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PHELPS SPACES AND FINITE DIMENSIONAL DECOMPOSITIONS

R. DEVILLE, G. GODEFROY, D.E.G. HARE AND V.ZIZLER

We show that if X is a separable Banach space such that X' fails the weak* convex
point-of-continuity property (C'PCP), then there is a subspace Y of X such that both
Y* and {X/Y)* fail C'PCP and both Y and X/Y have finite dimensional Schauder
decompositions.

It is still unknown whether for every separable Banach space X there exists a
subspace Y of X such that both Y and X/Y have a basis. Luski [12] gave a positive
answer to this question when X contains an isomorphic copy of Co . Johnson and
Rosenthal proved in [10] that for any separable Banach space X there exists Y C X
such that Y and X/Y have finite dimensional decompositions.

It is also an open problem whether for every separable space X with non-separable
dual we can find a subspace Y such that both Y" and (X/Y) are non-separable
(eventually with finite dimensional decompositions). The purpose of the note is to
solve this problem when X has the stronger property that X* does not have the
weak* convex point of continuity property.

All Banach spaces considered here are real, and are infinite dimensional unless
otherwise specified.

A dual Banach space X* has the Radon-Nikodym property (RNP in short) if
every w* -compact subset C of X* has a point at which the relative weak* and norm
topologies coincide [13] and [17].

X* has the CPCP if every w* -compact convex subset C of X* has a point at
which the relative weak* and norm topologies coincide [8].

X contains no isomorphic copy of l\ if and only if for every w* -compact subset
A of X* and every / in X** , f : (A,w*) —> R has a point of continuity [14] and [16].

From these characterisations it is clear that if X* has the RNP then X* has
C'PCP. Although there are several ways of proving it, it is not obvious that if X* has

Received 20th July 1987
R. Deville and D.E.G. Hare—Research completed while a visitor at the University of Alberta.
D.E.G. Hare—Research supported in part by a H.R. MacMillan Fellowship from the University of
British Columbia. V. Zizler— Research partially supported by NSERC (Canada) Grant #A7926. The
authors would like to thank Professor N. Tomczak-Jaegermann for valuable discussions concerning
the subject of this note. The first and third named authors thank the University of Alberta for its
hospitality.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 $A2.00+0.00.

263

https://doi.org/10.1017/S0004972700026812 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700026812


264 Deville, Godefroy, Hare and Zizler [2]

C*PCP, then X contains no isomorphic copy of l\ . We cannot resist the temptation

to give a simple proof of this statement using integral representation theory. An outline

of these ideas appears in [16].

Let us recall some notation. If K is a topological space and / a real function on

K, con t ( / ) is the set of points in K at which / is continuous. If if is a convex set,

then Ext (if) denotes the set of extreme points of K. If A is a subset of a topological

vector space E, cv( A) denotes the closed convex hull of A . The following lemma seems

to be of independent interest:

LEMMA 1. If K is convex and compact in a locally convex space E, and if f is
a reaf valued, affine and bounded function on K, then cont / C cU(cont / n Ext i f ) .

PROOF: Let f = osc(/) be the oscillation of / . ip is concave, upper senii-
continuous, positive and cont(/) = Z = tp~1(O). Assume that to G cont(/) and
to $L cv(cont(/) D Ext(K)). Then there exists u : K —> R which is affine and contin-
uous such that u(t0) > a and <p{v) > 0 for every v G Ext if with u(v) > a. Let
5 = K n {u > a } . We have Ext (S) C {K n {u = a}) U (J {<p > £} = X, and X

is a Ka , that is, a countable union of compact sets. Hence, using the integral repre-
sentation theorem, there exist fi, a probability measure on X, such that <o = KM))
the barycenter of /x. We have J <pd[i ^ <p(to) — 0, hence <p = 0 fj,-almost everywhere
and thus fi is supported by K n {u = a} . But this is impossible since to = r(At) a n ( l
w(<o)>«- I

A simple consequence of our lemma is the following result [5]:

COROLLARY. With the same notation as above, if cont(f) is dense in K then
cont(f) n Ext K is dense in Ext K.

We can now show that if X is a Banach space and X* has C*PCP then X
contains no isomorphic copy of £] . Indeed let A be a w* -compact subset of X* and
/ G X** . Let K be the weak* closure of the convex hull of A. By assumption K has
a point x at which the relative weak * and norm topologies coincide, so a; is a point of
continuity of / on if. By the lemma, cont / D Ext K ^ 0, and since Ext A ' C i , the
restriction of / to A has a point of continuity, and so X contains no isomorphic copy
of*,.

REMARK: 1. It is shown in [8] that there are spaces X such that X* has C'PCP
but not RN P and that there are spaces which contain no isomorphic copy of t\ and
whose duals are not CPCP.

2. Consider a space X such that X* is CPCP but not RNP. Then there exists
a w*-compact convex subset K of X* which has points where the relative weak* and
norm topologies coincide (the set of such points is even a dense Qg in K endowed with
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the weak* topology), but none of these points is extreme. Tin's means that there is

no analogue of Lemma 1 for the points where the relative weak * and norm topologies

coincide.

We now turn to the study of spaces Â  such that A* has C*PCP. In [4], we
studied Banach spaces A on which every convex, continuous, Gateaux differentiable
function is Frechet differentiable on a dense subset of X . Because of his pioneering
work in this area, we proposed calling such spaces Phelps spaces. We need here some
further notation.

First of all, if C C X, f £ X* , and a > 0, then the set S{C,f,a) = {x £

C : f(x) > s u p / ( C ) - a } is called a slice of C. If C C X* and 8 > 0, then C is

w* -8-dentable if there exists a slice of C determined by an element of X and having

diameter less then 5. C is w* -dentable if C is to*-£-dentable for every 8 > 0.

If F is a subspace of X and H is a. subspace of A* , then F1- denotes the

annihilator of F in A'* and H± denotes the anniliilator of H in X. For x £ X and

8 > 0, B(x,8) = {y £ X : \\y - x\\ ^ 8}, with the unit ball 5 (0 ,1 ) being further

abbreviated with the notation A] .

If A C X , then sp A, ~sp A, and iv* - cl sp A denote the linear, closed linear, and

w*-closed linear hulls of A, respectively. Finally the set of positive integers is denoted

by N .

In [4], we obtained the following:

THEOREM 2. Let X be a separable Banach space. The following are equivalent:

(1) A is not a Phelps space;
(2) There exists on X a norm such that the dual norm is strictly convex, but

A* is not w* -dentable;
(3) A* fails C'PCP.

We show that a refinement of Theorem IV.4 of [10] combined with Theorem 2
above yields the result mentioned in the Abstract, namely:

THEOREM 3. Let X be a separable Banach space which is not a Phelps space.
Then there exists a subspace Y of X such that neither Y nor X/Y is a Phelps space,
and both Y and X/Y have finite dimensional Schauder decompositions.

REMARK: The authors do not know if the corresponding version of Theorem 3
remains valid in the setting of non-Asplund spaces. The difficulty in this setting is
noted in the remark preceding Lemma 5.

Now let A be a separable Banach space which is not a Phelps space. Choose a
biorthogonal system {xi,x*}i£tsi so that sp{xi} is dense in A and sp{x*} is w* -dense
in A* (see, for example, [11])- Also, since X is not a Phelps space, we can choose an
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equivalent norm ||-|| on X and a 6 > 0 such that the dual norm is strictly convex, but

X* is not w*-3£-dentable [4].

The proof of Theorem 3 results from a strategic partitioning of the positive integers

into two sets, a and A, from which we set Y = ~sp{xi : > € ' } and obtain (X/Y)* =

w*-cl sp{x* : i G A } . This partitioning is accomplished by the following main lemma,

whose proof we defer until after the proof of the theorem:

LEMMA 4. With the notation described above, there exist increasing sequences

{<rn} and {An} of Unite subsets of N such that:

(a) <rn n A n = 0 and {1 ,2 , . . . , n} C <rn U Au_i for each n G N .

(b) For each n, crn satisfies:

(i) For every non-zero x* G sp{x* : i G A^- i} there exists x G sp{xi : i G
<rn U A n _i} such that \\x\\ = 1 and \x*(x)\ > (l - I ) ||x*||.

(ii) For every x G sp{x{ : i £ crra_i}, with \\x\\ = 1, tiiere exist y*, z* 6
(sp{xi : i G <rn}) of norm 1 such that y*(x) > 1 — ^ , z*(x) > 1 — —
and \\y* - z*\\ > 6.

(c) For each n, An satisfies:

(i) For every non-zero x G sp{xi : i G <rn} there exists x* G sp{x* : i G

<rn U A n } such that \\x*\\ = 1 and |a;"(a;)| > (l - £) ||a;||.
(ii) For every x G -sp{:c; : i G <7n U A n _i} of norm 1 satisfying

{y* G 5 P K : i G A n _J : ||y*|| ^ 1 and y*(x) > 1 - J -} ^ 0,

there exists y* G •sp{»* : i G A n } of norm 1 such that dist (y*, ap{x* :

i G An_i}) > 6 and y*(x) > 1 - £ .

oo oo

PROOF OF THEOREM 3: Let <r = [J <rn, A = |J A n , with {crn} aud {An} as
n = l ix=l

constructed in Lemma 4, and let

Y — lp{xi : i G <T}.

We will show that Y has the desired properties.

First, it was shown in [10, Theorem IV.4] that the conditions (b.i) and (c.i) of
Lemma 4 imply that Y and X/Y both have finite dimensional Schauder decomposi-
tions.

To establish that neither Y nor X/Y is a Phelps space, it suffices, by Theorem 2,

to show that both Y* and (X/Y)* are strictly convex, but neither Yf nor (X/Y)* is

u>*-dentable (recall that X itself has been renormed with these properties).
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The fact that {X/Y)* = F x is strictly convex is trivial. The well known fact that

Y* = X*/Yx is strictly convex is a result of the fact that Y1- is w* -closed. Indeed,

suppose J,g £ X*/Yx with | | / | | = \\g\\ = 1 and | |7 + ff|| = 2. Since Yx is w'-closed,

we can choose f,g £ X* such that / £ / , g £ j , and | | / | | = ||g|| = 1. Then

2 = ||7|| + llsll = H/ll + IMI > 11/ + ffll > ||7+ ff|| = 2,

so by the strict convexity of X* , f = g, hence / = ~g~.
We now use condition (b.ii) of Lemma 4 to show that Y* is not w'-^-dentable.

Let e > 0 and let x £ Y with ||x|| = 1. By the norm density of sp{xi : i £ a] in
Y, we may assume that x £ sp{xt : i 6 irno} for some no £ N, and that e ^ ^- .

Condition (b.ii) then implies the existence of elements y*,z* £ (•sp{a!t : i € °"n0}) °f
norm 1 satisfying y*(x) > 1 — e, 2*(x) > 1 — e, and ||y* — z*|| > S.

By the Hahn-Banach Theorem, we may assume y*, z* £ Y* . Then the above
estimates show that y*,z* £ S(Fj*,x,e) and diam S(Yf,x,e) > 6. Since e and x
were arbitrary, Yf is not w* -5-dentable.

Lastly, we show that condition (c.ii) implies that (X/Y)* = Y^- is not w*-S-
dentable. Let x £ X, \\x\\ = 1, and let

S(Y1
x,x,e) = {z* ew*-clsp{x* :t € A}:||z*|| < 1, z*(x) > 1 - e}

be a (lion-empty) w* -slice of Yx . By the density of sp{xi : i £ a U A} in X, we may
assume that x £ sp{xi : i £ crno U Ano} for some n0 € N. We can choose no so large
that e > — and

n0

, z*(x)

is non-empty. By (c.ii), diam S(Yj ,x,e) > 8.

The theorem is proved. |

It remains to prove Lemma 4. To do this, we first establish some permanence
properties of strictly convex nondentable dual unit balls. The assumption of strict
convexity is essential here. Indeed if X is a separable Banach space whose dual is
C'PC'P but not RNP, we can choose an equivalent unit ball of X such that its dual
unit ball is not w*-dentable. However, it is shown in [9] that for every e > 0, there
exists a finite dimensional subspace H of X such that Hx is e-iu*-dentable. So the
conclusion of Lemma 5 fails in this setting and therefore X* is necessarily non-strictly
convex.

Note that Lemma 5 is a variant of Lemma 9 of [1].
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LEMMA 5. Let X be a Banach space such that X* is strictly convex and Xj is

not w* - 8 -dentable, for some 8 > 0. Then for every finite dimensional subspace Y of

X, Yj-1- is not w* -8-dentable.

PROOF: By induction and contraposition, it is clearly enough to show that if Y is

a w* -closed subspace of X* , z € X , and Z = Y D ker z , then w* - 5-dentability of Z\

implies the same for Y\ . Thus, let S be a w* -slice of X$ such that 5 PI Z\ ^ 0 and

diam S C\ Zi < 8. Given e > 0, consider the set

Uc = S n Y n z - ^ - e , e ) .

U€ is a to* -open set in the relative w* -topology of Yj . We claim that e can be chosen
sufficiently small so that diam Uc < 8. The result then follows from the strict convexity
of Yj since w* slices form a base of w* neighbourhoods of an extreme point in a dual
unit ball (see, for example, [3]).

Choose and fix Xi,x-i € S n Y, so that z(xi) < 0 < z(x2) • Denote by K{ the
(positive) cone generated by xi and S PI Z\ , i = 1,2. By convexity, Ue C (Ki U K2) n
z~1(—e,e). A homothety argument then shows that, since diam S f~l Z\ < 8, we have
diam Ue < 8, for e sufficiently small. |

LEMMA 6. Let K be a separable subset of a dual space X* , x* £ X* and A C

K + B(x*,8) be a Baire space in the relative w* topology. Then A has a relative

w* -open subset of diameter ^ 28 .

PROOF: This is an easy consequence of the Baire Category Theorem. |

LEMMA 7. Let X be as in Lemma 5. Then for every finite dimensional subspace

H of X' , {X*/H)1 =(H±)* is not w* -5/2-dentable.

PROOF: AS in the proof of Lemma 5, the strict convexity of X* gives that it is
enough to show that if (H±)i were w* - 5/2-dentable, then Xf would have a relatively
w'-open subset of diameter less than 8.

Thus, let U C (-ffj_)j be a relatively to*-open subset with diam U < 8/2. Let
7T : Xf —> (i/j_)j denote the natural restriction map. Then TT is a w*-w* continuous
surjection, so ir~1(t7) is ui*-open in X*. Since TT~1(U) C H + B(y,8/2), the result
follows from Lemma 6. I

PROOF OF LEMMA 4: : We define crn and An by induction. Let <j\ = {1} and

Ai = 0, and suppose that for some n ^ 2 , <rn_i and An_] have been constructed

satisfying (a), (b), and (c) of the statement of the lemma.

First we explain the construction of crn :

Since Arl_i is finite, the unit sphere of sp{x; : i G An_i} is compact, so we can

choose a finite subset <r'n of iV\An_i satisfying {1,2,... ,n} C <T[, U An_j and also

(b.i) (with cr'n in place of crn).
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Next observe that since evidently sp{x* : i G A n _ i } C (sp{xi : i £ A n _ i}) and

since these two spaces have the same dimension, namely card ( A n _ i ) , they must in fact

be equal. Letting H = sp{x* : i G A n _ ] } , it follows that Hx = ~sp~{%i • i £ A n _ i } .

Now let u G sp{xi : i G <rn-i} > with ||ti|| = 1. Since u G H± , Lemma 7 says that

diam{x* G ( # ± ) ; : x*{u) > 1 - -} > 6

(recall Xf is not w* - 3^-dentable), so there exist j/*,z* G (H±)^ satisfying y*(w) >

1 — i , z^(u) > 1 - ^ , and ||i/* - z*\\ > S. Choose tu G sp{xi : i £ A n _ !} of norm 1

such that |j/u(<u) — ^u(<u)| > S, and denote by <rn>u the support of tu (that is, if

tu = Yl OLJXJ , with a.j ^ 0 for all j G K, then <rn,u = K). Note crnu is a finite

subset of
The compactness of the unit sphere 5] of sp{xi : i G cn-i} allows us to work

with a finite set of such elements u. Namely, for each u G sp{x{ : i G crn-\} of norm 1,
let

Uu = {x £ sp{xi : i G crn-i} • \\x\\ = 1, y*u{x) > 1 and z*(x) > 1 }.

Since for all u chosen as above the sets Uu are open in 5] , the compactness of Si

gives that there exists a finite set {MJ}? C 5 J such that (J Uu. = Si . If we denote the

corresponding objects chosen as above by {y!}* , {z!}] , {^}i , and {<7n,j}i , we have

that for each x G sp{xi : i G crn-i} °f norm 1, there is a 1 < j ; ^ k such that

h and

k

Now set <Tn = <r'nu([J <rn,j) •
i

If Sn '• (sp{xi '• i £ An_i}) —> (sp{xi : i G cn}) is the restriction map, we have
by the above estimates that ||Sn7/y — SnZj || > 6, and so condition (b.ii) is fulfilled.

We now proceed to the construction of A n .

By the compactness of the unit ball of sp{xi : i G cn}, we can choose A'u such

that condition (c.i) is satisfied (with A'n in place of An) .

We claim that for each u G sp{x; : i G crn U An_i} with ||u|| = 1 and which

satisfies

(1) {s/' € «p{x7 : i G Are_,} : ||y*|| < 1 and y » ^ 1 - i - } £ 0,

we can choose, by Lemma 5, a j / * G sp{x* : i ^ cr^} of norm 1 and satisfying y*(u) >

1 - i and dist (y*u, sp{x* : i G A n _!» > S.
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Indeed, otherwise

U=iy* esp{x*:i $ < , n } : | | j f | | = l a n d y'(u)>\-

would be non-empty (by the choice of u) and would be included in

: i e A n . i } ) +B(0,8).

But this would imply by Lemma 6 (since U D sp{x\ : i £ An_i} is separable) that U
contains a w* open subset of diameter less than or equal to 26 , and, by strict convexity,
it would contain a w* slice of diameter < 26, which contradicts Lemma 5 since Xf is
supposed to be not w* - 3^-dentable. The claim is proved.

Now let

K = <ti G sp{xi : i E <rnU An_i} : ||u|| = l,w satisfies (1) | .

For each u G K, consider AniU the support of j / * and Vu = {x 6 K : t/*(x) >
P

1 — ^ I . By compactness of iiT, choose finitely many wj , . . . , up such that (J V^ = K
k=\

and set
P

Condition (c.ii) is fulfilled and Lemma 4 is proved. |
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