‖Lp,ω(Rd+1
T ) ≤ C‖(L − V)u‖Lp,ω(Rd+1

T )

provided that V ≥ λ0, where λ0,N depending only on p,K, d, δ,C0, δ0, γ and ω.
(ii) For any V(t, x) ≡ λ > λ0 = λ0(p, K, d, δ, γ, ω) and f ∈ Lp,ω(Rd+1

T ), there exists a
unique solution u ∈ W1,2

p,ω(Rd+1
T ) of the equation Lu − λu = f in Rd+1

T .
(iii) In the case that a11 = a11(t), ai j = ai j(t, x1, . . . , xπi j ), i j > 1, b j ≡ c ≡ 0 and

V(t, x) ≡ λ, we can take λ0 = 0 in assertions (i) and (ii).

Next we only consider the situation that Assumption 5.1 holds. For the remaining
case that the proof of Assumption 5.2 is similar, see also the proof of Theorem 6.9
in [17].

Now, we first consider the following equation

L0u = −ut + ai jDi ju,

where a11 = a11(t) and ai j = ai j(t, x1) for i j > 1.

Lemma 5.8. Let 1 < p <∞, ω ∈ Ap(Rd+1), T ∈ (−∞,∞]. Then for any u ∈W1,2
p,ω(Rd+1

T )
and λ ≥ 0, we have

λ‖u‖Lp,ω(Rd+1
T ) +

√
λ‖Du‖Lp,ω(Rd+1

T ) + ‖D2u‖Lp,ω(Rd+1
T ) + ‖ut‖Lp,ω(Rd+1

T )

≤ N‖L0u‖Lp,ω(Rd+1
T ), (5.1)

where the constant N depends only on K, p, d, δ and ω. Moreover, for any f ∈
Lp,ω(Rd+1

T ) and λ > 0 there is a unique u ∈ W1,2
p,ω(Rd+1

T ) solving

L0u − λu = f in Rd+1
T .

Proof. Similar to the proof of Theorem 6.11 in [14], we can obtain the desired result.
We omit the details. �

In the sequel, we only consider the case d = 3, or d > 3 and πi j is replaced by π̃i j in
Assumption 5.1. Like before, the general case follows by induction.
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Lemma 5.9. Let 1 < p < ∞, ω ∈ Ap(Rd+1), b j = 0, c = 0. Then there exist constants
γ2, µ2 and N, depending only on K, d, δ, p and Ap(ω) such that under
Assumption 5.1(γ2) with π̃ in place of π, for any u ∈ C∞0 (Qµ−1

2 R0
) we have

‖D2u‖Lp,ω(Rd+1) + ‖ut‖Lp,ω(Rd+1) ≤ N‖Lu‖Lp,ω(Rd+1) + N
d∑

i=3

‖D2
i u‖Lp,ω(Rd+1). (5.2)

Proof. Set f = Lu. Note that u satisfies

−ut +

2∑
i, j=1

ai jDi ju +

d∑
i=3

D2
i u = f +

∑
max(i, j)>2

(δi j − ai j)Di ju.

The coefficients on the left-hand side above satisfy Assumption 4.1. Thus, by Theorem
3.5 in [17] and Lemma 4.6, for γ2 sufficiently small and µ2 sufficiently large depending
only d, δ, p and ω,

‖D2u‖Lp,ω(Rd+1) + ‖ut‖Lp,ω(Rd+1)

≤ N
(
‖Lu‖Lp,ω(Rd+1) +

∑
max(i, j)>2

‖Di ju‖Lp,ω(Rd+1)

)
.

By an inequality similar to (4.6), we get (5.2). Proposition 5.5 is proved. �

Proof of Theorem 5.7. To prove assertion (i), for T = ∞ and u ∈ C∞0 , this in turn is
obtained from Theorem 6.12 in [17] and Lemma 5.9, and an idea from Agmon; see
also the proof of Theorem 3.2. For general T ∈ (−∞,∞], we use the fact u = v for
t < T , where v ∈ W1,2

p,ω solves (L − V)v = χt<T (L − V)u. Assertion (ii) is established
from assertion (i) by the method of continuity. Assertion (iii) is proved by Lemma 5.8.

6. Divergence equations on a half space

The object of this section is to establish the solvability of parabolic divergence
equations on a half space.

Theorem 6.1. Let 1 < p < ∞, ω ∈ Ap(Rd+1),Ω = Rd
+ and T ∈ (−∞,∞]. Then there is

a constant γ = γ(d, K, δ, p, ω) > 0 such that under Assumption 4.1(γ) the following
assertions hold.

(i) Assume u ∈ H1
p,ω(ΩT ), f ,g ∈ Lp,ω(ΩT ). There exists positive λ0 and N, depending

only on d, δ, p, γ and ω, such that

‖ut‖H−1
p,ω(ΩT ) +

√
λ‖Du‖Lp,ω(ΩT ) + λ‖u‖Lp,ω(ΩT )

≤ N
√
λ‖g‖Lp,ω(ΩT ) + N‖ f ‖Lp,ω(ΩT ), (6.1)

provided that λ ≥ λ0 and,{
Lu − λu = div g + f in ΩT ,
u = 0, on (−∞,T ) × ∂Ω.

(6.2)
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(ii) For any λ > λ0 and f , g ∈ Lp,ω(ΩT ), there exists a unique u ∈ H1
p,ω(ΩT ) of (6.2)

satisfying (6.1).

Theorem 6.2. The assertions of Theorem 6.1 hold true if (6.2) is replaced by{
Lu − λu = div g + f in ΩT ,
a1 jD ju + a1u = g1, on (−∞,T ) × ∂Ω.

(6.3)

We shall use the idea of odd/even extensions. For this purpose, we need the
following lemma.

Lemma 6.3. Let 1 < p <∞, ω ∈ Ap(Rd+1) and −∞ ≤ S < T ≤ ∞. Define ω̄(t, x1, x′) =

ω(t, |x1|, x′). Then:

(i) ω̄ has the same properties in Lemma 2.1 as ω;
(ii) a function u belongs toH1

p,ω̄((S ,T ) × Rd
+) if and only if its even extension ũ with

respect to x1 belongs toH1
p,ω̄((S , T ) × Rd

+); moreover, there exists N = N(d) > 0
such that

N−1‖u‖H−1
p,ω̄((S ,T )×Rd

+) ≤ ‖̃u‖H−1
p,ω̄((S ,T )×Rd

+) ≤ N‖u‖H−1
p,ω̄((S ,T )×Rd

+), (6.4)

N−1‖u‖Lp,ω̄((S ,T )×Rd
+) ≤ ‖̃u‖Lp,ω̄((S ,T )×Rd

+) ≤ N‖u‖Lp,ω̄((S ,T )×Rd
+), (6.5)

N−1‖Du‖Lp,ω̄((S ,T )×Rd
+) ≤ ‖Dũ‖Lp,ω̄((S ,T )×Rd

+) ≤ N‖Du‖Lp,ω̄((S ,T )×Rd
+). (6.6)

(iii) a function u belongs to H1
p,ω̄((S , T ) × Rd

+) and vanishes on (S , T ) × ∂Rd
+ if and

only if its odd extension ũ with respect to x′ belongs to H1
p,ω̄((S , T ) × Rd

+);
moreover, we have (6.4)–(6.6).

Next, we prove Theorems 6.1 and 6.2.

Proof of Theorem 6.1. Define

ãi j(t, x) = sgn(x1)ai j(t, |x1|, x′) for i = 1, j ≥ 2, or j = 1, i ≥ 2
ãi j(t, x) = ai j(t, |x1|, x′), otherwise,

and
ã1(t, x) = sgn(x1)a1(t, |x1|, x′), ã j(t, x) = a j(t, |x1|, x′), j ≥ 2,
b̃1(t, x) = sgn(x1)a1(t, |x1|, x′), b̃ j(t, x) = a j(t, |x1|, x′), j ≥ 2,
c̃(t, x) = c(t, |x1|, x′), f̃ (t, x) = sgn(x1) f (t, |x1|, x′),

g̃1(t, x) = sgn(x1)g1(t, |x1|, x′), g̃ j(t, x) = g j(t, |x1|, x′), j ≥ 2.

Clearly, if ai j, ai, bi, c satisfy Assumption 4.1(γ), then the new coefficients ãi j, ãi, b̃i, c̃
satisfy Assumption 4.1(4γ). Moreover, f̃ , g̃ ∈ Lp,ω̄(Rd+1

T ). Let L̃ be the divergence form
parabolic operator with coefficients ãi j, ãi, b̃i, c̃.

Due to Theorem 4.2 we can find γ > 0 and λ0 > 0 such that there exists a unique
solution u ∈ H−1

p,ω̄((S ,T ) × Rd
+) of

Lu − λu = div g̃ + f̃ in Rd+1
T , (6.7)
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provided that λ ≥ λ0. By the definition of the coefficients and the data, we have

Lu(t,−x1, x′) − λu(t,−x1, x′) = −div g̃ − f̃ in Rd+1
T .

Consequently, −u(t, −x1, x′) is also a solution to (6.7). By the uniqueness of the
solution, we obtain u(t, x) = −u(t,−x1, x′). This implies that, as a function on Rd

+,
u has zero trace on the boundary and clearly u satisfies (6.2). The existence of the the
solution is proved.

On the other hand, it is easy to see that if u ∈ H1
p,ω̄((S , T ) × Rd

+) is a solution to
(7.2), then its odd extension with respect to x1 is a solution to (6.7). So the uniqueness
follows from Theorem 4.2. Using (4.1) and Theorem 6.1, we can prove (6.1). The
theorem is proved. �

Proof of Theorem 6.2. We define ãi j, ãi, b̃i, c̃ and ω̄ as in the proof of Theorem 6.1.
LetL be the divergence form parabolic operator with coefficients ãi j, ãi, b̃i, c̃. Different
from above, we define

f̃ (t, x) = f (t, |x1|, x′),
g̃1(t, x) = sgng1(t, |x1|, x′), g̃ j(t, x) = g j(t, |x1|, x′), j ≥ 2.

Recall that ãi j satisfy Assumption 4.1(4γ). Clearly, f̃ , g̃ ∈ Lp,ω(Rd+1
T ). By Theorem 4.2,

we can find γ > 0 and λ0 > 0 such that there exists a unique solution u ∈ H1
p,ω̄((S ,T ) ×

Rd
+) of (6.7) provided that λ ≥ λ0. By the definition of the coefficients and the data, we

have
Lu(t,−x1, x′) − λu(t,−x1, x′) = div g̃ + f̃ in Rd+1

T .

Consequently, u(t,−x1, x′) is also a solution to (6.7). By the uniqueness of the solution,
we get u(t, x) = u(t,−x1, x′).

Let p′ = p/(p − 1). For any h ∈ H1
p′,(ω̄)−1/(p−1) ((−∞, T ) × Rd

+), denote h̃ to be its even
extension with respect to x1. Since u satisfies (6.7), then∫ T

−∞

∫
Rd

(−ut · h̃ − ai jD ju · Dĩh − ãi · Dĩh + b̃iDiu · h̃ + (̃c − λ)u · h̃) dx dt

=

∫ T

−∞

∫
Rd

(−g̃i · D̃ih + f̃ · h̃) dx dt.
(6.8)

By the definition of ãi j, ãi, b̃i, c̃, g̃ and f̃ as well as the evenness of u and h̃, all terms
inside the integrals in (6.8) are even with respect to x1. Thus, (6.8) implies∫ T

−∞

∫
Rd

(−ut · h − ai jD ju · Dih − ãi · Dih + b̃iDiu · h + (̃c − λ)u · h) dx dt

=

∫ T

−∞

∫
Rd

(−gi · Dih + f · h̃) dx dt.
(6.9)

Since h ∈ H1
p,ω̄((S , T ) × Rd

+) is arbitrary, by the definition u solves (6.3). This proves
the existence of the solution.

The uniqueness is obvious by using (6.9). Using (4.1) and Theorem 6.1, we can
prove (6.1). The theorem is proved. �
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7. Nondivergence equations on a half space

The object of this section is to establish the solvability of nondivergence equations
on a half space.

We first set
L̄u = −ut + ai jDi ju,

where the entries of coefficient matrices ai j are measurable function of only t ∈ R, i.e.
ai j = ai j(t) satisfying (1.3). With this operator L̄ we have the following theorem.

Theorem 7.1. Let 1 < p < ∞,Ω = Rd
+ and T ∈ (−∞,∞]. Then there is a constant

R0 = R0(d,K, δ, p, ω) > 0 such that under Assumption 3.1(R0) the following assertions
hold.

(i) Assume u ∈ W1,2
p (ΩT ). There exist positive constants λ0 and N, depending only

on d, δ, p,R0, such that

λ‖u‖Lp(ΩT ) +
√
λ‖Du‖Lp(ΩT ) + ‖D2u‖Lp,ω(ΩT ) + ‖ut‖Lp(ΩT ) ≤ N‖L̄u − λu‖Lp(ΩT ),

(7.1)

provided that λ ≥ λ0 and

u = 0, on (−∞,T ) × ∂Ω. (7.2)

(ii) For any λ > λ0 and f ∈ Lp(ΩT ), there exists a unique u ∈ W1,2
p (ΩT ) satisfying

L̄u − λu = f .

Theorem 7.1 is proved in [18].
As the applications of Theorem 7.1, we have the following results for 1 < p <∞.

Lemma 7.2. Let 0 < r < R <∞ and u ∈ W1,2
p,loc(ΩT ) satisfy (7.2). Then

‖ut‖Lp(Q+
r ) + ‖D2u‖Lp(Q+

r ) ≤ N(‖L̄u‖Lp(Q+
r ) + ‖Du‖Lp(Q+

r ) + ‖u‖Lp(Q+
r )),

where N = N(K, d, δ, r,R) and Q+
r = Qr

⋂
(Rd

+ × (−∞,T )).

Proof. See the proof of Lemma 5.2 in [26] or Lemma 7.1 in [18]. �

Lemma 7.3. Let 0 < r < R < ∞ and u ∈ C∞loc(ΩT ) satisfy (7.2). Assume that L̄u = 0 in
Q+

R. Then for any multi-index γ, we have

sup
Q+

r

|Dγu| + sup
Q+

r

|Dγut | ≤ N(‖Du‖Lp(Q+
r ) + ‖u‖Lp(Q+

r )),

where N = N(K, |γ|, d, δ, r,R).

Proof. See the proof of Lemma 5.8 in [26]. �

Lemma 7.4. Let u ∈ C∞loc(ΩT ) satisfy (7.2). Assume that L̄u − λu = 0 in Q+
2 . Then for

any multi-index γ, we have

sup
Q+

1

|Dγ(D2u)| + sup
Q+

1

|Dγut | ≤ N(‖ut‖Lp(Q+
2 ) + ‖D2u‖Lp(Q+

1 ) +
√
λ‖u‖Lp(Q+

1 )),

where N = N(K, |γ|, p, d, δ, r,R).
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Proof. See the proof of Lemmas 5.9 in [26]. �

Lemma 7.5. Let λ ≥ 0, k ≥ 2 and r ∈ (0,∞). Let u ∈ C∞loc(ΩT ) satisfy (7.2). Assume that
L̄u − λu = 0 in Q+

kr. Then

1
|Q+

r |

∫
Q+

r

|D2u(t, x) − (D2u)Q+
r |

p dx dt ≤ Nk−p(|D2u|p + λp|Du|p)Qkr ,

where N = N(|γ|,K, p, d, δ, r,R).

Proof. See the proof of Lemma 5.10 in [26]. �

By using the results above, we can obtain the following result.

Proposition 7.6. Let k ≥ 4 and r ∈ (0,∞). Let u ∈ C∞loc(ΩT ) satisfy (7.2). Then

1
|Q+

r |

∫
Q+

r

|D2u(t, x) − (D2u)Q+
r |

p dx dt ≤ Nk−p(|D2u|p + λp|Du|p)Qkr ,

where N = N(K, d, δ, p).

By using Theorem 7.1, and adapting the standard process (compare with the proof
of Theorem 5.1 in [15]), we can the main result in this section.

Theorem 7.7. Let 1 < p <∞, ω ∈ W(Rd+1), Ω = Rd
+ and T ∈ (−∞,∞]. Then there is

a constant R0 = R0(K, d, δ, p, ω) > 0 such that under Assumption 3.1(R0) the following
assertions hold.

(i) Assume u ∈ W1,2
p,ω(ΩT ). There exist positive constants λ0 and N, depending only

on d,K, δ, p,R0 and ω, such that

λ‖u‖Lp,ω(ΩT ) +
√
λ‖Du‖Lp,ω(ΩT ) + ‖D2u‖Lp,ω(ΩT ) + ‖ut‖Lp,ω(ΩT ) ≤ N‖Lu − λu‖Lp,ω(ΩT ),

provided that λ ≥ λ0 and

u = 0 on (−∞,T ) × ∂Ω.

(ii) For any λ > λ0 and f ∈ Lp,ω(ΩT ), there exists a unique u ∈ W1,2
p,ω(ΩT ) satisfying

Lu − λu = f .

8. Equations on Morrey spaces

The object of this section is to establish the nondivergence and divergence
equations’ solvability results on Morrey spaces.

First of all we start with the definition of Morrey spaces. Let Ω be an open set in
Rd+1. Let 1 < p <∞ and 0 < β < d + 2. We say that a locally integral function f (t, x)
belongs to the Morrey space Lp,β(Ω) if

‖ f ‖pLp,β(Ω) ≡ sup
(t,x)∈Ω,r>0

1
rλ

∫
Qr(t,x)∩Ω

| f (t, y)|p dy dt <∞,

‖ f ‖W1,2
p,β(Ω) = ‖ f ‖Lp,β(Ω) + ‖ ft‖Lp,β(Ω) + ‖D f ‖Lp,β(Ω) + ‖D2 f ‖Lp,β(Ω) <∞,
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and

H1
p,β(Ω) = (1 − 4 + ∂t)1/2W1,2

p,β(Ω), H−1
p,β(Ω) = (1 − 4 + ∂t)1/2Lp,β(Ω).

In addition, we give some definitions that are slightly different from Section 2:

Br(x) = {y ∈ Rd : |x − y| < r}, Qr(t, x) = (t − r2, t) × Br(x),
B′r(x′) = {y ∈ Rd−1 : |x′ − y′| < r}, Q′r(t, x) = (t − r2, t) × B′r(x′),

Q+
r (t, x) = Qr(t, x)

⋂
(Rd

+ × (−∞,T )), T ∈ (−∞,∞].

We next consider the nondivergence equation on Morrey spaces. Applying
Theorem 3.2, we have the following result.

Theorem 8.1. Let 1 < p <∞, 0 < β < d + 2, Ω = Rd and T ∈ (−∞,∞]. Then there is
a constant R0 = R0(d,K, β, δ, p) > 0 such that under Assumption 3.1(R0) the following
assertions hold.

(i) Assume u ∈ W1,2
p,β(ΩT ). There exist positive constants λ0 and N, depending only

on d, β,K, δ, p,R0, such that

λ‖u‖Lp,β(ΩT ) +
√
λ‖Du‖Lp,β(ΩT ) + ‖D2u‖Lp,β(ΩT ) + ‖ut‖Lp,β(ΩT ) ≤ N‖Lu − λu‖Lp,β(ΩT ),

provided that λ ≥ λ0.
(ii) For any λ > λ0 and f ∈ Lp,β(ΩT ), there exists a unique u ∈ W1,2

p,β(ΩT ) satisfying
Lu − λu = f .

As the consequence of Theorem 7.7, we have the following result.

Theorem 8.2. Let 1 < p <∞, 0 < β < d + 2, Ω = Rd
+ and T ∈ (−∞,∞]. Then there is

a constant R0 = R0(β, d,K, δ, p) > 0 such that under Assumption 3.1(R0) the following
assertions hold.

(i) Assume u ∈ W1,2
p,β(ΩT ). There exist positive constants λ0 and N, depending only

on d, β,K, δ, p,R0, such that

λ‖u‖Lp,β(ΩT ) +
√
λ‖Du‖Lp,β(ΩT ) + ‖D2u‖Lp,β(ΩT ) + ‖ut‖Lp,β(ΩT ) ≤ N‖Lu − λu‖Lp,β(ΩT ),

provided that λ ≥ λ0 and

u = 0 on (−∞,T ) × ∂Ω.

(ii) For any λ > λ0 and f ∈ Lp,β(ΩT ), there exists a unique u ∈ W1,2
p,β(ΩT ) satisfying

Lu − λu = f .

By Theorems 8.1 and 8.2, we give one of the main results of this section.

Theorem 8.3. Let 1 < p < ∞, 0 < β < d + 2, T ∈ (−∞,∞] and Ω be a C1,1 bounded
domain with C1,1 norm bounded by K. Then there is a constant R0 = R0(d,K, β, δ, p) >
0 and λ0 = λ0(d, K, β, δ, p) > 0 such that under Assumption 3.1(R0) the following
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is true. For any f ∈ Lp,β(ΩT ) and λ > λ0, there is a unique solution u ∈ W1,2
p,β(ΩT ) to{

Lu − λu = f in ΩT ,
u = 0 on (−∞,T ) × ∂Ω

and we have

λ‖u‖Lp,β(ΩT ) +
√
λ‖Du‖Lp,β(ΩT ) + ‖D2u‖Lp,β(ΩT ) + ‖ut‖Lp,β(ΩT ) ≤ N‖ f ‖Lp,β(ΩT ),

where N depends only on d, p, β, δ,K and R0.

Proof. By Theorem 8.1, we obtain the following interior estimate for any 0 < r < R <
∞,Qr ⊂ QR ⊂ ΩT and λ ≥ λ0

λ‖u‖Lp,β(Qr) +
√
λ‖Du‖Lp,β(Qr) + ‖D2u‖Lp,β(Qr) + ‖ut‖Lp,β(Qr)

≤ N(‖ f ‖Lp,β(QR) + ‖u‖Lp,β(QR)).
(8.1)

Similarly, Theorem 8.2 gives a boundary estimate: let 0 < r < R <∞, f ∈ Lp,β(Q+
R) and

R0 be the constant taken from Theorem 8.2. Then under Assumption 3.1(R0), for any
λ ≥ λ0 and u ∈ W1,2

p,β(Q
+
R), we have

λ‖u‖Lp,β(Q+
r ) +
√
λ‖Du‖Lp,β(Q+

r ) + ‖D2u‖Lp,β(Q+
r ) + ‖ut‖Lp,β(Q+

r )

≤ N(‖ f ‖Lp,β(Q+
R) + ‖u‖Lp,β(Q+

R)),
(8.2)

provided that u = 0 on Q′R and

Lu − λu = f in Q+
R.

It is well known that the ellipticity condition is preserved under a change of variables.
Take t0 ∈ (−∞,T ), a point x0 ∈ ∂Ω and a number r0 = r0(Ω), so that

Ω
⋂

Br0 (x0) = {x ∈ Br0 (x0) : x1 > φ(x′)}

in some coordinate system. We now locally flatten the boundary of ∂Ω by defining

y1 = x1 − φ(x′) := Φ(x), y j = x j := Φ j(x), j ≥ 2

under the assumptions of the theorem, Φ is a C1,1 diffeomorphism in a neighborhood
of x0. It is easily seen that the coefficients of the new operator in the y-coordinates also
satisfy Assumption 3.1 with a possibly different R0. Thus, we can choose a sufficiently
small R0 such that from (8.2), for X0 = (t0, x0) and some r1 = r1(Ω) < r0,

λ‖u‖Lp,β(ΩT∩Qr1 (X0)) +
√
λ‖Du‖Lp,β(ΩT∩Qr1 (X0))

+ ‖D2u‖Lp,β(ΩT∩Qr1 (X0)) + ‖ut‖Lp,β(ΩT∩Qr1 (X0))

≤ N(‖ f ‖Lp,β(ΩT∩Qr0 (X0)) + ‖u‖Lp,β(ΩT∩Qr0 (X0))).

(8.3)

By (8.1) and (8.3), and using a partition of the unity, one completes the proof for a
sufficiently large λ0. �

https://doi.org/10.1017/S1446788714000020 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788714000020


[28] Weighted Lp solvability for parabolic equations 423

Now we turn to the divergence case. From Theorems 4.2, 6.1 and 6.2, we have the
following results.

Theorem 8.4. Let 1 < p < ∞, 0 < β < d + 2, Ω = Rd and T ∈ (−∞,∞]. Then there
is a constant γ = γ(d, K, β, δ, p) > 0 such that under Assumption 4.1(γ) the following
assertions hold.

(i) Assume u ∈ H1
p,β(ΩT ), f , g ∈ Lp,β(ΩT ). There exists positive λ0 and N, depending

only on d,K, δ, p, γ and β, such that

‖ut‖H−1
p,β(ΩT ) +

√
λ‖Du‖Lp,β(ΩT ) + λ‖u‖Lp,β(ΩT )

≤ N
√
λ‖g‖Lp,β(ΩT ) + N‖ f ‖Lp,β(ΩT ),

(8.4)

provided that λ ≥ λ0 and

Lu − λu = div g + f in ΩT . (8.5)

(ii) For any λ > λ0 and f , g ∈ Lp,β(ΩT ), there exists a unique u ∈ H1
p,β(ΩT ) of (8.5)

satisfying (8.4).

Theorem 8.5. Let 1 < p < ∞, 0 < β < d + 2, Ω = Rd
+ and T ∈ (−∞,∞]. Then there

is a constant γ = γ(β, K, d, δ, p) > 0 such that under Assumption 4.1(γ) the following
assertions hold.

(i) Assume u ∈ H1
p,β(ΩT ), f , g ∈ Lp,β(ΩT ). There exists positive λ0 and N, depending

only on d, δ,K, p, γ, β and θ, such that

‖ut‖H−1
p,β(ΩT ) +

√
λ‖Du‖Lp,β(ΩT ) + λ‖u‖Lp,β(ΩT )

≤ N
√
λ‖g‖Lp,β(ΩT ) + N‖ f ‖Lp,β(ΩT ),

(8.6)

provided that λ ≥ λ0 and{
Lu − λu = div g + f in ΩT ,
u = 0 on (−∞,T ) × ∂Ω.

(8.7)

(ii) For any λ > λ0 and f , g ∈ Lp,β(ΩT ), there exists a unique u ∈ H1
p,β(ΩT ) of (8.7)

satisfying (8.6).

Theorem 8.6. The assertions of Theorem 8.5 hold true if (8.7) is replaced by{
Lu − λu = div g + f in ΩT ,
a1 jD ju + a1u = g1 on (−∞,T ) × ∂Ω.

Now, we assume that the boundary ∂Ω of the domain Ω is locally the graph of a
Lipschitz continuous function with small Lipschitz constant. More precisely, we make
the following assumption containing a parameter ρ ∈ (0, 1], which will be specified
later.
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Assumption 8.7 (θ). There is a constant R1 ∈ (0, 1] such that, for any x0 ∈ ∂Ω and
r ∈ (0,R1], there exists a Lipschitz function φ : Rd−1 → R such that

Ω
⋂

Br(x0) = {x ∈ Br(x0) : x1 > φ(x′)}

and

sup
x′,y′∈B′r(x′0),x′=y′

|φ(y′) − φ(x′)|
|y′ − x′|

≤ θ

in some coordinate system. Note that all C1 domain satisfy this assumption for any
θ > 0.

We shall impose a little bit more regular assumption on ai j near the boundary. For
any x ∈ Rd, denote

dist(x, ∂Ω) = inf
y∈∂Ω
|x − y|.

Assumption 8.8 (γ). There is a constant R1 ∈ (0, 1] such that, for any x0 ∈ Rd with
dist(x, ∂Ω) ≤ R1 and any r ∈ (0,R1], we have

sup
i j

r−2|Br(x0)|−2
∫ t

t−r2

∫
Br(x0)

|ai j(s, x) − (ai j)Br(x0)| dx ds ≤ γ.

Theorem 8.9. Let 1 < p <∞, 0 < β < d + 2, T ∈ (−∞,∞] and Ω be a bounded domain.
Then there exist constants R0 = R0(β, d,K, δ, p), θ = θ(β, d,K, δ, p), γ = γ(β, d,K, δ, p)
and λ0 = λ0(β, d,K, δ, p) > 0 such that under Assumptions 4.1(γ1), 8.7(θ) and 8.8(γ2)
the following is true. For any f ∈ Lp,β(ΩT ) and λ > λ0, there is a unique solution
u ∈ H1

p,β(ΩT ) to {
Lu − λu = f in ΩT ,
u = 0 on (−∞,T ) × ∂Ω,

and we have

‖ut‖H−1
p,β(ΩT ) +

√
λ‖Du‖Lp,β(ΩT ) + λ‖u‖Lp,β(ΩT ) ≤ N

√
λ‖g‖Lp,β(ΩT ) + N‖ f ‖Lp,β(ΩT ),

where N depends only on d, p, β, δ, λ0,K, γ1, γ2 and θ.

Proof. By Theorems 8.4 and 8.5, and adapting the same arguments in the proof of
Theorem 2.1 in [15] and Theorem 2.10 in [18], we can obtain the desired result. We
omit the details here. �

9. Schrödinger-type operators

In this section, we will study the boundedness for parabolic-type operators such
as ∇2

x(L − V)−1, V(L − V)−1, V1/2∇x(L − V)−1, ∂t(L − V)−1, V1/2∇x(L − V)−1,
V1/2(L− V)−1∇x, V(L− V)−1 and ∇x(L− V)−1∇x with positive potentials V satisfying
(3.1) or (3.2).
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Zhong [33], Shen [29] and Auscher and Ben [1] studied the Lp(Rd) boundedness for
elliptic Schrödinger-type operators (that is, L̃ = −4 + V) with nonnegative potentials
belonging to certain elliptic type reverse Hölder class Bq(q > 1) (cf. (9.1) without t
coordinate, see also [29]), and Okazawa [28] gave a Lp(Rd) estimate for Schrödinger-
type operators with nonnegative potentials V , which satisfy the condition |∇V | ≤
cpV3/2. In addition, Kurata and Sugano [27] studied the Lp,ω(Rd) and Lp,β(Rd)
boundedness for uniformly elliptic operators L̃ = (ai j(x)uxi (x))x j with nonnegative
potentials belonging to a certain elliptic-type reverse Hölder class Bq(q > 1), where
ai j ∈ Cα with α ∈ (0, 1] and ω belong to a certain class of Muckenhoupt weights.

On the other hand, Gao and Jiang [21] considered the Lp-boundedness of the
parabolic Schrödinger-type operator ∇2

x(∂t − 4 + V)−1 with certain potentials with
space variable x. Recently, Carbonaro et al. [5] improved Gao and Jiang’s result
above by the potential V with the variables x, t, which is essentially the generalization
to Rn+1 of the condition of Gao and Jiang. More precisely, Carbonaro et al. in [5]
proved Lp(Rd+1)-boundedness of operators V(∂t − 4 + V)−1,∇2

x(∂t − 4 + V)−1, ∂t(∂t −

4 + V)−1 if 0 ≤ V ∈ (PB)p for 1 < p <∞. We say that a nonnegative locally Lp integral
function V(x, t) on Rd+1 is said to belong to (PB)p(1 < p ≤ ∞) if there exists C > 0 such
that the parabolic-type reverse Hölder inequality( 1

|Q|

∫
Q

V p dx dt
)1/p
≤ C

( 1
|Q|

∫
Q

V dx dt
)

(9.1)

holds for every parabolic cylinder Q in Rd+1; see [5]. Clearly, V(t, x) = λe
√

1+|x|2+t2/λ2
<

(PB)q for any q > 1 if λ ≥ 1, but it satisfies (3.1) and (3.2).
Applying Theorem 5.2 and Lemma 5.3, we have the following result.

Theorem 9.1. Suppose that V satisfies (3.1), 1 < p < ∞ and ω ∈ Ap(Rd+1). There are
constants γ, λ0 and N, depending only on p, K, d, δ,C0, δ0 and ω, such that under
Assumption 5.1(γ) for V ≥ λ0,

‖∇2
x(L − V)−1 f ‖Lp,ω + ‖V(L − V)−1 f ‖Lp,ω + ‖V1/2∇x(L − V)−1 f ‖Lp,ω

+ |∂t(L − V)−1 f ‖Lp,ω ≤ N‖ f ‖Lp,ω .

Theorem 9.2. Suppose that V satisfies (3.2), 1 < p <∞ and ω ∈ Ap(Rd+1). Then there
are constants γ, λ0 and N, depending only on p,K, d, δ,C0, δ0 and ω, such that under
Assumption 5.1(γ) for V ≥ λ0,

‖∇x(L − V)−1∇x f ‖Lp,ω + ‖V1/2∇x(L − V)−1 f ‖Lp,ω

+ ‖V1/2(L − V)−1∇x f ‖Lp,ω + ‖V(L − V)−1 f ‖Lp,ω ≤ N‖ f ‖Lp,ω .

As a consequence of Theorems 9.1 and 9.2, we have following results.

Corollary 9.3. Suppose that V satisfies (3.1), 1 < p < ∞ and 0 < β < d + 2. There
are constants γ, λ0 and N, depending only on p,K, d, δ,C0, δ0 and β, such that under
Assumption 5.1(γ) for V ≥ λ0,

‖∇2
x(L − V)−1 f ‖Lp,β + ‖V(L − V)−1 f ‖Lp,β + ‖V1/2∇x(L − V)−1 f ‖Lp,β

+ ‖∂t(L − V)−1 f ‖Lp,β ≤ N‖ f ‖Lp,β .
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Corollary 9.4. Suppose that V satisfies (3.2), 1 < p < ∞ and 0 < β < d + 2. There
are constants γ, λ0 and N, depending only on p,K, d, δ,C0, δ0 and β, such that under
Assumption 5.1(γ) for V ≥ λ0,

‖∇x(L − V)−1∇x f ‖Lp,β + ‖V1/2∇x(L − V)−1 f ‖Lp,β

+ ‖V1/2(L − V)−1∇x f ‖Lp,β + ‖V(L − V)−1 f ‖Lp,β ≤ N‖ f ‖Lp,β .

Finally, we study the boundedness of Schrödinger-type operators on variable Lp

spaces. We consider a measure function p : Rd+1 → [1,∞). Let Lp(·)(Rd+1) denotes the
set of measurable functions f on Rd+1 such that for some λ > 0,∫

Rd+1

(
| f (t, x)|
λ

)p(t,x)
dx dt <∞.

This set becomes a Banach function spaces when equipped with norm

‖ f ‖Lp(·) := ‖ f ‖Lp(·)(Rd+1) = inf
{
λ > 0 :

∫
Rd+1

(
| f (t, x)|
λ

)p(t,x)
dx dt ≤ 1

}
.

These spaces are referred to as variable Lebesgue spaces or, more simply, as variable
Lp spaces, since they generalize the standard Lp spaces: if p(t, x) = p0 is constant, then
Lp(·)(Rd+1) equals Lp0 (Rd+1). They have many properties in common with the standard
Lp spaces.

These spaces, and the corresponding variable Sobolev spaces, are of interest in their
own right, and also for applications to partial differential equations and the calculus of
variations. (See [8] and references therein.)

For conciseness, define P(Rd+1) be the set of measurable functions p : Rd+1 →

[1,∞) such that
p− = inf{p(t, x) : (t, x) ∈ Rd+1} > 1, p+ = sup{p(t, x) : (t, x) ∈ Rd+1} <∞.

Let B(Rd+1) be the set of p(·) ∈ P(Rd+1) such that M is bounded on Lp(·), where M
denotes the parabolic Hardy–Littlewood maximal operator; see Section 2.

Combining Corollary 1.11 and Theorem 1.2 in [8], Theorems 9.1 and 9.2 together,
we have following results.

Corollary 9.5. Suppose that V satisfy (3.1), and p(·) ∈ B(Rd+1). There are constants
γ, λ0 and N, depending only on p(·),K, d, δ,C0, δ0, such that under Assumption 5.1(γ)
for V ≥ λ0,

‖∇2
x(L − V)−1 f ‖Lp(·) + ‖V(L − V)−1 f ‖Lp(·) + ‖V1/2∇x(L − V)−1 f ‖Lp(·)

+ ‖∂t(L − V)−1 f ‖Lp(·) ≤ N‖ f ‖Lp(·) .

Corollary 9.6. Suppose that V satisfy (3.2), and p(·) ∈ B(Rd+1). There are constants
γ, λ0 and N, depending only on p(·),K, d, δ,C0, δ0, such that under Assumption 5.1(γ)
for V ≥ λ0,

‖∇x(L − V)−1∇x f ‖Lp(·) + ‖V1/2∇x(L − V)−1 f ‖Lp(·)

+ ‖V1/2(L − V)−1∇x f ‖Lp(·) + ‖V(L − V)−1 f ‖Lp(·) ≤ N‖ f ‖Lp(·) .

We remark that, in fact, Corollary 1.11 and Theorem 1.2 in [8] are proved in the
elliptic case, but it is easy to see that Corollary 1.11 and Theorem 1.2 in [8] are also
true in the parabolic case.
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