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Introduction.

Let u be a homomorphic mapping of some subgroup 4 of the group & onto a subgroup B
(not necessarily distinct from A4) of G; then we call p a partial endomorphism of G. If A
coincides with @, that is, if the homomorphism is defined on the whole of G, we speak of a
total endomorphism ; this is what is usually called an endomorphism of G. A partial (or
total) endomorphism u* extends or continues a partial endomorphism p if the domain of u*
contains the domain of y, that is, u* is defined for (at least) all those elements for which p is
defined, and moreover p* coincides with p where p is defined.

In this paper, I deal with the simultaneous extension of several partial endomorphisms
of G to total endomorphisms of a supergroup of G. The starting point is a paper by B. H.
Neumann and Hanna Neumann (2) in which necessary and sufficient conditions are given
for this extension to be possible for a single partial endomorphism. Here these conditions
are generalized to apply first to two partial endomorphisms, and then, using transfinite induc-
tion, to any well-ordered set of partial endomorphisms. The conditions here obtained are
again necessary and sufficient. A number of special consequences are derived, in analogy to
results of the paper by B. H. Neumann and Hanna Neumann already referred to ; a typical
corollary is the following :

Any number of partial endomorphisms of an abelian group can be extended to total
endomorphisms of an abelian supergroup.

The principal tool throughout is the free product with one amalgamated subgroup (in
the case of abelian groups the direct product with an amalgamated subgroup is used instead).

I wish to express my indebtedness to Dr. B. H. Neumann for his generous advice and
help during the work.

§ 1. Necessary Conditions.

Let 4 and v be two partial endomorphisms of @ mapping 4 onto B and C onto D respec-
tively ; 4, B, C and D being subgroups of G. Now to derive the necessary conditions for u
and v to be totally extendable, we assume that the extension is already established, that is to
say, take the group G*= @ and its total endomorphisms p* and »* which extend p and »
respectively as given.

Denote by £2* the semigroup generated by p* and v*. Then any w* ¢ 2* is an endo-
morphism of G*, denote the kernel of w* by K (w*).

If we denote the kernel of u by K, then the canonic mapping of G* onto G*/K (u*) must
induce the canonic mapping of 4 onto A/K ; but the former induces the canonic mapping of
A onto 4/(K(u*) ~ 4), thus

K=K(u*)~nA=kernel of p. ....ocorvviiiiiniiiiniiiniinnne, (1.1)

In a similar manner one proves that
K(@*)~C=kernel of v. ...ccoovvvrvinienieniinniinnennen. (1.2)
Let 2 be the free semigroup with two generators, which we also denote ambiguously,
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but conveniently, by u and v. Then to every element in £, that is to every word w =w(y, v},
there corresponds an element w* =w (u*, v*) of £2*. Define
Ly =K(w*) Gy cevnriiniiiiiiiiiniiiiincierinienen, (1.3)
for every word w € 2 and the corresponding element w* e 2%,
Then equations (1.1) and (1.2) will become
L, ~ A is the kernel of g,
L, ~C is the kernel of v.

For any w* ¢ 2* we have

K(p*o*)=K(w*)p* 1, (e (1.4)

for if x € K (u*w*), then zu*w* =1 or

zp* e K (w*),

Te K(w*),u,*'l,

thus K(p*o*) =K (o*)pu*?;
if, on the other hand, z € K (w*) u*-1, then

rprwr =1,

€ K (p*w¥),
thus K () L =K (p*o¥)

this proves relation (1.4).
Similarly we have

K (v*w*) = K (w*)v*1,

for any w* e 2%,

Now define
P(u*w®) =K (¥a) A
: =L,~4, by(l3),
and Q*w*) =K (*w*)~C

. —va [a) C
for any w* e 2%,
Taking w* arbitrary and applying p to P(u*w*), we get
Pp*o*)u=P(p*w*)p*, since p* extends u,
= (K (w*a*) o d)*
CK(M w*) ~ A'U-
K(w*) ~
since (1.4) implies K (p*w*)u* =K(w*) Thus
P(p*o*)pe=L,~ B.
If, on the other hand, b ¢ L, ~ B, then there exists an element @ ¢ A such that ap =b ; thus
ap*=ape L, =K (w*),
ae K(w*)p* 1=K (u*w*) by (1.4),
ae K (p*¥o*) n A =P(p*w*),
and be P(u*w*)p,
that is to say, . L,~B=P(p*u*)p;
hence we have finally,
Pp*o*)p= (L~ A)p=L,~B.
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Similarly we can prove that
Qv*w*)v=(L,, ~C)v=L,~ D,

for any w* e 2%,

Moreover, we note that for any w*, w¥e 2%, a ¢ K(w*) implies aw* =1 and aw*w¥=1;
that is to say a e K (w*w¥) ; thus

K (o) =K (oba}),
which in turn gives, because of (1.3) :
L,=Lluw,

Finally, the kernels K (w*) for all w* ¢ 2* are normal subgroups of G* ; hence L, for all
w € 2 are normal subgroups of G. If we pick out those conditions which involve the given
groups G, 4, B, C, D and the given partial endomorphisms p and v only, we obtain the follow-
ing :
Theorem 1.

If we denote the semigroup freely generated by p and v by £, then the following condi-

tions are necessary for p and v to be simultaneously extendable to total endomorphisms of
one and the same group : For each w e £2 there exists a normal subgroup L, of G such that :

L,=Luo, forany w, wye2; coovivniiiiniiniiniiiiniannnn (1.5)
L, ~ 4 is the kernel of u, .......ooooviiiiiii (1.6)
L,~Cisthekernel of v; ..c.cooovviiiiviiiiiiiininnn, (1.7)
(Lo n A)pp =Ly n B, cevvrieiiiiiiiiiiiniiice e (1.8)

(Lo nC)v =Ly nD; ciriiiiiiiiiiiiiiiiiiniiiinnceinnnen (1.9)

for any w e 2.

§ 2. Sufficiency of the Conditions.

Before proving that the conditions (1.5)-(1.9) of Theorem 1 are also sufficient, we mention
here three lemmas proved by B. H. Neumann and Hanna Neumann (2, § 4) :
Lemma 1 :

Let Q= 8= U and R=oT=V be groups and § a homomorphic mapping of @ onto E,

mapping 8 but no bigger group onto 7', and U but no bigger group onto V (that is to say,
U contains the kernel of §). Then

UR~S=U .
is equivalent to VE.T=V,
where U¢ stands for the normal closure of U in Q.

Lemma 2 :
Let P be the free product of two groups @, B with an amalgamated subgroup S. Let
U be a normal subgroup of @. Then the two equations
Ur~@=U,
(U~AS)RA~A8=UAS8
are equivalent and imply

UPA.R=(UAS)R.

Lemma 3 : .
Let P, Q, R, 8, U be as in Lemma 2, and let ¥ be a normal subgroup of R. Assume
Ur~Q=T,
VP.R=V,
U~S=V 8.
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Putting W=U . V, then
‘ WP~Q=U, WP~ R=V.
Now assume that the necessary conditions (1.5)-(1.9) are satisfied. Using the notation
of §1, let
. . H=G|L,;
then H contains a subgroup
B'=4. Lu/LngA/A ~ Lu;B:
since 4 ~ L, is the kernel of p. An isomorphism between B’ and B is defined by letting
alL, e B’ correspond to ap ¢ B where ae 4.

We then define G, as the free product of G and H, amalgamating B and B’ according to
this isomorphism : ‘
G,={G*H; B=A_L,/L}.

Denote by p, the canonic mapping of G onto H. This maps 4 onto B according to p,
that is to say, it continues p to G.

We shall prove that in @, we can define a set of normal subgroups M such that the

relations (1.5)-(1.9) of Theorem 1 will be satisfied with &, ; G, H, C, D; u,,v; M, taking
the place of G; 4, B, C, D; p,v; L, Before defining M, we prove the following :

Lemma 4 :
The following relations hold for any we £:
LG A G =Ly eveeeeieiiimieiiiiiaeeerenseeescinnsnnnens 2.1)
T D - o N P PR, (2.2)
LyprnB=L,~B..cccorniiiiiiiiinniiiiiiininnccnn, (2.3)
Proof.

Since L, is normal in @, then
(Lpw ~ (Ao LYY =L,

Ly~ (A L) (Ao L)Ly~ (A L), i, (2.4)
but since Ly~AoL)=(L,,~(4.L)¢
and Ly~4oL)=s4A L,
then LrAoLl)s(Lyy~(ACL)fA(ACL). viiannnnnnnnnn. (2.5)
(2.4) and (2.5) together give ’
(Lyon (A L) A(ACL)=L,,n(ACL) oo, (2.6)

Now p, is a homomorphism of G onto H which maps 4 . L, onto B. Since 4 o L, con-
tains the kernel L, of u, then it is the biggest group mapped by g, onto B. We also have
(Lo~ (A o L)) py =Ly ~ A) iy
=(Ly,~A)p, since u, extends u,
=L,~B, by(18);

and since I, =L, by (1.5), implies

i
L,eL,, ~(4.L),
then w; maps L, ~ (4 v L,), but no bigger group, onto L, ~B. Since
God L,2L,,~(4 L),
and Ho> B > L,~B,

then applying Lemma 1 with ¢, A L, L,,~(A.L,); H, B, L,~B; u, taking the place
of @, 8,U; R, T,V ; 0respectively, we find that (2.6) is equivalent to :
(LwnB)Hr\B=LwAB. .......................................... (2.7)
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Applying Lemma 2, with G, G,H,B,L,, in the place of P, @, R, 8, U respectively, then
(2.7) is equivalent to
L% .G=L,
proving (2.1).
Consider the left-hand side of (2.3) which is

Luwp.} =Ly~ Ay (L n AY g v (2.8)
If be L, pq ~ Apy, then there exist elements [, ¢ L, and a € A such that
b= lu.w.u‘l =apy ;

thus I.)a e L, that is to say,
a=1,1, forsomel, cL,.
But L,=L,,, by (1.5); thusael,, and
be (L~ A)py.

Hence Lyopy nApy (L n A) g coviniiiiiiiin e (2.9)
(2.8) together with (2.9) gives

(Do ~ A) g = Ly ~ Be eovevereeeeeeeeeeeeseseere e, (2.10)
But (Lyw ~n A py=(Lyy ~ A)

=L,~B, by (1.8).
Thus (2.10) gives
Lyp,~B=L,~B,
proving (2.3)
Finally, since L, is normal in G, then

(Lo ~B)f=L,;
thus (L,~BY¥~BeL,~B;
but also, obviously, (L,~B)Y¥¢~B=L,~B,
and thus (L,~Bf¢¥~B=L,~B.

Using (2.3) to replace L, ~ B by L,,u, ~ B, we get
(Lot ~ B) . B =Ly ~ B.
To this we apply Lemma 2 with Gy, H, G, B, L, u, taking the place of P, @, R, §, U
respectively. We then get
(Luw/"‘l)a ~H =Luwp'1’
proving (2.2). This completes the proof of Lemma 4.
Now define
Mw = (anf"l v Lw)G"
for every we .
Replacing P, Q, R, S, U, V, WP of Lemma 3 by &,, G, H, B, L,, L, 11y, M, vespectively,
the relations (2.1)-(2.3) of Lemma 4 translate into the conditions of Lemma 3. Thus we can
apply Lemma 3 to get the following two equations

It is easy now to see that replacing
G, A, B, C,D, pn,v, L, by
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the relations (1.5)-(1.9) will be preserved. As a matter of fact we have :
(i) for any w, w' € 2,
M, = (Luwi"l ~ Lw)G, = (Lywwpty © Lo ) = Moy,
since L, = Luwe and L, = Lo, by (1.5).

(ii) M, ~G=L, by(2.1l),
=kernel of p,,

(iii) M,~C=L,~C, by (2.11)
=kernel of v,

(iv) (M ~ Dty = Lypn, by (211),
=M,~H, by (2.12),

(v) (M, ~C)v=_(L,, ~C)v, by (2.11),

=L,~D, by (1.9),
=M, ~D, by 2.1l).
For the convenience of the notation, we write in G4 :v;=v. Thus we can repeat the

process, embedding @, in G, in which v, is extended to v, and u, =pu, is unchanged. We carry
on inductively, extending p and v alternatively. Finally we form

Gx= UG,
n=1

Define the mappings u* and v* of G* as follows : For any g € G*, that is to say, g ¢ G, for

some suitable », we.put
gu* =gp, and gv*=gv,.

Thus p* and »* become total endomorphisms of G* which extend p and v respectively,
and we get the following
Theorem 2. -

The necessary conditions (1.5)~(1.9) of Theorem 1 are also sufficient for u and v to be
totally extendable to two endomorphisms of one and the same group.

By a classical procedure of transfinite induction we can generalize the results of Theorems
1 and 2, thus obtaining
Theorem 3.

Let pu(«), where « ranges over a well-ordered set 2’ whose ordinal is o, be a homomorphism
of a subgroup A4, of a group & onto a second subgroup B, of G&. Then the necessary and
sufficient conditions for the existence of a group G*= @ with endomorphisms p* («) extending
w{a) is that if we denote by £ the semigroup freely generated by the u(a), then for every
w € §2 there exists a normal subgroup L, of ¢ such that

LyesLy,, forall w, wyef, .ooviviviniiiiiniiinnniinn (2.13)
Ly~ Ay i the kernel of (@), wveovvererrenreennsrenn. (2.14)
(Lp(a)w nAa),U-(d) =Lwr\Ba, ................................. (2.15)

for every a e 2 and w e 2.
The proof is omitted.

§ 3. Some Special Cases :
In this paragraph some special cases of Theorem 2 are derived ; they are stated for two
partial endomorphisms, but they may as well be formulated for any well-ordered set of them.
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Corollary 1.
For p and v to be totally extendable to one and the same group, it is sufficient that there

exists two non-decreasing sequences
Liel, =...
and M,eM,=...
of normal subgroups in G such that
L, ~ A is the kernel of p,
M, ~C is the kernel of »,
(Lngy~nA)p=Ly~ B,
(Mn+1 ~ C)V=Mn ~ D:
Ln ~D = {1},
M,~B = {1}7
forn=1,2,....
For we can then satisfy conditions (1.5)-(1.9) by putting

Ly,=Ln=L, forw=vw,
Lp,=Lu=M, for w=pw,
foralln=1,2,....
Corollary 2.
Sufficient for p and » to be totally extendable to one and the same group that if K is the

kernel of x and K’ is the kernel of v, then

KO AnA=K, .ccoovvviiiiiiiiiiiiiiniiiiniiiiiii e 3.1)
K'CAC=K'y coiiiriinniiiiiiiii ettt s, (3.2)
K¢ AB=K¢ D=K'®~B=KG~D={l}. ceocevtrreirircrirruuririrun. (3.3)
For then we satisfy the conditions of the theorem by putting
L,,=L,=K¢,
L,=L,=K'¢

for all w e 2.

We note that in the corresponding corollary by B. H. Neumann and Hanna Neumann
(2, Corollary 6.3), it is not sufficient (as there stated) to have K¢ .~ B={1}; for we must
have relation (3.1) together with it.

Before formulating the third corollary, we give a name for a certain kind of subgroup
(1, Theorem V) and (2, § 6) :
Definition.

The subgroup S of the group R is called an *“ E-subgroup ” of R if every normal subgroup
of § is the intersection with S of a normal subgroup of B ; or equivalently if, for every normal
subgroup 7 of §,

TR ~ S = T.
Corollary 3 :
Sufficient for . and v to be totally extendable to one and the same group that 4 and C
are E-subgroups of G.
Proof :
We define K, =1u%, and inductively
K,.=Kp™

that is, the greatest subgroup of 4 mapped into K¢ by p.
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Similarly we define K,=1v"1, and inductively

K, = ng_l,
for all wef2. Then we put
L,=K&.
To confirm that conditions (1.5)-(1.9) are satisfied, we first prove that for any w, v’ ¢ 2,
O Y - RN (3.4)

The proof is by induction on the length n of the word w.
If n=1, that is, if w =p say, then
x ¢ K, implies zp =1 ¢ KC, for any o'.
Thus z e K%u1=K,,, and we get
K,=K,..
Similarly, ' K,=K,,.
Suppose that (3.4) is true for w, then
ze K, implies zp ¢ K8=KE .

Thus z e K¢ p 1=K, and we get

K;uu EKI“W’"
Similarly K,, =K.
This completes the proof of (3.4), from which it follows that
L, =L,

and this confirms (1.5).
Since 4 and C are E-subgroups of ¢ and K, is normal in 4, K, is normal in C, then
K8 A=K,
K ? ~ C = K )
and thus L, ~ 4 is the kernel of p,
L, ~ C is the kernel of v,
which confirm (1.6) and (1.7).
To confirm (1.8) and we note that
L

[

wnA-:ngr\A,

and since K, is normal in 4, and 4 is an E-subgroup of G, then

LyynA=K, o oiiiiiiiiiiiiiiiiiiiiiiiiiinniciiiien e (3.5)
By the definition of K, we have
K, p=K;
Since K, u =B, then
Kb =KSAB. it (3.6)
If, on the other hand, b e K¢ ~ B, then there exists an element a € 4 such that
b=apeKC,
thus aeKSu1=K,,
b=apeK, pu,
and thus K ABK e eeeeeeiiaereeeeieieeeeceeesies e (3.7).
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{3.6) and (3.7) together give
K,p=KE~B.
Or using (3.5), (Lyw~n A)yp=L, ~B.
Similarly one shows that
(Lyy ~ Cyv=L, ~D.
This completes the proof of Corollary 3.
Again, we note that in the corresponding lemma by B. H. Neumann and Hanna Neumann
(2, Corollary 6.4), one has to define K =K, =1u~' and K, inductively as
Ko =Kjp ™,
and not (as in the paper referred to) as K, ,, =K, u™'.
A very special case of Corollary 3 is the following :
Corollary 4.
p and v are always extendable to one and the same group if G is abelian. For in an
abelian group every subgroup is an E-group.
But as a matter of fact, Theorem 4 says more than that, namely :
Theorem 4.
p and v are always extendable to one and the same abelian group if @ is abelian.
Proof.
Let K and K’ be the kernels of u and v respectively, and let x; be the canonic mapping
of G onto G/K=H. Form the direct product G, of ¢ and H amalgamating B with 4/K
according to pu, :
G,={GxH; B=A4/K}.
G, is abelian and contains the subgroup G' mapped by p, onto H and the subgroup ¢ mapped
by v, =v onto D.
Repeat the process, embedding @, in G,, extending », to v, and leaving p; =pu, a8 it is.
We continue indefinitely, then form

Gx=Ua,
n=1

which is evidently abelian and if we define u* and v* as follows : for any g € G*, that is to say,
g € G, for some suitable » we put gu* =gu, and gv* =gv,,, then G* satisfies the required condi-
tions. '
We conclude by stating without proof the following
Theorem 5 :
Necessary and sufficient conditions for the partial endomorphism p which maps 4 onto
B and the partial endomorphism v which maps C onto D ; A, B, C, D being subgroups of a
given group G, to be totally extendable to one and the same total endomorphism of a group
G*== G is that if we define 7 to map any word w(a, c) € {4, C} onto w(ap, cv) € {B, D} where
aed,ceC, then
w i8 a one-valued mapping of {4, C} onto {B, D} which is & homomorphism, ...... (3.8
there exists a non-decreasing sequence
Lielhe...
of normal subgroups in @ such that
L, ~{4, C} is the kernel of =,
Ly AA, O =Ly (B, D}, [ *oorirmmsmsessssessseees
foralln=1,2,....

https://doi.org/10.1017/52040618500032986 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500032986

46 C. G. CHEHATA

REFERENCES

(1) Higman, G., Neumann, B. H., and Neumann, H., * Embedding theorems for groups,”
J. London Math. Soc., 24 (1949), 247-254.

(2) Neumann, B. H., and Neumann, Hanna, Extending partial endomorphisms of groups,”
Proc. London Math. Soc., (8) 2, (1952), 337-348.
DEPARTMENT OF MATHEMATICS
Tae UNIVERSITY
MANCHESTER 13
and
FACULTY OF SCIENCE
THE UNIVERSITY
ALEXANDRIA

https://doi.org/10.1017/52040618500032986 Published online by Cambridge University Press


https://doi.org/10.1017/S2040618500032986

