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Abstract. We prove that the Hatcher–Quinn and Wall invariants of a self-
transverse immersion f : Nn � M2n coincide. That is, we construct an isomorphism
between their target groups, which carries one onto the other. We also employ methods
of normal bordism theory to investigate the Hatcher–Quinn invariant of an immersion
f : Nn � M2n−1.
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1. Introduction. The problem of finding necessary and sufficient conditions for
a given (smooth) immersion to be regularly homotopic to an embedding has been
considered by many authors, going back to Whitney [17]. In favourable cases, complete
obstructions can be given in terms of the self-intersection data of the immersion. This is
true of Whitney’s original trick, which shows that an immersion f : Nn � M2n with M
simply-connected is regularly homotopic to an embedding if and only if the algebraic
sum of its double points is zero.

The non-simply-connected version of Whitney’s trick was used by Wall [15] in the
course of his pioneering work on surgery theory. To each immersion f : Nn � M2n

(where N is now assumed to be simply-connected, but M not necessarily so), Wall
describes a complete obstruction to the removal of double points. This invariant (which
we denote by μW (f ) below) lives in a certain quotient of the integral group ring of
π1(M).

Meanwhile, Shapiro [13] and Haefliger [3] had set about generalising Whitney’s
trick to higher dimensional self-intersections, using deleted product constructions.
Although their approach essentially reduces the problem to homotopy theory in the
so-called meta-stable range, the invariants produced are rather difficult to compute.
Later, Hatcher and Quinn [4] revisited the geometric constructions of Haefliger in the
framework of bordism theory. They define, for each immersion f : Nn � Mm, a regular
homotopy invariant μ(f ) in a certain normal bordism group. When 2m ≥ 3(n + 1), the
vanishing of μ(f ) is a necessary and sufficient condition for f to be regularly homotopic
to an embedding.

The Hatcher–Quinn invariants have received relatively little attention in the
literature (although see the papers of Klein and Williams [6, 7], Munson [9] and
Salikhov [11]). This can perhaps be attributed to the difficulty of working directly with
normal bordism groups, as well as the somewhat sketchy nature of the proofs in [4]
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(although more complete proofs have since been given by Klein and Williams using
homotopy-theoretic methods, see [6, Appendix A]).

The current paper has two modest aims. Firstly, we identify the Hatcher–Quinn and
Wall invariants of an immersion f : Nn � M2n. Secondly, we offer some speculation
as to what the analogue of Wall’s invariant should be in the case of an immersion
f : Nn � M2n−1. We remark that in the case of an immersion f : Sn � �2n−1, a very
satisfactory answer has been given by Ekholm [2] in terms of Smale invariants. Regular
homotopy classes of immersions f : M3 � �5 have been studied by Saeki–Sz ´́ucs–
Takase [10] and by Juhász [5]. In these dimensions, the presence of knotted spheres
precludes the possibility of describing the regular homotopy class of an immersion in
terms of its self-intersection data.

We now give the plan of the paper. After a brief review of normal bordism theory in
Section 2, we review the definitions and results of Hatcher–Quinn and Wall in Sections
3 and 4, respectively. In Section 5, we prove the following precise result.

THEOREM A. Let f : Nn � M2n be a self-transverse immersion, where N is closed
and simply-connected and M is connected. Then there is an isomorphism of abelian groups

F : H0(�2; �[π ])
�−→ �0(P(f, f )�2 ; ζ�2 ),

under which F
(
μW (f )

) = μ(f ). That is, the Hatcher–Quinn and Wall invariants of f
coincide.

In Section 6, we use the Gysin sequence in normal bordism to study the Hatcher–
Quinn invariant of an immersion f : Nn � M2n−1. We aim to construct an analogue of
Wall’s invariant, residing in a group defined in terms of the first and second homotopy
groups of M, and depending only on the self-intersection data of f . The results in the
final section go some way towards realising this goal.

My sincere thanks go to Andrew Ranicki, without whose considerable
encouragement this paper would not have been written, and to the anonymous referee,
for suggestions improving exposition.

2. Normal bordism. In this section, we collect some facts about normal bordism
theory. These results may all be found in the paper of Salomonsen [12]. Alternative
treatments have been given by Dax [1] and Koschorke [8]. For simplicity, we treat only
the absolute bordism groups.

Let X be a topological space, and let ξ = ξ+ − ξ− be a virtual vector bundle
over X (we do not assume that ξ+ and ξ− are of the same dimension). By an n-
dimensional ξ -manifold over X , we mean a triple M = (Mn, f, F) consisting of a closed
n-manifold Mn, a continuous map f : M → X and an equivalence class of vector
bundle isomorphisms

F : TM ⊕ f ∗ξ− ⊕ εr �−→ f ∗ξ+ ⊕ εs, (1)

where r and s are the suitable integers (here and elsewhere ε denotes a trivial bundle
of the stated dimension). The equivalence relation is generated by stabilisation and
homotopy of bundle isomorphisms.
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The negative of M is the triple −M = (M, f,−F) where

−F = F ⊕ (−1) : TM ⊕ f ∗ξ− ⊕ εr ⊕ ε1 �−→ f ∗ξ+ ⊕ εs ⊕ ε1. (2)

If M = (M, f, F) and N = (N, g, G) are ξ -manifolds over X , their disjoint union
defines a ξ -manifold M + N = (M � N, f � g, F � G). The empty ξ -manifold will be
denoted by O = (∅,∅,∅).

We introduce a bordism relation on the set of n-dimensional ξ -manifolds M =
(M, f, F) over X , as follows. We say that M ∼ O if there exists triple (W, ϕ,�)
consisting of a compact (n + 1)-manifold W with boundary ∂W = M, a continuous
map ϕ : W → X such that ϕ|∂W = f , and a bundle isomorphism

� : TW ⊕ ϕ∗ξ− ⊕ εr �−→ ϕ∗ξ+ ⊕ εs, (3)

whose restriction to ∂W is equivalent to F (here, we use the inward pointing normal
vector to make the identification TW |∂W ∼= TM ⊕ ε1). Two ξ -manifolds M and N are
bordant, written as M ∼ N , if M − N ∼ O. Bordism is an equivalence relation, and
the set of bordism classes of n-dimensional ξ -manifolds over X is denoted by �n(X ; ξ ).
A group structure on �n(X ; ξ ) is defined by setting

[M] + [N ] = [M + N ], −[M] = [−M], 0 = [O]. (4)

The resulting abelian group is called the nth normal bordism group of X with coefficients
in ξ .

The normal bordism groups are functorial with respect to morphisms of virtual
bundles. Let h : ζ → ξ be a morphism of virtual bundles covering h : Y → X , and let
M = (M, f, F) be a ζ -manifold over Y . Then the triple h∗M = (M, h ◦ f, F) defines a
ξ -manifold over X (here, we use the canonical isomorphism ζ ∼= h∗ξ ). This induces a
homomorphism of abelian groups

h∗ : �n(Y ; ζ ) → �n(X ; ξ ), h∗[M] = [h∗M]. (5)

The normal bordism groups enjoy many properties analogous to the Eilenberg–
Steenrod axioms for singular homology. Here, we recall a subset of these which will
be needed in the sequel.

Dimension zero. There is an isomorphism

�0(X ; ξ )
�−→ H0(X ; �(ξ )), (6)

where �(ξ ) denotes the local system of integer coefficients twisted by w1(ξ ). In
particular, �0(X ; ξ ) is a direct sum over the path components of X of groups
isomorphic to � or �2, depending on whether the restriction of ξ to the corresponding
component is orientable or not.
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Homotopy invariance I. Let H be a homotopy between maps h0, h1 : Y → X . Then
the following diagram commutes:

�n(Y ; h∗
0ξ )

(h0)∗

��������������


H

��

�n(X ; ξ )

�n(Y ; h∗
1ξ )

(h1)∗

������������

(7)

where the correspondence 
H is given by the isomorphism h∗
0ξ

∼= h∗
1ξ determined by H.

Homotopy invariance II. Let h : Y → X be a map such that

h∗ : πi(Y, y0) → πi(X, h(y0)) (8)

is an isomorphism for i ≤ n and an epimorphism for i = n + 1, with respect to any
choice of base point y0 ∈ Y . Then the induced map

h∗ : �i(Y ; h∗ξ ) → �i(X ; ξ ) (9)

is an isomorphism for i ≤ n and an epimorphism for i = n + 1.

Gysin sequence. Let ν be an orthogonal vector bundle over X of rank k, with associated
sphere bundle p : Sν → X . There is a long exact sequence

· · · → �n(Sν; p∗ξ )
p∗−→ �n(X ; ξ )

e(ν)−→ �n−k(X ; ξ − ν)
w(ν)−→ �n−1(Sν; ξ ) → · · · (10)

of normal bordism groups. The homomorphism e(ν) is called the Euler mapping.

We shall need to understand the Euler mapping in more detail. Let [M, f, F ] ∈
�n(X ; ξ ). Let s : M → Ef ∗ν be a section transverse to the zero section M ⊆ Ef ∗ν. Then
the zeroes of s form an (n − k)-dimensional submanifold N ⊆ M. Let g = f |N : N →
X , then the normal bundle of N in M is isomorphic to g∗ν, and restriction of F to N
gives a bundle isomorphism

G : TN ⊕ g∗ν ⊕ g∗ξ− ⊕ εr �−→ g∗ξ+ ⊕ εs. (11)

We then have e(ν)([M, f, F ]) = [N, g, G] ∈ �n−k(X ; ξ − ν).

A particular case of interest to us is the Gysin sequence associated with a double
cover. Let π : X̃ → X be a double cover, and let λ be the associated line bundle over
X , which has Sλ = X̃ . Writing ξ̃ for π∗ξ , we obtain a Gysin sequence

· · · → �n+1(X̃ ; ξ̃ )
π∗−→ �n+1(X ; ξ )

e(λ)−→ �n(X ; ξ − λ)
w(λ)−→ �n(X̃ ; ξ̃ ) → · · · (12)

where the map w(λ) is induced by taking double covers. We refer the reader to
[1, Chapter I.8] and [12, Section 10] for more details.
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We shall apply the Gysin sequence of a double cover to obtain information about
the low-dimensional �2-equivariant normal bordism groups of a space with involution.
First, we recall some terminology and notation. Let G be a group, and let Y be a space
on which G acts. A G-vector bundle over Y is a G-equivariant map ξ → Y , which is a
vector bundle in the usual sense, and such that each τ ∈ G induces a vector bundle map
τ : ξ → ξ . A virtual G-bundle over Y is a formal difference ξ = ξ+ − ξ− of G-vector
bundles over Y .

The Borel space of Y is the quotient YG := EG ×G Y of EG × Y by the diagonal
G-action, where EG is a contractible space on which G acts freely. This construction
is functorial; in particular, a G-vector bundle ξ over Y gives rise to a vector bundle ξG

over YG of the same dimension. Similarly, given a virtual G-bundle ξ = ξ+ − ξ− over
Y , we get a virtual bundle ξG = ξ+

G − ξ−
G over YG. We then define the nth G-equivariant

normal bordism group of Y with coefficients in ξ to be the group �n(YG; ξG).
When G = �2, the quotient map π : E�2 × Y → Y�2 is a double cover, and is

homotopically equivalent to the map i : Y → Y�2 given by i(y) = [e, y] for some choice
of base point e ∈ E�2.

PROPOSITION 2.1. Let ξ be a virtual �2-bundle over a space with involution t : Y → Y.
Let �0(Y ; ξ ) have the �2-module structure given by

t∗ : �0(Y ; ξ ) → �0(Y ; ξ ). (13)

Then the map i : Y → Y�2 induces an isomorphism of abelian groups

i∗ : H0
(
�2; �0(Y ; ξ )

) = �0(Y ; ξ )
{a − t∗a | a ∈ �0(Y ; ξ )}

�−→ �0(Y�2 ; ξ�2 ). (14)

Proof. The Gysin sequence for the double cover Y � E�2 × Y → Y�2 ends

· · · −→ �0(Y�2 ; ξ�2 − λ)
w(λ)−→ �0(Y ; ξ )

i∗−→ �0(Y�2 ; ξ�2 ) −→ 0. (15)

It is not difficult to check that the image of w(λ) is the subgroup

{a − t∗a | a ∈ �0(Y ; ξ )} ⊆ �0(Y ; ξ ). �

3. Hatcher–Quinn invariants. In this section, we recall some definitions and
results of Hatcher and Quinn [4], who defined a regular homotopy invariant μ(f )
which vanishes if (and in a certain dimension range, only if) the immersion f is regularly
homotopic to an embedding. We use the conventions for normal bordism groups set
out in the previous section.

Let f : Nn � Mm be an immersion. The homotopy pullback

P(f, f ) = {(x, γ, y) ∈ N × MI × N | f (x) = γ (0) and f (y) = γ (1)} (16)
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fits into a homotopy commutative diagram

P(f, f )
p2 ��

p1

��

p

���������� N

f

��
N

f �� M

(17)

where p1(x, γ, y) = x, p2(x, γ, y) = y and p(x, γ, y) = γ (1/2). It has the following
universal property: if T is another space with maps ρ1, ρ2 : T → N such that fρ1 � fρ2,
then there is a map φ : T → P(f, f ), unique up to homotopy, such that p1φ � ρ1 and
p2φ � ρ2.

Now suppose that f : Nn � Mm is self-transverse, and N is closed. Then the space

�(f ) = {(x, y) ∈ N × N | f (x) = f (y) and x �= y} (18)

is a closed submanifold of N × N of dimension 2n − m, the so-called self-intersection
manifold of f . The projections ρ1, ρ2 : �(f ) → N ensure that there is a homotopy
commutative diagram

�(f )
φ̄

���������� ρ2

		
ρ1





P(f, f )
p2 ��

p1

��

p

���������� N

f

��
N

f �� M,

(19)

where φ̄(x, y) = (x, cf (x), y) for cf (x) the constant path at f (x).
Let ψ : �(f ) → M be the composition pφ̄, so ψ(x, y) = f (x) = f (y). The self-

intersection manifold fits into a pullback diagram

�(f )� �

i

��

ψ �� M

�M

��
N × N − �N(N)

f ×f | �� M × M,

(20)

where for a space X we denote by �X : X → X × X the diagonal map x �→ (x, x). The
embedding i : �(f ) ↪→ N × N factors as (ρ1 × ρ2)��(f ). We therefore have a sequence
of vector bundle isomorphisms

T�(f ) ⊕ ψ∗TM ∼= T�(f ) ⊕ ψ∗ν�M

∼= T�(f ) ⊕ νi

∼= i∗T(N × N − �N)
∼= ρ∗

1 TN ⊕ ρ∗
2 TN,
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where ν denotes a normal bundle. Now note that each of the maps ψ , ρ1 and ρ2 factor
through φ̄ : �(f ) → P(f, f ), and so we have constructed a bundle isomorphism

� : T�(f ) ⊕ φ̄∗p∗TM
�−→ φ̄∗(p∗

1TN ⊕ p∗
2TN). (21)

It follows that the self-intersection manifold of f represents an element

[�(f ), φ̄,�] ∈ �2n−m(P(f, f ); ζ ), ζ = p∗
1TN ⊕ p∗

2TN − p∗TM. (22)

In order that we do not count each double point twice, however, we must factor out by
the action of the cyclic group �2, which acts on all the manifolds in diagram (20) by
swapping factors. In particular, �2 acts freely on �(f ), with quotient

�(f ) = �(f )/�2 = {[x, y] | (x, y) ∈ �(f )}, (23)

the so-called double-point manifold of f . Let e : �(f ) → E�2 = S∞ classify the double
cover π : �(f ) → �(f ), and define a map

φ : �(f ) → P(f, f )�2 , φ[x, y] = [e(x, y), φ̄(x, y)] = [e(x, y), (x, cf (x), y)]. (24)

There is an involution

t : P(f, f ) → P(f, f ), t(x, γ, y) = (y, γ , x), γ (t) = γ (1 − t), (25)

which is covered by the bundle involutions

t̄ : p∗TM → p∗TM, t̄(v) = −v,

t̄ : p∗
1TN ⊕ p∗

2TN → p∗
1TN ⊕ p∗

2TN, t̄(v1, v2) = (v2, v1).

Factoring out by the �2-action, we find that � induces a stable bundle isomorphism

� : T�(f ) ⊕ φ∗(p∗TM)�2

�−→ φ∗(p∗
1TN ⊕ p∗

1TN)�2 . (26)

DEFINITION 3.1 Hatcher–Quinn [4]. Let f : Nn � Mm be a self-transverse
immersion with N closed. The Hatcher–Quinn invariant of f is the normal bordism
class

μ(f ) = [�(f ), φ,�] ∈ �2n−m
(
P(f, f )�2 ; ζ�2

)
, (27)

where ζ�2 is the virtual vector bundle (p∗
1TN ⊕ p∗

2TN)�2 − (p∗TM)�2 .

REMARK 3.1. If f is not self-transverse, then we define μ(f ) = μ(f ′), where f ′ : N �
M is a self-transverse immersion regularly homotopic to f . This is well-defined by the
following result.

THEOREM 3.3 (Hatcher–Quinn [4, Theorem 2.3]). The class μ(f ) is a regular
homotopy invariant. If 2m ≥ 3(n + 1) and μ(f ) = [N ] for some singular ζ�2 -manifold
N = (N2n−m, γ, �) in P(f, f )�2 , then f is regularly homotopic to an immersion g with
�(g) = N. In particular, μ(f ) = 0 if and only if f is regularly homotopic to an embedding.

For an alternative approach to this result, see the papers of Klein and Williams
[6, 7] on homotopical intersection theory.
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4. Wall’s invariant. In order to investigate the possibility of performing surgery
in the middle dimension on non-simply-connected manifolds, Wall [15] defined an
obstruction to a given immersion f : Sn � M2n being regularly homotopic to an
embedding. Wall’s obstruction is complete when n ≥ 3. In this section, we briefly
recall the construction, following [15] (see also [16, Chapter 5]).

Wall’s invariant μW (f ) for a self-transverse immersion f : Nn → M2n, where N is
closed and simply-connected and M is connected, may be described as follows. Choose
once and for all a base point n0 ∈ N for which f −1({f (n0)}) = {n0}, and let m0 = f (n0)
be the base point of M. Wall’s obstruction lives in a quotient of the integral group ring
�[π ] of π = π1(M, m0). In particular, if w : π → {±1} is the orientation character of
M, then we may define an involution on the group ring,

( ) : �[π ] → �[π ],
∑
σ∈π

nσ σ �→
∑
σ∈π

(−1)nw(σ )nσ σ−1. (28)

This makes �[π ] a �2-module, and μW (f ) will be an element of the group of co-
invariants

H0(�2; �[π ]) = �[π ]
{a − a | a ∈ �[π ]} . (29)

The above conditions on f : N � M ensure that the self-intersection �(f ) and the
double-point manifold �(f ) each consist of a finite number of points. Each double
point [x, y] ∈ �(f ) may be lifted to a self-intersection (x, y) ∈ �(f ) by an arbitrary
choice of ordering. For each self-intersection, we define an element σ(x,y) ∈ π and a
sign ε(x,y) ∈ {±1} as follows. Choose paths γx, γy in N from n0 to x and y, respectively,
which avoid other self-intersection points of f . Then σ(x,y) ∈ π is defined to be the
homotopy class of the loop f γx · f γy in M based at m0. Note that changing the order
of x and y reverses the loop, so σ(y,x) = σ(x,y)

−1. To define the sign, fix orientations of
N at n0 and M at m0. The tangent spaces TNx and TNy become oriented by transport
along γx and γy of the orientation of TNn0 . Set ε(x,y) to equal 1 if the orientation of
df (TNx) followed by that of df (TNy) agrees with the transport of the orientation of
TMm0 along f γx, and equal to −1 otherwise. Note that ε(y,x) = (−1)nw(σ(x,y))ε(x,y).

DEFINITION 4.1. Let f : Nn � M2n be a self-transverse immersion, with N closed
and simply-connected and M connected. The Wall invariant of f is the well-defined
class μW (f ) ∈ H0(�2; �[π ]) represented by the finite sum

μ̃W (f ) =
∑

[x,y]∈�(f )

ε(x,y)σ(x,y) ∈ �[π ]. (30)

THEOREM 4.2 Wall [15, Theorem 3.1]. The class μW (f ) is a regular homotopy
invariant. If f is regularly homotopic to an embedding, then μW (f ) = 0. Conversely, if
n ≥ 3 and μW (f ) = 0, then f is regularly homotopic to an embedding.

5. Proof of Theorem A. In this section, we prove that the Hatcher–Quinn and
Wall invariants of a self-transverse immersion f : Nn � M2n, where N is closed and
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simply-connected and M is connected, reside in isomorphic groups and correspond
under this isomorphism.

Let �[π ] be the �2-module described in Section 4, where π = π1(M, m0). Recall
that the normal bordism group �0(P(f, f ); ζ ) (see Section 3) also has the structure of
a �2-module, given by the involution

t∗ : �0(P(f, f ); ζ ) → �0(P(f, f ); ζ ), (31)

where t : P(f, f ) → P(f, f ) is the involution t(x, γ, y) = (y, γ , x).

LEMMA 5.1. There is an isomorphism of �2-modules

χ : �[π ]
�−→ �0(P(f, f ); ζ ). (32)

Proof. Consider the fibration (p1, p2) : P(f, f ) → N × N with fibre �M =
�(M, m0) the based loop space of M. Since N is simply-connected, the fibre inclusion

ι : �M → P(f, f ), ι(γ ) = (n0, γ, n0) (33)

induces an isomorphism ι∗ : π0(�M)
�−→ π0(P(f, f )), and hence induces an

isomorphism

ι∗ : �0(�M; ι∗ζ )
�−→ �0(P(f, f ); ζ ). (34)

Now ι∗ζ = c∗TN ⊕ c∗TN − ev∗TM, where c : �M → N is a constant at n0 and the
evaluation map ev: �M → M given by ev(γ ) = γ (1/2) is null-homotopic via the
homotopy γ �→ γ

(
(1 − t)1/2

)
. Hence, ι∗ζ is a trivial virtual bundle, and in particular,

is orientable over each path component �Mσ ⊆ �M. Thus, there are isomorphisms
of abelian groups

�[π ] ∼= �0(�M; ι∗ζ ) ∼= �0(P(f, f ); ζ ). (35)

We give an explicit isomorphism χ : �[π ]
�−→ �0(P(f, f ); ζ ) by choosing a generator

χ (σ ) ∈ �0(P(f, f ); ζ ) for each σ ∈ π , and show that χ is a map of �2-modules.
Let γ be a loop in M representing σ . Fix orientations for the tangent spaces TNn0

and TMm0 . These induce orientations of TMγ (1/2) by parallel transport along the first
half of γ , and of TNn0 ⊕ TNn0 by direct sum. We then set

χ (σ ) = [P0, (n0, γ, n0), �], � : TMγ (1/2)
�−→ TNn0 ⊕ TNn0 , (36)

where P0 is a point and � is orientation preserving. It is easy to see that χ (σ ) ∈
�0(P(f, f ); ζ ) does not depend on the choices of γ and �.

Let t : P(f, f ) → P(f, f ) be the involution. In order to show that χ is a �2-module
map, we must show that t∗χ (σ ) = (−1)nw(σ )χ (σ−1). Now t∗χ (σ ) = [P, (n0, γ , n0), �],
where � is the vector space isomorphism determined by the diagram

TMγ (1/2)

t̄
��

� �� TNn0 ⊕ TNn0

t̄
��

TMγ (1/2)
� �� TNn0 ⊕ TNn0 .

(37)
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Orient TMγ (1/2) by parallel transport along the first half of γ . We wish to determine the
sign of the linear map �. If TMγ (1/2) is oriented by transport along the first half of γ ,
then the linear map t̄ = (−1) : TMγ (1/2) → TMγ (1/2) has sign (−1)2nw(σ ) = w(σ ). The
map � has sign +1. The map t̄ : TNn0 ⊕ TNn0 → TNn0 ⊕ TNn0 which swaps factors
has sign (−1)n2 = (−1)n. Thus, � has sign (−1)nw(σ ), and t∗χ (σ ) = (−1)nw(σ )χ (σ−1)
as claimed. �

Combining this lemma with Proposition 2.1, we have group isomorphisms

H0(�2; �[π ])
χ∗ �� H0

(
�2; �0(P(f, f ); ζ )

) i∗ �� �0
(
P(f, f )�2 ; ζ�2 ), (38)

where i : P(f, f ) → P(f, f )�2 is given by i(x, γ, y) = [e, (x, γ, y)] for some base point
e ∈ E�2. Set F = i∗ ◦ χ∗. The proof of Theorem A is completed by the following
lemma:

LEMMA 5.2. F
(
μW (f )

) = i∗ [χ μ̃W (f )] = μ(f ).

Proof. For each double point [x, y] ∈ �(f ), we choose a lift (x, y) ∈ �(f ) and paths
γx and γy in N from n0 to x and y, respectively. Then

χ μ̃W (f ) = [�(f ), ψ,ϒ ] ∈ �0(P(f, f ); ζ ) = �0(P(f, f ); i∗ζ�2 ), (39)

where ψ [x, y] = (n0, f γx · f γy, n0) and over [x, y] ∈ �(f ), the stable isomorphism

ϒ : TMf (x)
�−→ TNn0 ⊕ TNn0 (40)

has sign ε(x,y) (see Section 4). So,

i∗ χ∗ μW (f ) = [�(f ), i ◦ ψ,ϒ ] ∈ �0(P(f, f )�2 ; ζ�2 ). (41)

We next observe that the maps i ◦ ψ, φ : �(f ) → P(f, f )�2 , given by

i ◦ ψ [x, y] = [e, (n0, f γx · f γ y, n0)], φ[x, y] = [e(x, y), (x, cf (x), y)], (42)

are homotopic. For each [x, y] ∈ �(f ), choose a path ω(x,y) : I → E�2 from e to e(x, y).
For any path γ : I → N and t ∈ I , define a re-parameterised path γ t (whose image is
γ ([t, 1])) by setting γ t(s) = γ

(
(1 − t)s + t

)
. Now the desired homotopy H : �(f ) × I →

P(f, f )�2 is defined by

H([x, y], t) =
[
ω(x,y)(t),

(
γx(t), f γ t

x · f γ t
y, γy(t)

)]
. (43)

By the first property of homotopy invariance of the bordism groups in Section 2,
to complete the proof, it suffices to check that for each double point [x, y] ∈ �(f ), the
diagram of vector space isomorphisms

TMf (x)

id

��

ϒ �� TNn0 ⊕ TNn0

γ∗
��

TMf (x)
� �� TNx ⊕ TNy

(44)
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commutes up to sign. Here, the vertical isomorphisms are those induced by the
homotopy H, and γ∗ stands for parallel transport along γx on the first summand
and γy on the second. The isomorphism � is described in Section 3, and may be seen
to have inverse given by (v1, v2) �→ dfx(v1) − dfy(v2). The diagram commutes up to sign
by the definition of ε(x,y). This completes the proof of the lemma and Theorem A. �

6. The case f : Nn � M2n−1. In this final section, we offer some speculative
remarks concerning the case of an immersion f : Nn � M2n−1, where N is closed and
simply-connected and M is connected.

In this case, if n ≥ 5, then f is regularly homotopic to an embedding if and only if
the Hatcher–Quinn invariant

μ(f ) ∈ �1
(
P(f, f )�2 ; ζ�2

)
(45)

vanishes. We propose to investigate the vanishing of μ(f ) using the Gysin sequence
of the double cover P(f, f ) � E�2 × P(f, f ) → P(f, f )�2 (see Section 2). We abbreviate
P = P(f, f ), and look at the portion of this sequence

· · · �� �1
(
P; ζ

) i∗ �� �1
(
P�2 ; ζ�2

) e �� �0
(
P�2 ; ζ�2 − λ

)
�� · · · (46)

Here, λ is the line bundle associated wity the double cover E�2 × P → P�2 , and e is
the Euler mapping.

PROPOSITION 6.1. Let f : Nn � M2n−1 be a self-transverse immersion, where N is
closed and simply-connected, M is connected and n ≥ 3. Consider the relaxed immersion

g = (f, 0) : N � M × �, g(n) = (
f (n), 0

)
. (47)

Then e
(
μ(f )

) = 0 if and only if μ(g) = 0 if and only if g is regularly homotopic to an
embedding.

Proof. Let h : N → � be a smooth function such that the immersion

g′ : N � M × �, g′(n) = (
f (n), h(n)

)
(48)

is self-transverse. Note that g′ is regularly homotopic to g, and so μ(g′) = μ(g). The
anti-symmetric mapping

ϕ : �(f ) → �, ϕ(x, y) = h(x) − h(y) (49)

defines a section ϕ : �(f ) → �(f ) ×�2 � of the line bundle λπ associated with the
double cover π : �(f ) → �(f ). The self-transversality of g′ implies that ϕ is transverse
to the zero section, and the zeroes of ϕ are exactly the double points �(g′) ⊆ �(f ) of
g′.

Recall that μ(f ) = [�(f ), φ,�]. The line bundle λπ can be identified with the
pullback φ∗λ. It follows from the description of the Euler mapping in Section 2 that

e
(
μ(f )

) = [�(g′), φ|�(g′),�|�(g′)] ∈ �0(P�2 ; ζ�2 − λ). (50)
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We now investigate μ(g′). The homotopy pullback P′ = P(g′, g′) comes with maps
p′

1, p′
2 : P′ → N, p′ : P′ → M × �, and

μ(g′) ∈ �0(P′
�2

; ζ ′
�2

), where ζ ′ = p′∗
1 TN ⊕ p′∗

2 TN − p′∗T(M × �). (51)

There is a canonical �2-equivariant homotopy equivalence � : P′ → P, which projects
a path in M × � onto a path M, such that

p1� = p′
1, p2� = p′

2 and p� = pr p′, where pr : M × � → M. (52)

Let ε−
P be the trivial line bundle over P with �2-action ((x, γ, y), v) �→ ((y, γ , x),−v),

and note that λ = (ε−
P )�2 . It follows that �∗(ζ�2 − λ) ∼= ζ ′

�2
, and � induces an

isomorphism

�∗ : �0
(
P′

�2
; ζ ′

�2

) �−→ �0
(
P�2 ; ζ�2 − λ

)
. (53)

We claim that e
(
μ(f )

) = �∗μ(g′), and hence e
(
μ(f )

)
vanishes if and only if μ(g′) = μ(g)

vanishes. By definition,

μ(g′) = [�(g′), φ′,�′] ∈ �0(P�2 ; ζ�2 − λ), (54)

where φ′(x, y) = [e(x, y), (x, cg′(x), y)] and

�′ : T�(g′) ⊕ φ′∗(p′∗T(M × �))�2

�−→ φ′∗(p′∗
1 TN ⊕ p′∗

2 TN)�2 . (55)

The claim can be proved by noting that �φ′ = φ|�(g′), and making the identifications

p′∗T(M × �) ∼= p′∗pr∗(TM ⊕ ε−
M) ∼= �∗(p∗TM ⊕ ε−

P ), (56)

p′∗
1 TN ⊕ p′∗

2 TN = �∗(p∗
1TN ⊕ p∗

2TN), (57)

and noting that both �|�(g′) and �′ arise from consideration of the embedding
i′ : �(g′) ↪→ N × N. �

The question of when the relaxed immersion g : N � M × � is regularly
homotopic to an embedding has been considered by Wall [16, p. 83] and by Sz ´́ucs
[14, p. 252], and turns out to depend on the nature of the double circles of the original
immersion f .

Recall that the construction of Wall’s invariant requires choosing an ordering of
each double point. In the case of f : Nn � M2n−1, the double points are replaced
by finitely many double circles C ⊆ M. Each double circle C is doubly covered by
its pre-image C ⊆ N. Let us call a double circle C trivial if the corresponding cover
πC : C → C is trivial, and non-trivial otherwise. An ordering of the double points now
corresponds to a section of πC over each trivial double circle. As the next proposition
shows, non-trivial double circles give a first obstruction to f being regularly homotopic
to an embedding.

PROPOSITION 6.2. Let f : Nn � M2n−1 be as in the statement of Proposition 6.1.
Then the relaxed immersion

g = (f, 0) : N � M × �, g(n) = (
f (n), 0

)
(58)
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is regularly homotopic to an embedding if and only if the number of non-trivial double
circles of f in each one-dimensional homotopy class of M is even.

Proof. As in the proof of Proposition 6.1, choose a smooth function h : N →
� such that g′ = (f, h) : N � M × � is self-transverse, and note that any such g′ is
regularly homotopic to g. Hence, g is regularly homotopic to an embedding if and
only if 0 = μW (g′) ∈ H0(�2; �[π1(M × �)]) = H0(�2; �[π ]), by Theorem 4.2. The rest
of the proof consists of an analysis of when the non-simply-connected Whitney trick
can be applied to the relaxed immersion g′.

The double points of g′ coincide with the zeroes of the section of λπ induced by the
anti-symmetric mapping ϕ : �(f ) → � (see (49)). We may assume that h was chosen
to separate the two components of C for each trivial double circle C ⊆ �(f ). It follows
that all the double points of g′ lie on non-trivial double circles, and the number of
double points on each circle is odd.

Let [x, y] be a double point of g′ lying on a non-trivial double circle C of f . Then
σ(x,y) ∈ π1(M, m0) is the homotopy class of a path that travels from m0 to C along the
image under f of a path in N, then around C, and then back to m0 along the same
path. Clearly, σ(y,x) = σ(x,y)

−1 = σ(x,y) (since C = f (C) and N is simply-connected).
We now apply Wall’s formula

λ(g′, g′) = μ̃W (g′) + μ̃W (g′) + χ (g′) ∈ �[π ], (59)

where λ(g′, g′) ∈ �[π ] is the (non-simply-connected) intersection number of g′ with a
transverse approximation of g′, and χ (g′) denotes the Euler number of νg′ (see [16,
Theorem 5.2]). However, λ(g′, g′) = 0 (since N is compact, the � coordinate in M × �

allows us to separate the two copies of g′) and χ (g′) = 0 (since νg′ ∼= νf ⊕ ε1). Therefore

0 =
∑

[x,y]∈�(g′)

(ε(x,y) + ε(y,x))σ(x,y). (60)

Let [x, y] ∈ �(g′) with ε(x,y) = ε(y,x). Then there must be another double point
[x′, y′] ∈ �(g′) with ε(x′,y′) = ε(y′,x′) = −ε(x,y) and σ(x′,y′) = σ(x,y) to cancel it. In this
case, these two double points contribute 0 to μ̃W (g′), so may be ignored. The
remaining double points have ε(x,y) = −ε(y,x) = −(−1)nw(σ(x,y))ε(x,y), and consequently
2[σ(x,y)] = 0 ∈ H0(�2; �[π ]). Hence,

μW (g′) =
⎡
⎣ ∑

[x,y]∈�(g′)

σ(x,y)

⎤
⎦ (61)

is zero if and only if the number of double points in each homotopy class is even. Since
the number of double points on each non-trivial double circle is odd, the proposition
follows. �

Now if n ≥ 3 and f : Nn � M2n−1 is an immersion such that g : N � M × �

is regularly homotopic to an embedding, then the sequence (46) tells us that the
Hatcher–Quinn invariant μ(f ) lifts non-uniquely to an element

μ(f ) ∈ �1(P(f, f ); ζ ). (62)

The vanishing of μ(f ) is a sufficient condition for f to be regularly homotopic to an
immersion. The next result identifies the group �1(P(f, f ); ζ ) when N is 2-connected.
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PROPOSITION 6.3. Let f : Nn � M2n−1, where N is 2-connected and M is connected.
There is an isomorphism of abelian groups

χ : �1(P(f, f ); ζ )
�−→

⊕
σ∈π1(M,m0)

�2 × π2(M, m0). (63)

Proof. Since N is 2-connected, the fibre inclusion ι : �M → P(f, f ) induces an
isomorphism ι∗ : πi(�M) → πi(P(f, f )) for i = 0, 1, and hence an isomorphism

ι∗ : �1(�M; ι∗ζ )
�−→ �1(P(f, f ); ζ ). (64)

As noted in the proof of Lemma 5.1, the virtual bundle ι∗ζ is trivial. Hence, we have
isomorphisms

�1(�M; ι∗ζ ) ∼= �
f r
1 (�M) ∼=

⊕
σ∈π

�
f r
1 (�σ M), (65)

where π = π1(M, m0) and �
f r
∗ denotes the unreduced homology theory given by framed

bordism (see [8] or [1]). The second isomorphism is given by the disjoint union axiom.
The Atiyah–Hirzebruch spectral sequence for framed bordism gives a short exact
sequence

0 → �2 = �
f r
1 (∗) → �

f r
1 (�σ M) → H1(�σ M; �) → 0, (66)

which is split by the constant map �σ M → ∗. Since each path component �σ M is
homotopy equivalent to the component �0M of the constant loop, we therefore have
isomorphisms

�1(P(f, f ); ζ ) ∼=
⊕
σ∈π

�2 × H1(�0M; �) ∼=
⊕
σ∈π

�2 × π2(M, m0) (67)

(by the Hurewicz homomorphism and the fact that π1(�0M, m0) ∼= π2(M, m0) is
abelian). �

Hence, when n ≥ 5 and N is 2-connected, the image of a lift μ(f ) in a certain
quotient of

⊕
σ∈π �2 × π2(M, m0) defines a complete obstruction to f : Nn � M2n−1

being regularly homotopic to an embedding.
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