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Introduction.
Let f i b e a homomorphic mapping of some subgroup A of the group G onto a subgroup B

(not necessarily distinct from A) of G ; then we call p a partial endomorphism of G. If A
coincides with G, that is, if the homomorphism is defined on the whole of G, we speak of a
total endomorphism ; this is what is usually called an endomorphism of G. A partial (or
total) endomorphism /u.* extends or continues a partial endomorphism p if the domain of /x*
contains the domain of /*, that is, ft* is defined for (at least) all those elements for which JU. is
defined, and moreover /x* coincides with fx where fx is defined.

In this paper, I deal with the simultaneous extension of several partial endomorphisms
of G to total endomorphisms of a supergroup of G. The starting point is a paper by B. H.
Neumann and Hanna Neumann (2) in which necessary and sufficient conditions are given
for this extension to be possible for a single partial endomorphism. Here these conditions
are generalized to apply first to two partial endomorphisms, and then, using transfinite induc-
tion, to any well-ordered set of partial endomorphisms. The conditions here obtained are
again necessary and sufficient. A number of special consequences are derived, in analogy to
results of the paper by B. H. Neumann and Hanna Neumann already referred to ; a typical
corollary is the following :

Any number of partial endomorphisms of an abelian group can be extended to total
endomorphisms of an abelian supergroup.

The principal tool throughout is the free product with one amalgamated subgroup (in
the case of abelian groups the direct product with an amalgamated subgroup is used instead).

I wish to express my indebtedness to Dr. B. H. Neumann for his generous advice and
help during the work.
§ 1. Necessary Conditions.

Let fx and v be two partial endomorphisms of G mapping A onto B and C onto D respec-
tively ; A, B, C and D being subgroups of G. Now to derive the necessary conditions for fx
and v to be totally extendable, we assume that the extension is already established, that is to
say, take the group (?*=(? and its total endomorphisms n* and v* which extend fx and v
respectively as given.

Denote by Q* the semigroup generated by /x* and v*. Then any <u* e Q* is an endo-
morphism of G*, denote the kernel of co* by K(w*).

If we denote the kernel of JX by K, then the canonic mapping of G* onto G*IK(fx*) must
induce the canonic mapping of A onto AjK ; but the former induces the canonic mapping of
A onto A/(K(n*)rsA), thus

K = K(fj*)r,A= kernel of p (1.1)

In a similar manner one proves that

K(v*)rsC=kerne\ofv (1.2)

Let Q be the free semigroup with two generators, which we also denote ambiguously,
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but conveniently, by /n and v. Then to every element in Q, that is to every word OJ=W(JX, V),

there corresponds an element w* =cu(/x*, v*) of Q*. Define

£ „ = * ( « • ) ~G, (1.3)

for every word weQ and the corresponding element to*eQ*.
Then equations (1.1) and (1.2) will become

L^rsA is the kernel of /u.,
Lpr>C is the kernel of v.

For any o>* e Q* we have
Z(/x*o>*)=Z(o)*)M*-1; (1.4)

for if x eK([i*w*), then X[x*io* = 1 or

thus

if, on the other hand, aje^fto*)^*"1, then
Xfi*CD* = 1 ,

thus

this proves relation (1.4).
Similarly we have

for any co* e Q*.
Now define

= LmnA, by (1.3),
and Q(v*oJ*)=Z(v*aJ*).C

for any a>* e Q*.
Taking a>* arbitrary and applying fi to P(fx,*w*)t we get

j*)/i*, since fi* extends /x,

since (1.4) implies K(fi*oj*)fi* =K(cu*). Thus

If, on the other hand, beLarsB, then there exists an element a e A such that ap = b ; thus

*) by (1.4),
a e Z(/x*cu*) ~ A =P(fi*oj*),

and b e P (fi*a>*) n,
that is to say, . £M „ £ =P(/x*co*);u ;

hence we have finally,
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Similarly we can prove that

Q(v*a>*)v = (Lm~C)v = Lu>~D,
for any co* e Q*.

Moreover, we note that for any cu*, u>f e Q*, a eK(co*) implies aco* = 1 and aa>*<u* = 1;
that is to say aeK(w*w*); thus

K(co*)=K(a>*to*),

which in turn gives, because of (1.3):

Finally, the kernels K(u>*) for all w* e Q* are normal subgroups of G* ; hence Lm for all
weQ are normal subgroups of G. If we pick out those conditions which involve the given
groups G,A,B,G,D and the given partial endomorphisms fx. and v only, we obtain the follow-
ing
Theorem 1.

If we denote the semigroup freely generated by p and v by Q, then the following condi-
tions are necessary for fi and v to be simultaneously extendable to total endomorphisms of
one and the same group : For each we Q there exists a normal subgroup Lu of G such tha t :

Lw^LaKai for any w, w1 e Q ; (1.5)
L^r^A is the kernel of/i, (1.6)
LV^C is the kernel of v ; (1.7)
(LI1OJ~A)IJ. = LW~B, (1.8)
( I w > O ) v = ^ n B ; (1.9)

for any co e Q.

§ 2. Sufficiency of the Conditions.
Before proving that the conditions (1.5)—(1.9) of Theorem 1 are also sufficient, we mention

here three lemmas proved by B. H. Neumann and Hanna Neumann (2, § 4) :
Lemma 1 :

Let Q = / S = i 7 and - R = T = V be groups and 6 a homomorphic mapping of Q onto R,
mapping S but no bigger group onto T, and U but no bigger group onto V (that is to say,
U contains the kernel of 0). Then

is equivalent to VR^T = V,

where ZJQ stands for the normal closure of U in Q.

Lemma 2 :
Let P be the free product of two groups Q, B with an amalgamated subgroup S. Let

U be a normal subgroup of Q. Then the two equations

()
are equivalent and imply

UP~B = (U~S)R.
Lemma 3 :

Let P, Q, B, S, U be as in Lemma 2, and let V be a normal subgroup of 22. Assume
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Putting W = U u V, then
Wp

nQ = U, WP~R = V.
Now assume that the necessary conditions (1.5)-(1.9) are satisfied. Using the notation

of §1, let

then H contains a subgroup
B' =A „ LJL^A/A „ L^B,

since A ̂  L^ is the kernel of ju,. An isomorphism between B' and B is defined by letting
aLp eB' correspond to afi eB where aeA.

We then define Gx as the free product of G and H, amalgamating B and B' according to
this isomorphism :

G1={G*H; B-AvLJLJ.
Denote by ̂  the canonic mapping of G onto H. This maps A onto B according to fi,

that is to say, it continues fj. to G.
We shall prove that in G1 we can define a set of normal subgroups Ma such that the

relations (1.5)-(1.9) of Theorem 1 will be satisfied with G^ ; G, H, C, D ; /n.1; v ; M^ taking
the place of G ; A, B, G, D ; /u, v ; £„. Before defining Jfm, we prove the following :
Lemma 4 :

The following relations hold for any co e Q :

L$nG = La, (2.1)
(L^f^H-L^, (2.2)

Limtx.1~B=Llur,B (2.3)
Proof.

Since L^ is normal in G, then

{L^r, (A w i J ) G = 1 ^ ,
(I^^l.iD^li^JcI^^i^J, (2.4)

but since Z^ ~ (4 ̂ LJ = (L^ n ( i u i /
and £•„„ ^ (^ ^ £„) = 4 ^ £„,
then ^.(^"^Eft.Mi^JMi^J (2.5)
(2.4) and (2.5) together give

(L^iAvLjp^AvL^L^iAvLJ (2.6)
Now fj.t is a homomorphism of G onto H which maps A ^ L^ onto B. Since A^L^ con-

tains the kernel L^ of ̂  then it is the biggest group mapped by ̂  onto B. We also have

since ̂  extends /x,
= £ ^ 5 , by (1.8);

and since L^^L^, by (1.5), implies

Ai s AIM ^ (-4 w i/M),
then /ix maps ^ m ̂  (A ^ i^,), but no bigger group, onto Lw ̂  B. Since

G=A ^Lli=LIMJr,(A^Ll,),
and H = £ = i m ^ 5 ,

then applying Lemma 1 with 6?, A ̂  L^, L^ n ( i u ZJ ; H, B, La^B \ ^ taking the place
of Q, /S, U ; R, T, V ; 0 respectively, we find that (2.6) is equivalent to :

(2.7)
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Applying Lemma 2, with Gu GflfiJ^^ in the place of P, Q, R, S, U respectively, then
(2.7) is equivalent to

La
l ^ G=LW,

proving (2.1).
Consider the left-hand side of (2.3) which is

L
llO

ii=L
Vxu^i -^Mi=( i^"^)Mi (2-8)

If beL^fi} rs Aplt then there exist elements lmeL^ and aeA such that

thus V^a e L^, that is to say,
a = led* f o r s o m e h e Lv

But L^^L^, by (1.5); thus aeL^ and

be (L^rsA)^.
Hence L^^r.A^^L^rsA)^. : (2.9)
(2.8) together with (2.9) gives

{LiWJr,A)lx1^Lmjlx1r,B (2.10)
But (LtuonA)fi1='(Llia,r,A)fjL

= Lm~B, by (1.8).
Thus (2.10) gives

proving (2.3)
Finally, since Lw is normal in G, then

(l.«H)8si.;
thus (Lw rs B)° n B=LW r, B ;

but also, obviously, {La^B)arsB=La^B,

and thus {Lwr,B)a rsB=LOir,B.

Using (2.3) to replace La ^ B by LIMUIJ.1 „ B, we get

(L^ nB)°nB= L^x ~ B.
To this we apply Lemma 2 with Gx, H, G, B, L^^ taking the place of P, Q, R, S, U
respectively. We then get

proving (2.2). This completes the proof of Lemma 4.
Now define

for every weQ.
Replacing P, Q, R, S, U, V, Wp of Lemma 3 by Gv G, H, B, Lm, Lmpx, Ma respectively,

the relations (2.1)—(2.3) of Lemma 4 translate into the conditions of Lemma 3. Thus we can
apply Lemma 3 to get the following two equations

ManG=Lm (2.11)

M^H-L^ (2.12)

I t is easy now to see that replacing

G, A, B, C, D, ix, v, La by

Olt G, H, C, D, / i l t v, Mm
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the relations (1.5)-(1.9) will be preserved. As a matter of fact we have :

(i) for any w, w' e Q,

since L^^L^- and Z^cZw, by (1.5).
(ii) M^G-L^, by (2.11),

= kernel of /x^
(iii) M,nC~L¥nC, by (2.11)

= kernel of v,
(iv) WimnG)p1=LliavL1, by (2.11),

~Mmr.H, by (2.12),
(v) (MVi0~C)v = (LVU)~C)v, by (2.11),

~LanD, by (1.9),
-ManD, by (2.11).

For the convenience of the notation, we write in Gx :v1=v. Thus we can repeat the
process, embedding G1 in <?2 in which vx is extended to v2 and /xx = /*2 is unchanged. We carry
on inductively, extending fx and v alternatively. Finally we form

G*=UGn.
n=l

Define the mappings /A* and v* of G* as follows : For any g e G*, that is to say, g e Gn for
some suitable n, we put

gn*=gixn and gv*=gvn.

Thus î* and v* become total endomorphisms of G* which extend [i and v respectively,
and we get the following

Theorem 2.
The necessary conditions (1.5)-(1.9) of Theorem 1 are also sufficient for p and v to be

totally extendable to two endomorphisms of one and the same group.
By a classical procedure of transfinite induction we can generalize the results of Theorems

1 and 2, thus obtaining

Theorem 3.
Let n(a), where a ranges over a well-ordered set E whose ordinal is a, be a homomorphism

of a subgroup Aa of a group G onto a second subgroup Ba of G. Then the necessary and
sufficient conditions for the existence of a group (?*= G with endomorphisms ju* (a) extending
n(a) is that if we denote by Q the semigroup freely generated by the ix{a), then for every
co e Q there exists a normal subgroup La of G such that

L01^LlMll for all w, a^ e Q, (2.13)

L^rsAa is the kernel of p(a), (2.14)

( L ^ ^ > ( a ) = 4 , ^ , (2.15)

for every a e E and a> e Q.
The proof is omitted.

§ 3. Some Special Cases :
In this paragraph some special cases of Theorem 2 are derived ; they are stated for two

partial endomorphisms, but they may as well be formulated for any well-ordered set of them.
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Corollary 1.
For fj, and v to be totally extendable to one and the same group, it is sufficient that there

exists two non-decreasing sequences
Li=L2 = ...

and M1=M2^...

of normal subgroups in 0 such that

L^rsA is the kernel of it,
M1 rs C is the kernel of v,

Mn~B ={1},
forrc = l , 2 , ... .

For we can then satisfy conditions (1.5)—(1.9) by putting

L^ria, = L^n = Ln for CO = VW ,

Lvna, = Lvn = M„ for ai = fj,a>',

for all n = l, 2, ... .
Corollary 2.

Sufficient for /x and v to be totally extendable to one and the same group that if K is the
kernel of /u. and K' is the kernel of v, then

K°r,A=K, (3.1)
K'ar,C = K', (3.2)
K° r,B = K° r,D=Kl(l rsB=K'Q ~D = {1} (3.3)

For then we satisfy the conditions of the theorem by putting

for all co e Q.
We note that in the corresponding corollary by B. H. Neumann and Hanna Neumann

(2, Corollary 6.3), it is not sufficient (as there stated) to have Ka^JB = {l} ; for we must
have relation (3.1) together with it.

Before formulating the third corollary, we give a name for a certain kind of subgroup
(1, Theorem V) and (2, § 6) :
Definition.

The subgroup S of the group R is called an " 2?-subgroup " of R if every normal subgroup
of S is the intersection with S of a normal subgroup of R ; or equivalently if, for every normal
subgroup T of S,

TRrsS = T.
Corollary 3 :

Sufficient for /x. and v to be totally extendable to one and the same group that A and C
are JS-subgroups of G.
Proof:

We define K^ = 1/x"1, and inductively

that is, the greatest subgroup of A mapped into K% by /x.
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Similarly we define Kv = \v-1, and inductively

for all weQ. Then we put
IJ

0J=K-0J.

To confirm that conditions (1.5)-(1.9) are satisfied, we first prove that for any w, w e Q,

KaSK^ (3.4)
The proof is by induction on the length n of the word w.
If n = 1, that is, if w = ft say, then

x e K^ implies Xfi = 1 e iff. for any w .
Thus x e K^.fj.-1 =KIMJ; and we get

Similarly, ' Kv = i w -
Suppose that (3.4) is true for to, then

x e K^, implies xy. e K^ = K^..

Thus x e K^.fi-1 = Klum. and we get

Similarly Km = KVOM-.
This completes the proof of (3.4), from which it follows that

and this confirms (1.5).
Since A and C are ^/-subgroups of 0 and K^ is normal in A, Kv is normal in C, then

K^A=KI1,
Kv r\ C — Ky,

and thus L^ n A is the kernel of p,
LvrsC is the kernel of v,

which confirm (1.6) and (1.7).
To confirm (1.8) and we note that

^fUO n A — K)W1 r\ A,

and since Km is normal in A, and A is an JS-subgroup of G, then

Llwl rsA = AMU (3.5)
By the definition of K^ we have

Since K^n^B, then
KIMlic=K^r,B (3.6)

If, on the other hand, 6 e K^ ^ 5, then there exists an element a e A such that

thus a

and thus K^B^K^n (3.7).
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(3.6) and (3.7) together give

Or using (3.5), (Lti0J^A)fx = La^B.

Similarly one shows that

This completes the proof of Corollary 3.
Again, we note that in the corresponding lemma by B. H. Neumann and Hanna Neumann

(2, Corollary 6.4), one has to define K = K1 = 1/x'1 and Kn+1 inductively as

and not (as in the paper referred to) as Kn+1 = Knjx~1.
A very special case of Corollary 3 is the following :

Corollary 4.
/it and v are always extendable to one and the same group if G is abelian. For in an

abelian group every subgroup is an U-group.
But as a matter of fact, Theorem 4 says more than that, namely :

Theorem 4.

JX and v are always extendable to one and the same abelian group if G is abelian.

Proof.

Let K and K' be the kernels of ft and v respectively, and let fxx be the canonic mapping
of G onto GjK = H. Form the direct product G1 of G and H amalgamating B with AjK
according to ̂  :

£?! = {(? xff; B=AjK).
G1 is abelian and contains the subgroup G mapped by ^ onto H and the subgroup C mapped
by v1 = v onto D.

Repeat the process, embedding G1 in G2, extending vt to v2 and leaving fi1=fi2 as it is.
We continue indefinitely, then form

00

n=l
which is evidently abelian and if we define fx* and v* as follows : for any g e G*, that is to say,
g eGn for some suitable n we put gfx* =gfxn and gv* =gvn, then G* satisfies the required condi-
tions.

We conclude by stating without proof the following
Theorem 5 .•

Necessary and sufficient conditions for the partial endomorphism fx which maps A onto
B and the partial endomorphism v which maps C onto D ; A, B, C, D being subgroups of a
given group G, to be totally extendable to one and the same total endomorphism of a group
(?*=(? is that if we define -n to map any word w (a, c) e{A, C} onto w (afx, cv) e {B, D) where
aeA,ceC, then

7r is a one-valued mapping of {A, C} onto {B, D) which is a homomorphism, (3.8)

there exists a non-decreasing sequence

of normal subgroups in G such that

Lx,-, {A, C} is the kernel of -n, \
(L r^(A C\)TT = L rsiB D] I

for all w=l,2, ... .
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