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Abstract

We investigate the ray-length distributions for two different rectangular versions of
Gilbert’s tessellation (see Gilbert (1967)). In the full rectangular version, lines extend
either horizontally (east- and west-growing rays) or vertically (north- and south-growing
rays) from seed points which form a Poisson point process, each ray stopping when
another ray is met. In the half rectangular version, east- and south-growing rays do
not interact with west and north rays. For the half rectangular tessellation, we compute
analytically, via recursion, a series expansion for the ray-length distribution, whilst, for
the full rectangular version, we develop an accurate simulation technique, based in part
on the stopping-set theory for Poisson processes (see Zuyev (1999)), to accomplish the
same. We demonstrate the remarkable fact that plots of the two distributions appear to
be identical when the intensity of seeds in the half model is twice that in the full model.
In this paper we explore this coincidence, mindful of the fact that, for one model, our
results are from a simulation (with inherent sampling error). We go on to develop further
analytic theory for the half-Gilbert model using stopping-set ideas once again, with some
novel features. Using our theory, we obtain exact expressions for the first and second
moments of the ray length in the half-Gilbert model. For all practical purposes, these
results can be applied to the full-Gilbert model—as much better approximations than
those provided by Mackisack and Miles (1996).
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1. Introduction

Consider a stationary Poisson point process in the plane, of intensity λ. The particles of this
process are called seeds, aptly so because at a given time t = 0 they each initiate the growth of a
line. The directions of the lines are randomly distributed, uniformly on (0, π ], and independent
of each other and of the seed locations. Each line grows bidirectionally from its seed at the
same rate; thus, two rays grow from each seed. When a ray encounters a line that has already
grown across its path, the growth of that ray stops. Eventually, a tessellation of the plane is
formed (see [9], where Schreiber and Soja provided a formal proof of convergence).
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2 •SGSA J. BURRIDGE ET AL.

Figure 1: A realisation of the rectangular tessellation (discussed by Cowan and Ma) for the balanced
case when V-type and H-type seeds have equal intensities. A realisation of the full-Gilbert model having

rectangular cells can be found in Figure 11 of [7].

The completed structure has become known as the Gilbert tessellation after Edgar N. Gilbert.
It is notoriously difficult to analyse and even the expected length of a typical completed ray has
not been found. There is no published paper by Gilbert on the topic; notes he supplied appear
in a book (see [5]), with due acknowledgement to Gilbert. Citations have typically attributed
the notes to Gilbert (as we do).

A version of the model where the directions of growth were confined to two orthogonal
directions, vertical (V) and horizontal (H), was discussed by Mackisack and Miles [7].
A tessellation of the plane by rectangles results in their model. This structure too has not
yielded to analysis, although when seeds are equally likely to be V or H, the authors did provide
an analytic approximation (based on ideas of Gilbert) to the expected ray length, namely,

√
2/λ.

The merits of this approximation have not been evaluated in the literature to date.
The current paper arises from work done in 1997 by the second and third authors (Cowan

and Ma). They obtained some analytic results for an even simpler V&H model, whereby the
growth of eastward-growing rays is halted only by southward-growing rays (and vice versa).
Westward and northward have the same reciprocity. A realisation of their tessellation is given
in Figure 1.

For this model—which we call the half-Gilbert model because it has half of the blocking
mechanisms—Cowan and Ma found a recurrence relationship (see (1) below) which they
reported online [3], though without proof. The background to this recurrence is as follows.

Consider the isosceles right-angled triangle POQ in Figure 2(a). Here |OP| = |PQ| = �.
Suppose that n seeds lie inside the triangle, uniformly and independently distributed; n = 6 in
Figure 2(a). East or south growth of the rays is shown. Because of the blocking rules, only
some of the rays reach the boundary of the triangle POQ.

Cowan and Ma investigated the probability hn that no rays hit the boundary within the
segment OP. This can also be interpreted as the probability that L, the final length of a test ray
commencing eastward growth from O, is > �.
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(a) (b)

Figure 2: Diagrams to assist the proof of the Cowan–Ma recurrence.

Their recurrence relationship for hn was as follows. For n ≥ 1,

hn = n! q
(2n)!

n−1∑
u=0

n−1−u∑
v=0

2n−u−vhuhv(n− 1+ u− v)! (n− 1− u+ v)!
u! v! (n− 1− u− v)! , (1)

with h0 = 1. Here q is the proportion of seeds which grow horizontally. The recurrence
does not involve �, so hn does not depend on �—as is obvious from the scale invariance of the
problem posed by Figure 2(a).

This recurrence is a useful analytic step, providing precise information on E(L) and

F(�) := Pr{L ≤ �} = 1−
∑
n≥0

hn

(λ�2)n exp(−λ�2/2)

2nn! , (2)

from which we deduce (in an extended notation which includes λ) that Fλ(�) = F1(
√

λ�). Also,

E(L) =
∫ ∞

0
[1− F(�)] d�

=
∑
n≥0

hn

n!
∫ ∞

0

(
λ�2

2

)n

exp

(
−λ�2

2

)
d�

= 1√
2λ

∑
n≥0

hn�(n+ 1/2)

n! .

In Section 2 we report the proof used to derive the recurrence relationship (1) and plot the
probability density function of the random variable L. The plot reveals the surprising property,
first discovered when certain simulations of the full rectangular Gilbert model were plotted by
Burridge [2], that the probability density function of the half rectangular Gilbert model with
λ = 2 is indistinguishable from that of the full rectangular Gilbert model with λ = 1.

In Section 3 we present the simulation study, which has a very high level of accuracy, and
discuss the abovementioned surprising property, which raises somewhat the profile of the half-
Gilbert model. As well as being of interest in its own right as a tessellation model with tractable
mathematics, the model provides approximations for the full-Gilbert rectangular model. For
example, the half-Gilbert model provides a much better approximation for E(L) in the full
model when compared with the Mackisack/Miles’ approximation E(L) ≈ √2/λ when q = 1

2 .
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In Section 4 our work demonstrates further the tractability of the half-Gilbert model; most
notably, we find that the mean ray length when q = 1

2 is given by

E(L) = π√
λ(�(3/4))2

.

In both our simulation and analytical work we have employed Zuyev’s concept of stopping-
set sequences derived from Poisson point processes [10] and the distributional results for the
areas of these sets. To achieve the analytic results, we have incorporated a new concept into the
analysis, the idea of dead zones which influence the formation of the next stopping set in the
sequence. Our most complete analysis is for the balanced case, q = 1

2 , because some results
become rather complicated when q �= 1

2 . The expected ray length in the latter case is reported,
without proof, in Appendix A.

2. The Cowan–Ma recurrence relation

We now prove (1) for general q. Without loss of generality, given the remark above about
the scale invariance of this problem, we set � := |OP| = 1.

Obviously, h0 = 1 and h1 = q. When n ≥ 1, we label the seed closest to OP as A. See
Figure 2(b). If the distance from A to OP is denoted by the random variable Y , it is easily shown
that Y has probability density function gY (y) = 2n(1− y)2n−1, 0 ≤ y ≤ 1. Furthermore, the
conditional probability density function of X := |AB| given Y is

g(x | y) = 1

1− y
, 0 ≤ x ≤ 1− y.

Denote the event that no rays hit OP by En. Then

Pr{En | x, y} = Pr{seed A grows eastward and reaches B

and no ray grows across the segment EA}
= qPr{no ray grows across AB and no ray grows across EA}.

To evaluate the right-hand side, we partition the domain above EB into the three zones that are
shown in Figure 2(b). We then consider the trinomial distribution by which the remaining n−1
seeds are allocated to these zones: u to ABC, v to EAD, and the remaining n − 1 − u − v to
ACQD. This leads, for each (u, v), to a rather pleasing representation of the problem into two
problems self-similar to the original problem. Continuing, using ‖ · ‖ as the area, we obtain

Pr{En | x, y} = q

n−1∑
u=0

n−1−u∑
v=0

(n− 1)! ‖ABC‖u‖EAD‖v‖ACQD‖n−1−u−v

u! v! (n− 1− u− v)! ‖EBQ‖n−1

× Pr{no ray grows across AB and no ray grows across EA | u, v}

= q

n−1∑
u=0

n−1−u∑
v=0

(n− 1)!(x2/2)u((1− x − y)2/2)v[x(1− x − y)]n−1−u−v

u! v! (n− 1− u− v)! ((1− y)2/2)n−1

× Pr{no ray grows across AB | u}Pr{no ray grows across EA | v}

= q

n−1∑
u=0

n−1−u∑
v=0

(n− 1)! x2u(1− x − y)2v[2x(1− x − y)]n−1−u−v

u! v! (n− 1− u− v)! (1− y)2(n−1)
huhv.
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Unconditional on x and y, and with n ≥ 1,

hn = Pr{En}

=
∫ 1

0

∫ 1−y

0
Pr{E | x, y}gY (y)g(x | y) dx dy

= q

n−1∑
u=0

n−1−u∑
v=0

(n− 1)!huhv

u! v! (n− 1− u− v)!

× 2n

∫ 1

0

∫ 1−y

0
x2u(1− x − y)2v[2x(1− x − y)]n−1−u−v dx dy

= (n− 1)! q
n−1∑
u=0

n−1−u∑
v=0

2n−1−u−vhuhv

u! v! (n− 1− u− v)!

× 2n

∫ 1

0

∫ 1−y

0
xn−1+u−v(1− y − x)n−1−u+v dx dy

= n! q
n−1∑
u=0

n−1−u∑
v=0

2n−u−vhuhv

u! v! (n− 1− u− v)!
∫ 1

0
(1− y)2n−1B(n+ u− v, n− u+ v) dy

= n! q
(2n)!

n−1∑
u=0

n−1−u∑
v=0

2n−u−vhuhv(n− 1+ u− v)! (n− 1− u+ v)!
u! v! (n− 1− u− v)! . (3)

We augment this recurrence with the result h0 = 1. Note that our expression of the double
integral in (3) in terms of a single integral with beta function a line later follows from the
substitution x′ = w − y or by recognizing that (3) contains an Euler integral of the first
kind. This completes the proof of (1). We note that the sequence h0, h1, h2, . . . commences
1, 1

2 , 1
3 , 29

120 , 11
60 , . . . when q = 1

2 .
Recurrence (1) together with (2) can be used to plot f (�) := F ′(�) against � for various

values of q (see Figure 3).
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Figure 3: The solid curves are the probability density functions f for the final length of a typical eastward-
growing ray in the half-Gilbert model withλ = 2 andq = 1

4 , 1
2 , 3

4 . Each solid curve actually comprises two
curves overlaid, the second being the curve from the full-Gilbert model with λ = 1. The dashed curves
are the probability density functions from Gilbert’s heuristic ‘mean-field’ analysis, also valid for both

models.
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3. Simulation of the full rectangular Gilbert tessellation

Finding coefficients analogous to hn for the full rectangular model is a formidable task
because of the complexity of the blocking effects. Lacking self-similar zones akin to those
discovered by Cowan and Ma in their model, we have devised an efficient way of accounting
for these effects by simulation.

The analogue of the isosceles triangle used in Figure 2 is a square, rotated so that its diagonal
AC lies east–west, as illustrated in Figure 4. To study the growth of horizontal rays, we consider
an H-type test seed located at the western corner of the square, marked A in the figure, and
define

hn = Pr{ray from test seed A reaches B | n seeds in the square}.
The only seeds that can block the test ray lie in the western side of the square, but whether or
not they do so also depends on the configuration of seeds in the eastern side. Seeds outside the
square have no influence.

By analogy with (2), the ray length distribution for the rectangular Gilbert tessellation is

F (�) = 1−
∑
n≥0

hn

(2λ�2)n exp(−2λ�2)

n! ,

from which Fλ(�) = F1(
√

2λ�) is deduced.

3.1. An obvious method

The naive approach to estimating hn would be to repeatedly populate the large square in
Figure 4 with n seeds (each independently of H type with probability q) and, each time,

Figure 4: Only seeds within the large square (whose diagonal is AC) can influence the event that an
H-type ray starting at A does not reach B (due to intersection of the line segment AB by vertical rays).

The role of the smaller shaded square is described in the text.
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determine if the line AB is intersected. This can be accomplished using the following recursive
algorithm which decides if a ray, extending in compass direction u ∈ {→,↑,←,↓}, from one
seed s∗ will be blocked within a distance d . The algorithm, block, outputs a logical value:

block(s∗, d, u) =
{
true if ray is blocked,

false if ray is not blocked.

Whether or not s∗ is blocked within a distance d depends only on the configuration of seeds
within a square of diagonal 2d along which its produced ray travels. Let the compass direction
of this ray be u, and let us denote by �(s∗, d, u) the isosceles triangle which forms the half of
the square closest to s∗. Let the type (H or V) of seed s be t (s). The algorithm block(s∗, d, u)

runs as follows.

for all s ∈ �(s∗, d, u) do
if t (s) �= t (s∗) then

compute the perpendicular distance, ds , and compass direction, us , from s to s∗’s
produced ray.
if block(s, ds, us) = false then return true
end if

end if
end for
return false

For example, if s∗ is the H-type seed at A then the computer program calls block(s∗, �,→).
This invokes recursive calls to block for every V-type seed in the left isosceles triangle (until
a true value is returned by the call). In Figure 4, the shaded region with a V-type seed s at
the top shows a square that is investigated by one of the recursive calls, specifically by the call
block(s, ds,↓), where 2ds is the diagonal length of the shaded square.

In principle, we can conduct this simulation for each n up to (say) 300. For each n, we
would generate the seeds in the square (with diagonal AC) N times, where N would be very
large. An estimate of hn, 0 ≤ n ≤ 300, is thereby generated for H-type rays. Then, if q �= 1

2 ,
we would repeat the whole procedure for V-type rays. It is an unnecessarily lengthy process,
despite the potential saving if an early tested seed s returns true, implying that others do not
have to be tested.

3.2. Stopping sets

To shorten the task, we have devised a method based on stopping sets (a concept defined in
the context of Poisson point processes by Zuyev [10] and developed further in [4]). Consider
the unbounded quadrant that lies between the half-lines y = x and y = −x, with x ≥ 0,
partly shown in Figure 5(a). A stationary Poisson process of seeds with intensity λ exists in
the quadrant. A triangular set whose eastern boundary is vertical and western vertex is the
quadrant’s apex is gradually expanded, stopping briefly whenever its boundary hits a seed
(before continuing its expansion). The set stopped by the kth seed encountered is called Sk .
This process creates a nested sequence of random sets. We denote the area of S1 by E1 and
the areas of the region Sk \ Sk−1 by Ek, k > 1. Another nesting arrangement is shown in
Figure 5(b), this time with squares and a different ordering of the seeds.

Zuyev showed, among other things of a more general nature, that any expanding domain
constructing a nest of compact sets in the manner described above, through a sequence of
stops caused by seed hits, creates areas E1, E2, E3, . . . which are independent and distributed
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1

2

3

4

(a) (b) (c)

Figure 5: Nested stopping sets are shown in (a) and (b). In (c), the ‘efficient algorithm’ is at step 3 and
at least one more step is needed before we see a ray in step n crossing the dashed half-diagonal of Sn+1.

exponentially with parameter λ. The domain might have a complicated geometry because
the expansion rule is allowed to depend on the seeds that it contains (and, being closed, this
includes seeds on the domain’s boundary). In the two examples of Figure 5, the expansion rule
is straightforward and does not depend on the internal seeds.

Most importantly for the validity of Zuyev’s distributional results, neither the expansion
rule nor the stopping rule for S1 should depend on seeds outside the expanding domain. This
prohibition plays a twofold role:

(R1) it helps establish that E1 is exponentially distributed;

(R2) it also allows one to say that the point process of seeds outside the stopping set S1 is still
a stationary Poisson point process with unchanged intensity given the information within
S1 (a notion formalized by Theorem 2 of [4]).

This allows the argument to be extended sequentially to E2, E3, . . . and S2, S3, . . . .

Remark 1. Another condition is also relevant for the (R1). Zuyev’s theory in its general form
requires a ‘scale invariance’ condition (defined in Equation (10) of [10]). In our context, this
condition is trivially automatic because, for all k, Pr{our stopping set Sk contains exactly one
seed} = 1, a quantity which does not depend on λ (as required in Zuyev’s condition).

Remark 2. We also note that Zuyev’s results are not guaranteed if randomisations apart from
the Poisson process of seeds affect the growth and stopping. No such complication occurs in
this section of our paper, although we must address the issue in Section 4.

Stopping sets S1, S2, . . . constructed in the way described above have other properties. The
ith seed si is uniformly distributed on the growth frontier of Si and the seeds s1, s2, . . . , sn are
uniformly and independently distributed in the set Sn+1. Those of Figure 5(b) have a property
that no other nesting has:

(P) if si is V type then whether or not it reaches the east–west diagonal depends only on seeds
s1, s2, . . . , si−1.
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3.3. Efficient algorithm

In the context of Figure 5(b) with its nesting of squares, property (P) states that the ray
growth just within Sn+1 from the seeds s1, s2, . . . , sn provides a sample of the problem that
interests us, giving a true or false datum on whether a test ray is blocked before it traverses half
the diagonal of Sn+1. (See the illustration for n = 3 in Figure 5(c).) This datum contributes
to the estimation of hn. Importantly, as we show below, if the datum is true then we can add a
true datum for the estimation of all hj , j > n, without further computational effort.

We start with the unbounded quadrant empty of seeds, then place an H-type test seed at
the apex of the quadrant. We generate the exponentially distributed areas E1 and E2, and so
construct the squares S1 and S2 expanding from the apex. We randomly select (uniformly) a
seed point s1 on the growth frontier (eastern sides) of the inner square, S1. Because of the
properties discussed above, this is equivalent to choosing the point uniformly within the outer
square S2. If this seed grows a vertical ray that intersects the diagonal, let the distance of the
intersection point from the apex be X1. If not, set X1 = ∞.

Let Ai denote ‖Si‖, the area of Si , and let En denote the event that the line from the test
seed reaches the centre of a square populated with n uniformly distributed seeds. Obviously,
hn = Pr{En}.

If X1 < (A2/2)1/2 then the simulation ends. There is no need to generate more nested
squares in order to simulate the events En, n > 1, because we know that the half-diagonal
of every subsequent square will be crossed at X1 < (An/2)1/2. Seeds on the boundaries of
subsequent squares cannot influence this. If the first seed does not cross the diagonal, or crosses
such that X1 > (A2/2)1/2, then we draw S3 and pick a point s2 on the boundary of the second
nested square S2. We check whether s2’s ray intersects the diagonal, accounting for any possible
blocking effects from s1 by using the algorithm block. If so, we let the distance from the apex to
the closest intersection point be X2, which will be less than or equal to X1. If X2 < (A3/2)1/2

then the simulation ends. If not, we add another square S4 and seed s3, reaching the situation in
Figure 5(c), and so on. We keep repeating the process, adding another seed and using block on
that seed, until block indicates that the latest half-diagonal has been hit. We then record that the
event En fails to occur for this and all higher values of n. The entity hn for eastward-growing
rays is the fraction of times that En occurs over many simulations. If q �= 1

2 , the complete
protocol is repeated with q replaced by 1− q to give results for southward-growing rays.

To estimate the hn, N = 109 simulations were performed, requiring a running time of
approximately one hour on a modern PC (this being less than 1% of the time required for our
‘obvious method’ discussed above to achieve a similar precision). When q = 1

2 , the largest
number of nested squares created before the simulation terminated was 917, which occurred
once, and the second largest number was 727, which also occurred once. The mean number of
squares created before termination was 5.25. In the q = 1

2 case, the estimate of the expected
length of each line produced from a seed was

E(L) = 1.467 535 (0.000 029), (4)

where the bracketed number is the standard error, calculated with due regard to the positive
covariance between our estimators hn and hn+k, k > 0.

Remark 3. Our accurate estimate of the hn values allows the probability density function of
the ray length to be calculated. Because the two ray lengths coming from a particular seed are
independent, the standard convolution method leads to an estimated distribution of the total line
length arising from a typical seed. Mackisack and Miles [7] claimed that these two ray lengths
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are not independent, but we disagree. As stated earlier in this section, seeds outside the square
of Figure 4 do not influence the length of the east-growing ray. Likewise, a west-growing ray
is not influenced by seeds outside a similar square drawn to the west of the test seed. These
two squares, which intersect only at the starting position of the test seed, have no other seeds
in common and have independent Poisson seedings in their interiors.

3.4. The coincidence

We found a remarkable similarity between the probability density functions in the half
rectangular Gilbert model and the full rectangular Gilbert model when the intensity of seeds in
the former case was twice that of the latter case. Indeed, the plots were almost indistinguishable,
so Figure 3 effectively displays both f and f for various q, with λ = 2 and λ = 1, respectively.

We were mindful that the simulated results have sampling errors, albeit small. So we asked
the question: are the two distributions F and F mathematically equal, or just approximately
so? To answer this in the q = 1

2 case, we performed some rather tedious exact calculations
(details omitted) which yielded

h0 = 1, h1 = 3
4 , h2 = 7

12 , h3 = 7
15 .

We then expanded both F and F as a Taylor series about the origin:

F(�) = h0 + (h1 − h0)�
2 + 1

2 (h0 + h2 − 2h1)�
4

+ 1
6 (3h1 − 3h2 − h0 + h3)�

6 + o(�7)

= 1− 1
2�2 + 1

6�4 − 31
720�6 + o(�7),

F (�) = h0 + 2(h1 − h0)�
2 + 2(h0 − 4h1 + h2)�

4

+ 4
3 (3h1 − 3h2 − h0 + h3)�

6 + o(�7)

= 1− 1
2�2 + 1

6�4 − 32
720�6 + o(�7).

We see that these exact series differ slightly in the fourth term, so F and F are not mathematically
equal.

3.5. ‘Mean-field’ analysis when q = 1
2

Gilbert’s original ‘mean-field’ analysis, which was adapted by Mackisack and Miles [7] to
the q = 1

2 rectangular case, involved the rough approximation that ray ends (there being two
per seed) were uniformly spread across the plane. With this assumption, it was possible to
approximate at time t the expected number of ray ends lying within a small distance δx of rays
that would block the growth of these ends within the next δt .

Mackisack and Miles analyzed the q = 1
2 full model using two quantities: R(t), the expected

total length of rays per unit area and G(t), the expected number of growing ends per unit area.
Recounting their work, these quantities are related exactly by Ṙ = G, assuming unit growth rate,
and heuristically in the full rectangular case by Ġ ≈ − 1

2RG, with initial conditions R(0) = 0
and G(0) = 2λ. Solving these differential equations, they found that G(t) ≈ 2λsech2(t

√
λ/2).

If L is the final length of a test ray in their full-Gilbert model then

Pr{L > �} = G(�)

G(0)
= G(�)

2λ
≈ sech2

(
�

√
λ

2

)
. (5)

The expected L when q = 1
2 is therefore approximated by

√
2/λ = 1.414 21 at λ = 1.

This is not especially close to the value shown in (4). The solution for R was R(t) ≈
2
√

2λ tanh(t
√

λ/2), t > 0.
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We have modified the analysis in [7] to deal with the q = 1
2 half-Gilbert model. We put

Ġ ≈ − 1
4 RG since each of the four directions of growing lines can be blocked by only one other

line type. Solving the new equation pair, we find that the number of growing lines per unit area at
time t for the half model is G(t) ≈ 2λsech2(t

√
λ/4). Also, R(t) ≈ 4

√
λ tanh(t

√
λ/4), t > 0.

Furthermore, (5) becomes Pr{L > �} = G(�)/G(0) = sech2(�
√

λ/4). So, setting λ = 2 in the
half system and λ = 1 in the full system we obtain identical approximations to the probability
density function for the ray length:

f2(�) ≈
√

2 sech2 �√
2

tanh
�√
2
≈ f1(�).

The expected ray length is E(L) ≈ √2.
So we have shown that the mean-field approximations in the two models are equal, when

q = 1
2 . Indeed, our analysis for q �= 1

2 , developed in the next subsection, shows that the two
approximations are also equal when q �= 1

2 .

3.6. Mean-field analysis when q �= 1
2

When the intensities of H- and V-type seeds are not equal, the east-growing and south-
growing rays have different length distributions. So a system of four differential equations and
four initial values is needed, in the variables (for the half-Gilbert model) G↓, G→, R↓, and
R→:

Ṙ→(t) = G→(t), Ġ→(t) ≈ −R↓(t)G→(t),

Ṙ↓(t) = G↓(t), Ġ↓(t) ≈ −R→(t)G↓(t).

The initial conditions are

R→(0) = R↓(0) = 0, G→(0) = qλ, G↓(0) = (1− q)λ.

Replacing ‘≈’ with ‘=’ and eliminating G→ and G↓, the differential equations become

R̈→(t) = −R↓(t)Ṙ→(t), R̈↓(t) = −R→(t)Ṙ↓(t),

augmented by

R→(0) = R↓(0) = 0, Ṙ→(0) = qλ, Ṙ↓(0) = (1− q)λ.

We have only been able to solve this coupled system in series form and, even then, with no
general term recognized. Using the abbreviations Q := qλ and P := (1− q)λ,

R→(t) = Q

1! t −
PQ

3! t
3 + PQ(3P +Q)

5! t5 − PQ(15P 2 + 16PQ+ 3Q2)

7! t7

+ PQ(105P 3 + 241P 2Q+ 135PQ2 + 15Q3)

9! t9 − · · · , (6)

with G→(t) being Ṙ→(t) (easily calculated from (6)). A MATHEMATICA� routine to
compute as many terms as required is available from the authors. For R↓ and G↓, simply
interchange P and Q. Note that west-growing rays have results identical to east-growing
rays—likewise, north and south results are identical.
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For the full-Gilbert model, the equations are very similar, but cast in terms of the four variates
GV , GH , RV , and RH , that is,

ṘH (t) = GH (t), ĠH (t) ≈ −RV (t)GH (t),

ṘV (t) = GV (t), ĠV (t) ≈ −RH (t)GV (t),

with
RH (0) = RV (0) = 0, GH (0) = 2qλ, GV (0) = 2(1− q)λ.

This leads to a solution for RH (t) equal to the right-hand side of (6), but with Q = 2qλ and
P = 2(1 − q)λ. Thus, it becomes obvious that RH (t) with λ = 1 equals R→(t) with λ = 2,
and, likewise, for the other linked pairs of variables. Therefore, when q �= 1

2 , the two ray
length distributions (for H and V rays) for the full model having intensity λ are equal to the
corresponding ray length distributions for the half-Gilbert model with seed intensity 2λ. All of
these entities are, of course, only approximate solutions to the true Gilbert models.

Figure 3 shows that their value as approximations for the full-Gilbert model is quite good,
but not nearly as good as the analytic answers adopted from the half-Gilbert model. In Section 5
we provide more of these answers, demonstrating that the half-Gilbert model of Cowan and
Ma is encouragingly tractable.

4. Stopping sets and dead zones in the half-Gilbert model

It is possible to use the stopping-set concept to find exact expressions for the first, second,
and, in principle, higher moments of the ray length in the half-Gilbert model. The balanced
case, q = 1

2 , is easier to describe—and that is now our focus. We give some results for the
general case in Appendix A.

4.1. A different construction of stopping sets

Suppose that a stationary Poisson process of intensity λ exists in the plane, with seeds
marked either H (east growing) or V (south growing) with equal probability. In Section 3 we
have described how a nest of stopping sets is created when the growth frontier of an expanding
domain hits the seeds. For the half-Gilbert model, the seeds that are relevant for an east-growing
test ray commencing at O in Figure 2(a) is the shaded region in that figure, or, more precisely,
the unbounded octant lying between y = x and y = 0, with x ≥ 0: we call this region the
initial live zone.

As before, we start by expanding a domain, an isosceles right-angled triangle in this case (see
Figure 6), into the live zone, stopping when it hits the first seed s1 whose coordinates relative
to O are (x1, y1). This creates a domain S1 with area E1 that is exponentially distributed. If s1
is V type then it will provide the ray that blocks the test seed; thus, L = x1 and no other seeds
need be considered.

Alternatively, if s1 is H type then, instead of growing S1 (retaining its shape as an isosceles
right-angled triangle and constructing the familiar Zuyev nest of stopping sets), we introduce
a significant modification. We remove a part of the live zone: a ‘dead zone’ labelled D1 (see
Figure 6) which has now become irrelevant, as we will soon see.

As S1 ∪D1 has been constructed without drawing upon any information taken from outside
S1 ∪D1, the point process in the remaining region (the new live zone) is still a Poisson process
with unchanged intensity given the information within S1 ∪D1, as explained in Section 3.

We now grow a trapezium whose left-hand side located at x = x1 has length y = y1. The
trapezium expands until its right-hand side first hits a seed s2 (in the new live zone). The
stopping set formed is called S2. It has an exponentially distributed area E2.
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S2 S3S1

D2 D3D1

S4
s3 s4

s2

s1
u

y

r
O

Figure 6: Trapezoidal stopping sets and dead zones in the half model.

We proceed in this way, forming a sequence of stopping sets (illustrated in Figure 6) which,
unlike those in Section 3, do not form a nest. They do, however, have independent, exponentially
distributed areas and are part of a recursive structure which we can exploit. It is also important
to note that the first V-type seed will provide the ray which blocks the test ray. Without our
introduction of dead zones, a complicated algorithm rather like block would be required to
check if a V-type ray actually reaches the path of the test ray.

Remark 4. Dead zoneV types will either be blocked by an east-growing ray within the live zone
or, if they are not blocked, the test ray must have been intersected at an earlier point. Dead
zone H types can never be in a geometrical position to block live zone V types. This explains
why no seed in dead zones D1, D2, D3, . . . can influence the distance L travelled by the test
seed.

Remark 5. In Remark 2 we mentioned that extraneous randomizations, those not solely de-
pendent on the Poisson point process, might invalidate the key results from the stopping-set
theory. There is no such problem here with the stopping set Sk itself, but we note that the
existence of the Dk, k ≥ 1, depend on an extraneous random feature, namely the H or V mark
of seed sk . This does not invalidate our comment above that the point process in the current live
zone outside Sk∪Dk is unaffected by the information in Sk∪Dk . For one thing, the seed marks
are independent of each other and of the point process. Furthermore, we stop constructing
dead zones only when we have no further need to observe the process at all. So the extraneous
random feature is not operative in our analysis.

4.2. The recursive structure commencing with a generic live zone

Suppose that we begin observing the process when the live zone has a left boundary of
height y and when we are about to construct Sn. In Figure 6, we illustrate the n = 2 case.
The probability density function for the length, r , of Sn’s base, conditional on the height y of
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its left boundary, follows from the exponential distribution of Sn’s area En. It is, therefore,

fR(r | y) = λ(r + y)e−λ(r2+2ry)/2, r > 0.

Furthermore, the left boundary height, u say, of the next set Sn+1 is uniformly distributed on
the growth frontier of Sn (a fact noted in the text following Remark 2), so has the following
probability density function conditional upon y and r:

fU(u | y, r) = 1

r + y
, 0 < u < r + y.

If the stopping seed sn for set Sn is V type then its south ray will be the first to intersect the
test ray and the process ends. Otherwise, another dead zone is created and further trapezoidal
stopping sets are formed until a V type is met.

Let X be the random variable equal to the horizontal distance covered by stopping sets until
the process comes to an end. Denote the density function of X conditional on y by g(x | y).
Then

g(x | y) = λ

2
(x + y)e−λ(x2+2xy)/2

+ 1

2

∫ ∞
0

(∫ r+y

0
g(x − r | u)fU(u | y, r) du

)
fR(r | y) dr

= λ

2

[
(x + y)e−λ(x2+2xy)/2 +

∫ ∞
0

e−λ(r2+2ry)/2
(∫ r+y

0
g(x − r | u) du

)
dr

]
, (7)

where g(x | y) = 0 if x < 0. In (7) the first term accounts for the case where the first seed is V
type and the second term for the case where it is H type, and the process is effectively restarted
with a different boundary condition y (now labeled u in Figure 6) having already covered some
horizontal distance r . This second term conditions further on r and u.

We have set q = 1
2 , but the analysis leading to (7) can be carried out for general q, producing

a more complicated result. Note that the ray length probability density function is g(x | 0).
We define the moments of the conditional density by

µn(y) =
∫ ∞

0
xng(x | y) dx.

As mentioned before, we will here compute E(L) = µ1(0) and E(L2) = µ2(0), which,
from (7), satisfy

µ1(0) =
√

π

2λ

[
1+ λ

2

∫ ∞
0

erfc

(√
λ

2
u

)
µ1(u) du

]
, (8)

µ2(0) = 2

λ
+ λ

2

√
π

2λ

∫ ∞
0

erfc

(√
λ

2
u

)
µ2(u) du+

∫ ∞
0

e−λu2/2µ1(u) du. (9)

Our strategy is to find µ1(y) and µ2(y) up to an arbitrary constant, and then to determine the
constant using (8) and (9). The first part of this process is most easily achieved by making use
of the moment generating function

Mt(y) =
∫ ∞

0
etxg(x | y) dx,
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which, from (7), satisfies

Mt(y) = 1

2
+ 1

2

√
π

2λ
e(λy−t)2/2λ

{
erfc

(
λy − t√

2λ

)[
t + λ

∫ y

0
Mt(u) du

]

+ λ

∫ ∞
y

erfc

(
λu− t√

2λ

)
Mt(u) du

}
.

This integral equation can be reduced to the differential equation

d2Mt

dy2 − (λy − t)
dMt

dy
− λ

2
Mt = −λ

2
.

Expressing the left-hand side as a series in t , and collecting coefficients of t and t2, we obtain
differential equations satisfied by µ1(y) and µ2(y):

µ′′1(y)− λyµ′1(y)− λ

2
µ1(y) = 0, (10)

µ′′2(y)− λyµ′2(y)− λ

2
µ2(y) = −2µ′1(y). (11)

Clearly, we must solve for µ1(y) first.

4.3. The first conditional moment

Making the change of variable z = (λ/2)1/2y in (10) we obtain

d2µ1

dz2 − 2z
dµ1

dz
− µ1 = 0.

If the coefficient of µ1 were a positive multiple of two, this would be Hermite’s equation, solved
by Hermite polynomials. Since this is not the case, we seek a series solution [8]

µ1(y(z)) =
∞∑

n=0

anz
n

and obtain the recurrence relation

an+2 = 2n+ 1

(n+ 1)(n+ 2)
an.

This leads to the general solution

µ1(y(z)) = a0M
( 1

4 , 1
2 , z2)+ a1zM

( 3
4 , 3

2 , z2),
where M is Kummer’s function [1]:

M(a, b, z) =
∞∑

n=0

(a)nz
n

(b)nn! .

Here we have used the Pochhammer symbol, defined by

(a)n = a(a + 1)(a + 2) · · · (a + n− 1), (a)0 = 1.
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Kummer’s functions diverge as z → ∞, but we know that µ1(y(z)) → 0 in that limit. This
apparent paradox is resolved by noting that the two independent parts of the solution may be
combined to form a Kummer function of the second kind [1], defined by

U(a, b, z) = π

sin πb

[
M(a, b, z)

�(1+ a − b)�(b)
− z1−b M(1+ a − b, 2− b, z)

�(a)�(2− b)

]
,

which tends to 0 as z→∞. In terms of this function, the general solution is

µ1(y(z)) = AM
( 1

4 , 1
2 , z2)+ BU

( 1
4 , 1

2 , z2).
It must be the case that A = 0 in order to capture the right asymptotic behaviour, so, restoring
the original variable y, the conditional moment must have the form

µ1(y) = BU

(
1

4
,

1

2
,
λ

2
y2

)
. (12)

It now remains to compute B. We do this by substituting (12) into (8). Making use of the result∫ ∞
0

erfc(u)U

(
1

4
,

1

2
, u2

)
du =

√
2

π

[
�

(
1

4

)
−√π�

(
3

4

)]
,

together with �( 1
4 )�( 3

4 ) = √2π and U( 1
4 , 1

2 , 0) = √π/�( 3
4 ), we find that

B =
√

π√
λ�(3/4)

.

We have now found µ1(y), which gives us a compact analytic expression for the expected ray
length:

E(L) = µ1(0) =
√

π√
λ�(3/4)

U

(
1

4
,

1

2
, 0

)
= π√

λ(�(3/4))2
≈ 2.092 099 2√

λ
.

For comparison, using the first 200 coefficients from Cowan and Ma’s recurrence, we obtain
E(L) ≈ 2.092 098 7 when λ = 1. As we discovered earlier, when λ = 2, the half model
provides an approximation to the full model, having similar but simplified blocking effects and
identical mean field behaviour. For this choice of λ, we obtain the exact half model result
E(L) = 1.479 337 560 to seven decimal places, which differs from the accurate full model
result (1.467 535) by 0.7%. Compared with the mean-field prediction, E(L) ≈ √2, which
differs from the full model by 3.6%, this is a much closer approximation.

4.4. The second conditional moment

As for the calculation of µ1, we make the change of variable z = (λ/2)1/2y, but this time
in (11), obtaining

d2µ2

dz2 − 2z
dµ2

dz
− µ2 =

√
2πz

λ�(3/4)
U

(
5

4
,

3

2
, z2

)
,

where we have used the differential property [1] U ′(a, b, z) = −a U(a + 1, b + 1, z). We
know the homogeneous part of the general solution to (11), so it remains to find a particular
solution. We do this using variation of parameters, and begin by making the definitions

f1(z) = M
( 1

4 , 1
2 , z2), f2(z) = U

( 1
4 , 1

2 , z2).
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The function M has the differential property [1] M ′(a, b, z) = (a/b)M(a+1, b+1, z), which
allows us to compute the Wronskian

W(z) = f1(z)f
′
2(z)− f2(z)f

′
1(z)

= − 1
2Z

[
M

( 1
4 , 1

2 , z2)U( 5
4 , 3

2 , z2)+ 2U
( 1

4 , 1
2 , z2)M( 5

4 , 3
2 , z2)].

We now define

G(z, t) = f2(z)f1(t)− f1(z)f2(t)

W(t)

in terms of which the particular integral is

fp(z) = −
√

2π

λ�(3/4)

∫ ∞
z

G(z, t)tU

(
5

4
,

3

2
, t2

)
dt.

Discarding the divergent part of the solution, and restoring y, we have

µ2(y) = CU

(
1

4
,

1

2
,
λ

2
y2

)
−
√

2π

λ�(3/4)

∫ ∞
z(y)

G(z(y), t)tU

(
5

4
,

3

2
, t2

)
dt,

where C is an as yet undetermined constant. We find it by substituting our expression for µ2(y)

into (9). Making use of the numerical integral

K = −
∫ ∞

0
erfc(z)

[∫ ∞
z

G(z, t)tU

(
5

4
,

3

2
, t2

)
dt

]
dz = 0.343 146,

we find that

C = 1

�(3/4)λ

(
πK

�(3/4)
+ 2
√

2

)
.

Noting also that fp(0) = 2/λ we have the final result:

E(L2) = µ2(0)

= 1

�(3/4)λ

(
πK

�(3/4)
+ 2
√

2

)
U

(
1

4
,

1

2
, 0

)
+ fp(0)

= π3/2K + 2�(3/4)(
√

2π + �(3/4)2)

λ�(3/4)3

≈ 6.376 88

λ
.

For comparison, using the first 200 coefficients from the Cowan–Ma recurrence, we obtain
E(L) ≈ 6.376 86 when λ = 1.

5. Concluding comment

Gilbert’s tessellation is notoriously difficult to analyze, and even the rectangular version
studied by Mackisack and Miles remains entirely without analytical results. In this paper we
have shown that the simplified rectangular model of Cowan and Ma, with only half of the
blocking rules of the Mackisack and Miles model, has a number of tractable properties. As
such, it is the only Gilbert-style model, we believe, which has yielded any analytic results.
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Figure 7: Expected horizontal length in the half model as a function of q, the proportion of horizontal
rays. The seed density is λ = 1.

Appendix A. Expected length in the half model when q �= 1
2

If q is the proportion of seeds growing horizontally in the half model then (7) becomes

g(x | y) = (1− q)λ(x + y)e−λ(x2+2xy)/2

+ qλ

∫ ∞
0

e−λ(r2+2ry)/2
[∫ r+y

0
g(x − r | u) du

]
dr.

The first moment of g(x | 0) may be found by similar methods to those employed in the
q = 1

2 case. The expected length of a horizontal ray is found to be

E(LH ) =
√

π

λ

[√
2− 1

2q+1/2π�(1− q)
q�

(
1− q

2

)
G

2,3
3,3

(
1

0, 1/2, (q + 1)/2

0, 1/2, −1/2

)]−1

where G is Meijer’s G-function [6]. In Figure 7 we plot the function E(LH ) for the λ = 1 case.
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