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IMPROVING ON BOLD PLAY WHEN
THE GAMBLER IS RESTRICTED
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Abstract

Suppose that a gambler starts with a fortune in (0, 1) and wishes to attain a fortune of 1 by
making a sequence of bets. Assume that whenever the gambler stakes an amount s, the
gambler’s fortune increases by s with probability w and decreases by s with probability
1 − w, where w < 1

2 . Dubins and Savage showed that the optimal strategy, which they
called ‘bold play’, is always to bet min{f, 1 − f }, where f is the gambler’s current
fortune. Here we consider the problem in which the gambler may stake no more than �

at one time. We show that the bold strategy of always betting min{�, f, 1 − f } is not
optimal if � is irrational, extending a result of Heath, Pruitt, and Sudderth.
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1. Introduction and background

Suppose that a gambler starts with a fortune in (0, 1) and wishes to attain a fortune of 1
by making a sequence of bets. If the gambler’s current fortune is f then the gambler may
stake any amount less than or equal to f . The gambler wins the amount of the stake with
probability w and loses the stake with probability 1 − w. Following [8], we refer to this game
as red-and-black. Clearly the gambler should never stake more than 1 − f , which is enough to
ensure that the gambler will reach the goal if the bet is won. The strategy in which the gambler
always stakes min{f, 1 − f } is called bold play.

In [8], Dubins and Savage developed a general theory for gambling problems. For red-
and-black, they showed that if 0 < w < 1

2 , which means that the game is subfair, then bold
play is the optimal strategy, in the sense that it maximizes the probability that the gambler will
eventually reach the goal. Their proof is also given in [2, Chapter 7] and [10, Chapter 24].
See [1] for some computations comparing the probability that a gambler will reach the goal
using bold play to the probability that a gambler will reach the goal using other strategies.

This result has been extended in several ways. Dubins and Savage [8] also considered
primitive casinos, in which the gambler loses the stake s with probability 1 − w and wins
s(1 − r)/r with probability w, where 0 < r < 1. Note that the game in which r = 1

2 is
red-and-black. They showed that bold play is optimal when the game is subfair, which in this
case means w < r . Chen [5] considered red-and-black with inflation, in which the goal is not to
reach 1 but to reach (1+α)n after n bets, for some n. He showed that bold play is optimal when
w ≤ 1

2 . A different extension is to incorporate a discount factor, so that the gambler receives
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a utility of βn, where 0 < β ≤ 1, from reaching 1 on the nth bet. Klugman [12] showed that
bold play is optimal for subfair red-and-black with a discount factor. However, for some subfair
primitive casinos, there exist discount factors for which bold play is not optimal (see [4] and
[6]). See also [17] for a discussion of the optimality of bold play in some two-person games.

Several authors have considered discrete versions of this problem in which the gambler’s
initial fortune and the amount of each bet must be integers and the gambler’s goal is to attain a
fortune of n. An extensive discussion of discrete gambling problems such as this can be found
in [13]. Bold play remains optimal when w < 1

2 . Ross [15] showed that the timid strategy of
staking exactly 1 each time is optimal in the superfair case when w > 1

2 . See also [16] for an
analysis of the superfair case when the minimum bet is 2. Dubins [7] showed, however, that if
the win probability is less than 1

2 but is allowed to depend on the gambler’s fortune, then bold
play need not be optimal.

Another direction of work concerns gambling problems in which there is a limit to how
much the gambler may bet. The simplest problem of this type involves red-and-black in which
the gambler may bet no more than � ∈ (0, 1

2 ) at one time. In this case, we define bold play as
the strategy in which the gambler, whose current fortune is f , always stakes min{�, f, 1 − f }.
Wilkins [18] showed that if w < 1

2 and � = 1/n, for some positive integer n ≥ 3, then bold
play maximizes the chance that the gambler will reach the goal. Chen [3] showed that bold play
remains optimal when there is a discount factor in addition to a limit of 1/n on the stake. In
[14], the optimality of bold play in continuous-time gambling problems was established under
rather general restrictions on the gambler.

However, Heath et al. [11] obtained an important negative result for discrete-time red-and-
black. They showed that if the gambler can stake at most �, and if 1/(n + 1) < � < 1/n

for some n ≥ 3 or if � is irrational and 1
3 < � < 1

2 , then there exists an ε > 0 such that if
0 < w < ε then bold play is not optimal. To see heuristically why this is true, suppose that
1
4 < � < 1

3 and the gambler’s initial fortune is f = 1
2 − δ, where δ is small. If the gambler

plays boldly and loses the first bet, then the gambler’s fortune after one bet will be 1
2 − � − δ.

The gambler’s fortune can at most double to 1 − 2� − 2δ after the second bet and, therefore,
can be at most 1 − 2δ after two more wins. However, if the gambler first stakes �− δ and plays
boldly thereafter then, even with an initial loss, the gambler can reach the goal by winning the
next three bets. Consequently, for sufficiently small δ, first betting � − δ makes the gambler
more likely to achieve the goal after winning three or fewer bets. As w ↓ 0, the probability
that the gambler can win four bets before going bankrupt becomes very small relative to the
probability that the gambler wins three bets. Therefore, first betting � − δ is a better strategy
than bold play for sufficiently small w.

The purpose of the present paper is to extend this result by showing that when � is irrational,
bold play fails to be optimal for all w < 1

2 , not just for very small w. The case of rational �

remains open except when � = 1/n for some n ≥ 3. Note that when � is rational and 1
3 < � < 1

2 ,
it is not even known whether or not bold play can be improved upon for very small w.

To state our result more precisely, define the function s : [0, 1] → [0, 1] by s(f ) =
min{�, f, 1 − f }. We think of s(f ) as the bold stake for a gambler whose fortune is f .
Denote by Xk the gambler’s fortune after k bets, when the gambler plays boldly. Note that
(Xk)

∞
k=0 is a Markov chain whose transition probabilities are given by

P(Xk+1 = f + s(f ) | Xk = f ) = w, (1)

P(Xk+1 = f − s(f ) | Xk = f ) = 1 − w. (2)
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Define Q(f ) = P(Xk = 1 for some k | X0 = f ), which is the probability that a gambler
who starts with a fortune of f will eventually reach the goal. Our main result is given in the
following theorem.

Theorem 1. Suppose that w < 1
2 and � is irrational. Then there exist f ∈ (0, 1) and

ε ∈ (0, s(f )) such that

wQ(f + s(f ) − ε) + (1 − w)Q(f − s(f ) + ε) > Q(f ). (3)

If a gambler begins with a fortune of f and stakes s(f ) − ε then the gambler’s fortune after
one bet will be f + s(f ) − ε with probability w and f − s(f ) + ε with probability 1 − w.
Consequently, the left-hand side of (3) is the probability that the gambler will eventually reach
the goal using the strategy of first staking s(f ) − ε and playing boldly thereafter, while the
right-hand side of (3) is the probability that the gambler will reach the goal using (only) bold
play. Therefore, (3) implies that the strategy of first staking s(f ) − ε and then playing boldly
is superior to bold play and, hence, bold play is not optimal.

2. Proof of Theorem 1

In this section, we will prove Theorem 1. The key to the proof will be the following
proposition. Here, and throughout the rest of the paper, all logarithms are assumed to be base 2;
that is, we write log n instead of log2 n.

Proposition 1. Let S = {f : P(Xk = 1−� for some k | X0 = f ) > 0}. That is, S is the set of
all f such that a gambler who starts with a fortune of f and plays boldly could have a fortune
of exactly 1 − � after a finite number of bets.

(i) Suppose that f ∈ S. Then there exists a constant C > 0 such that if 0 < ε < � then
Q(f ) − Q(f − ε) ≥ C(1 − w)− log ε.

(ii) Suppose that f /∈ S. For all C > 0, there exists a δ > 0 such that if 0 < ε < δ then
Q(f ) − Q(f − ε) ≤ C(1 − w)− log ε.

(iii) If � is irrational then there exists an f ∈ (�, 1 − �) such that f − � ∈ S and f + � /∈ S.

Proposition 1 implies that Q(f ) − Q(f − ε) is larger when f ∈ S than when f /∈ S. In
other words, the difference between having a fortune of f and having a fortune of f −ε matters
more to the gambler when f ∈ S than it does when f /∈ S. Proposition 1(iii) states that when
� is irrational, we can find an f such that f − s(f ) ∈ S and f + s(f ) /∈ S. We will show that
if a gambler starts with a fortune slightly below f then it is better to make slightly less than the
bold stake, so that the fortune will not fall below f − s(f ) if the bet is lost. This will imply
Theorem 1.

An important tool for the proof of Proposition 1 is a coupling construction in which we
follow two gamblers simultaneously. We present this construction in Section 2.1. We prove
Proposition 1(i), 1(ii), and 1(iii) in Sections 2.2, 2.3, and 2.4 respectively. Then, in Section 2.5,
we show how Theorem 1 follows from Proposition 1.

2.1. A coupling construction

Throughout this and the next two subsections, we consider two Markov chains (Xk)
∞
k=0 and

(Yk)
∞
k=0. We define X0 = f1 and Y0 = f2, where f1 ≥ f2. Both chains evolve with the

transition probabilities given by (1) and (2). Consequently, we can think of Xk as the fortune,
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after k bets, of a gambler whose initial fortune is f1, while Yk is the fortune, after k bets, of a
gambler whose initial fortune is f2.

We assume that these sequences are coupled, so that both gamblers win and lose the same
bets. To construct this coupling, we work with the probability space (�, F , P) defined as
follows. Let � = {0, 1}∞, and denote sequences in � by ω = (ω1, ω2, . . .), so that ω → ωi is
the ith coordinate function. Let F0 be the trivial σ -field and, for positive integers k, let Fk be
the σ -field generated by the first k coordinate functions. Let F = σ(F1, F2, . . .) be the product
σ -field. Let P be the product probability measure with the property that P(ωi = 1) = w and
P(ωi = 0) = 1 − w for all i. We then say that the two gamblers win the ith bet if ωi = 1 and
lose the ith bet if ωi = 0. In particular, for k ≥ 0, we define Xk+1(ω) = Xk(ω) + s(Xk(ω))

and Yk+1(ω) = Yk(ω) + s(Yk(ω)) if ωk+1 = 1, and Xk+1(ω) = Xk(ω) − s(Xk(ω)) and
Yk+1(ω) = Yk(ω) − s(Yk(ω)) if ωk+1 = 0.

We now make some remarks pertaining to this construction.

Remark 1. Since s(f ) = min{�, f, 1 − f }, we see that if f ≤ g then |s(g) − s(f )| ≤ g − f .
Therefore, f + s(f ) ≤ g + s(g) and f − s(f ) ≤ g − s(g). It then follows by induction and
the construction of the sequences (Xk)

∞
k=0 and (Yk)

∞
k=0 that Xk ≥ Yk for all k. Likewise, the

fact that |s(g) − s(f )| ≤ g − f implies that Xk − Yk ≤ 2k(f1 − f2), for all k.

Remark 2. The fact that Xk ≥ Yk for all k means that if Yk = 1 then Xk = 1. Since Q(f1) =
P(Xk = 1 for some k) and Q(f2) = P(Yk = 1 for some k), it follows that Q(f1) ≥ Q(f2).
That is, the function f �→ Q(f ) is nondecreasing.

Remark 3. Note that

E[Xk+1 | Fk] = w(Xk + s(Xk)) + (1 − w)(Xk − s(Xk))

= Xk + (2w − 1)s(Xk)

≤ Xk,

where the last inequality holds because w < 1
2 . Therefore, (Xk)

∞
k=0 is a supermartingale

with respect to (Fk)
∞
k=0. By the same argument, (Yk)

∞
k=0 is a supermartingale with respect

to (Fk)
∞
k=0. By the martingale convergence theorem (see [9, Chapter 4]), there exist random

variables L1 and L2 such that Xk → L1 almost surely (a.s.) and Yk → L2 a.s. as k → ∞. If
0 < ε < � then s(f ) > ε for f ∈ [ε, 1 − ε]. It follows that L1 and L2 must be {0, 1}-valued
random variables. Furthermore, it is easy to see that, for sufficiently large k, Xk = 1 and Yk = 1
on {L1 = 1} and {L2 = 1}, respectively. Thus, Q(f1) = P(L1 = 1) and Q(f2) = P(L2 = 1),
from which it follows that Q(f1) − Q(f2) = P(L1 = 1 and L2 = 0).

2.2. Proof of Proposition 1(i)

We begin with the following lemma, in which we compute the gambler’s probability of
reaching the goal starting from a sequence of fortunes approaching 1.

Lemma 1. For all n ≥ 0, we have Q(1 − 2−n�) = 1 − (1 − w)n(1 − Q(1 − �)).

Proof. The statement is obvious when n = 0. Suppose that the result holds for some n ≥ 0.
Since s(1−2−(n+1)�) = 2−(n+1)�, a gambler whose fortune is 1−2−(n+1)� will, after the next
bet, have a fortune of 1 with probability w and a fortune of 1 − 2−n� with probability 1 − w.
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Thus, by the Markov property,

Q(1 − 2−(n+1)�) = w + (1 − w)Q(1 − 2−n�)

= w + (1 − w)(1 − (1 − w)n(1 − Q(1 − �)))

= 1 − (1 − w)n+1(1 − Q(1 − �)).

The lemma now follows by induction on n.

Proof of Proposition 1(i). Let f1 = f and f2 = f − ε, where 0 < ε < �. Since f ∈ S,
there exists a positive integer k such that if B denotes the event that Xk = 1 − � and Xk+1 = 1,
then P(B) > 0. Note that, for 0 ≤ j < k, we have Xj+1 − Yj+1 ≥ Xj − Yj unless either
Xj > 1−� and Xj+1 = 1 or Yj < � and Yj+1 = 0. Therefore, if B occurs then Yk ≤ 1−�−ε

and, thus, Yk+1 ≤ 1 − ε. Combining this observation with Remarks 2–3, we obtain

Q(f ) − Q(f − ε) = P(L1 = 1 and L2 = 0)

≥ P(B) P(L2 = 0 | B)

≥ P(B)(1 − Q(1 − ε)).

Choose a nonnegative integer n such that 2−(n+1)� < ε ≤ 2−n�, which implies that
n ≤ log � − log ε. By Lemma 1,

Q(1 − ε) ≤ Q(1 − 2−(n+1)�)

= 1 − (1 − w)n+1(1 − Q(1 − �))

≤ 1 − (1 − w)1+log �−log ε(1 − Q(1 − �)).

Thus, Q(f ) − Q(f − ε) ≥ C(1 − w)− log ε, where C = P(B)(1 − w)1+log �(1 − Q(1 − �)).

2.3. Proof of Proposition 1(ii)

Our next step is to prove Proposition 1(ii), which gives an upper bound for Q(f )−Q(f −ε)

when f /∈ S. We will compare the sequences (Xk)
∞
k=0 and (Yk)

∞
k=0 when f1 = f and

f2 = f − ε. Although (Xk − Yk)
∞
k=0 is not a supermartingale, we will be able to construct a

supermartingale by considering the differences between the gamblers’ fortunes at a sequence
of stopping times. It will then follow that the gamblers’ fortunes remain similar enough for us
to obtain the desired upper bound on Q(f ) − Q(f − ε) when f /∈ S.

Given f and f ∗ such that 0 ≤ f ∗ ≤ f ≤ 1, we define

h(f, f ∗) =
⎧⎨
⎩

1 if f = f ∗,
s(f ) − s(f ∗)

f − f ∗ otherwise.

Note that −1 ≤ h(f, f ∗) ≤ 1 for all f and f ∗. If � ≤ f ∗ ≤ f ≤ 1−� then s(f ) = s(f ∗) = �,
which means that h(f, f ∗) = 0. If f ∗ ≥ � and f ≥ 1 − � then h(f, f ∗) ≤ 0, while if f ∗ ≤ �

and f ≤ 1 − � then h(f, f ∗) ≥ 0. Also, recall that ωk = 1 if the gamblers win the kth bet, and
that ωk = 0 if the gamblers lose the kth bet. We have

Xk+1(ω) − Yk+1(ω) =
{

(1 + h(Xk(ω), Yk(ω)))(Xk(ω) − Yk(ω)) if ωk+1 = 1,

(1 − h(Xk(ω), Yk(ω)))(Xk(ω) − Yk(ω)) if ωk+1 = 0.
(4)
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Define
Wk = (1 − w)− log(Xk−Yk) = (Xk − Yk)

− log(1−w). (5)

By (4), we have

E[Wk+1 | Fk] = w(1 + h(Xk, Yk))
− log(1−w)Wk + (1 − w)(1 − h(Xk, Yk))

− log(1−w)Wk

= g(h(Xk, Yk))Wk, (6)

where
g(x) = w(1 + x)− log(1−w) + (1 − w)(1 − x)− log(1−w),

for −1 ≤ x ≤ 1. Note that

g′(x) = − log(1 − w)(w(1 + x)− log(1−w)−1 − (1 − w)(1 − x)− log(1−w)−1).

Suppose that 0 < x < 1. Since 0 < − log(1 − w) < 1, we have (1 + x)− log(1−w)−1 < 1 and
(1 − x)− log(1−w)−1 > 1. Therefore,

g′(x) ≤ − log(1 − w)(w − (1 − w)) < 0.

Since g(0) = 1, it follows that 0 < g(x) < 1, for x ∈ (0, 1].
We now introduce four lemmas that will help us to define a supermartingale.

Lemma 2. Suppose that 1 − � ≤ f2 ≤ f1 ≤ 1. Then E[W1] = W0.

Proof. We have s(f1) = 1 − f1 and s(f2) = 1 − f2. Therefore, h(f1, f2) = −1. Since
g(−1) = 1, it follows from (6) that E[W1] = W0.

Lemma 3. Suppose thatf2 ≤ f1 < 1−�. Define a stopping timeR as follows. Ifh(f1, f2) ≥ 1
2

then let R = 0. If h(f1, f2) < 1
2 then let R(ω) = inf{j : ωj = 1 or h(Xj (ω), Yj (ω)) ≥ 1

2 }.
Let L = 
1 + (1 − 2�)/��, where 
·� is the integer-part function. Then R ≤ L and
E[WR] ≤ W0.

Proof. Proceeding by contradiction, suppose that R(ω) > L for some ω. Then the gamblers
must lose the first L bets. However, by the definition of L, any gambler who starts with a fortune
of at most 1 − � and then loses L consecutive bets has a fortune of at most �. Therefore, there
exists a j ≤ L such that 0 < Xj ≤ �. Since Xj ≥ Yj , it follows that Yj ≤ � and, thus,
s(Xj ) = Xj and s(Yj ) = Yj . However, this means that h(Xj , Yj ) = 1 and, thus, R ≤ j , i.e. a
contradiction. Hence, R ≤ L.

For j < R, we have Yj ≤ Xj < 1 − � and, therefore, 0 ≤ h(Xj , Yj ) ≤ 1. Since g(x) ≤ 1
for x ∈ [0, 1], we have, with the aid of (6),

E[W(j+1)∧R | Fj ] = Wj∧R 1{R≤j} + E[Wj+1 | Fj ] 1{R>j}
= Wj∧R 1{R≤j} +g(h(Xj , Yj ))Wj 1{R>j}
≤ Wj∧R,

where 1{·} is the indicator function and x ∧ y denotes min{x, y}. Therefore, (Wj∧R)∞j=0 is a
supermartingale with respect to (Fj )

∞
j=0. Note that 0 ≤ Wj∧R ≤ 1 for all j , so the optional

stopping theorem (see [9, Chapter 4]) gives E[WR] ≤ W0.
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Lemma 4. Suppose that f2 ≤ f1 < 1 − �. Let

T (ω) = inf{j ≥ 1 : ωj = 1 or h(Xj−1(ω), Yj−1(ω)) ≥ 1
2 }.

Let L = 
1 + (1 − 2�)/�� as in Lemma 3. Then T ≤ L + 1 and E[WT ] ≤ αW0, where

α = 1 − (1 − g( 1
2 ))(1 − w)2L.

Proof. Define the stopping time R as in Lemma 3. Then T = R if and only if the gamblers
win the Rth bet; otherwise T = R + 1. Clearly T ≤ L + 1 by Lemma 3. Let A be the event
that the gamblers win the Rth bet. Then

E[WT ] = E[E[WT | FR]] = E[WR 1A + E[WR+1 | FR] 1Ac ].
By the strong Markov property and (6), E[WR+1 | FR] = g(h(XR, YR))WR . If the gamblers
lose the Rth bet then h(XR, YR) ≥ 1

2 . Therefore, since g is decreasing on [0, 1],

E[WR+1 | FR] 1Ac ≤ g( 1
2 )WR 1Ac .

Thus,
E[WT ] ≤ E[WR 1A +g( 1

2 )WR 1Ac ] = E[WR − (1 − g( 1
2 ))WR 1Ac ]. (7)

If Ac occurs then the gamblers lose the first R bets, and h(Xj , Yj ) < 1
2 for all j < R. If

h(Xj , Yj ) < 1
2 and the gamblers lose the (j + 1)th bet, then Xj+1 − Yj+1 ≥ (Xj − Yj )/2.

Thus, on Ac we have XR − YR ≥ 2−R(f1 − f2) ≥ 2−L(f1 − f2). Therefore,

E[WR 1Ac ] ≥ E[(2−L(f1 − f2))
− log(1−w) 1Ac ]

= 2L log(1−w)W0 P(Ac)

= P(Ac)(1 − w)LW0. (8)

Since Ac occurs when the gamblers lose the first L bets, we have P(Ac) ≥ (1 − w)L. Thus,
since E[WR] ≤ W0 by Lemma 3, combining (7) and (8) gives

E[WT ] ≤ E[WR] − (1 − g( 1
2 ))(1 − w)2LW0

≤ (1 − (1 − g( 1
2 ))(1 − w)2L)W0

= αW0,

which completes the proof.

Lemma 5. Suppose that f2 < 1 − � and 1 − � ≤ f1 < 1 − �/2. Define the stopping time T by

T (ω) =
{

1 if ω1 = 1,

inf{j ≥ 2 : ωj = 1 or h(Xj−1(ω), Yj−1(ω)) ≥ 1
2 } otherwise.

Let N(ω) = 1−α if ω1 = 1 and let N(ω) = 1 if ω1 = 0. Then T ≤ L+2 and E[NWT ] ≤ W0.

Proof. Let A be the event that the gamblers win the first bet, which means that ω1 = 1. We
have

E[NWT ] = E[E[NWT | F1]] = E[(1 − α)W1 1A + E[WT | F1] 1Ac ].
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If the gamblers lose the first bet then X1 = f1 − s(f1) = 2f1 − 1 < 1 − �. Therefore, by
Lemma 4 and the Markov property, we have T ≤ L + 2 and E[WT | F1] 1Ac ≤ αW1 1Ac .
Thus,

E[NWT ] ≤ E[(1 − α)W1 1A +αW1 1Ac ]
= w(1 − α)[(1 + h(f1, f2))(f1 − f2)]− log(1−w)

+ (1 − w)α[(1 − h(f1, f2))(f1 − f2)]− log(1−w)

= [w(1 − α)(1 + h(f1, f2))
− log(1−w) + (1 − w)α(1 − h(f1, f2))

− log(1−w)]W0

≤ [w(1 − α)2− log(1−w) + (1 − w)α2− log(1−w)]W0

=
(

w

1 − w
(1 − α) + α

)
W0

≤ W0,

which completes the proof.

By combining Lemmas 2, 4, and 5, we can obtain Proposition 2, below, in which we construct
the supermartingale needed to prove Proposition 1(ii). We first inductively define a sequence
of stopping times (Tk)

∞
k=0. Let T0 = 0. Given Tk , we define Tk+1 according to the following

rules.

1. If YTk
(ω) ≥ 1 − � then let Tk+1(ω) = Tk(ω) + 1.

2. If XTk
(ω) < 1 − � then let

Tk+1(ω) = inf{j ≥ Tk(ω) + 1 : ωj = 1 or h(Xj−1(ω), Yj−1(ω)) ≥ 1
2 }.

3. Suppose that YTk
(ω) < 1 − � and 1 − � ≤ XTk

(ω) < 1 − �/2. If ωTk(ω)+1 = 1, meaning
the gamblers win the (Tk + 1)th bet, then let Tk+1(ω) = Tk(ω) + 1. Otherwise, let
Tk+1(ω) = inf{j ≥ Tk(ω) + 2 : ωj = 1 or h(Xj−1(ω), Yj−1(ω)) ≥ 1

2 }.
4. If YTk

< 1 − � and XTk
≥ 1 − �/2 then let Tk+1 = Tk .

Proposition 2. Define the sequence of stopping times (Tk)
∞
k=0 as above. For k ≥ 0, let

Bk = 	{j ∈ {0, 1, . . . , k − 1} : XTj
< 1 − �},

where 	S denotes the cardinality of the set S. Let Nk = 1−α in the event that, for some j ≤ Tk ,
we have Yj−1 < 1 − � ≤ Xj−1 and the gamblers win the j th bet. Otherwise, let Nk = 1.
Define Zk = α−BkNkWTk

. Then (Zk)
∞
k=0 is a supermartingale with respect to the filtration

(FTk
)∞k=0. Furthermore, Tk+1 ≤ Tk + L + 2 for all k ≥ 0.

Proof. Let A1,k be the event that YTk
≥ 1 − � and let A2,k be the event that XTk

< 1 − �.
Let A3,k be the event that YTk

< 1 − � and 1 − � ≤ XTk
< 1 − �/2. Let A4,k be the event that

YTk
< 1 − � and XTk

≥ 1 − �/2. Note that, for all k, exactly one of these four events occurs.
We consider the four cases separately.
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First, suppose that A1,k occurs. Then XTk
≥ 1 − �, so Bk+1 = Bk . Also, note that

Tk+1 = Tk +1 and YTk
≥ 1−�, so Nk+1 = Nk . Therefore, by Lemma 2 and the strong Markov

property,

E[Zk+1 1A1,k
| FTk

] = α−BkNk E[WTk+1 | FTk
] 1A1,k

= α−BkNk E[WTk+1 | FTk
] 1A1,k

= α−BkNkWTk
1A1,k

= Zk 1A1,k
. (9)

Next, suppose that A2,k occurs. Then XTk
< 1 − �, so Bk+1 = Bk + 1. The gamblers lose

bets Tk + 1, . . . , Tk+1 − 1, so Xj < 1 − � for Tk ≤ j ≤ Tk+1 − 1. Therefore, Nk+1 = Nk . By
Lemma 4 and the strong Markov property,

E[Zk+1 1A2,k
| FTk

] = α−(Bk+1)Nk E[WTk+1 | FTk
] 1A2,k

≤ α−(Bk+1)Nk(αWTk
) 1A2,k

= α−BkNkWTk
1A2,k

= Zk 1{A2,k} . (10)

Suppose that A3,k occurs. Then XTk
≥ 1 − �, so Bk+1 = Bk . Since XTk

< 1, we
have Nk = 1. If the gamblers win the (Tk + 1)th bet then Nk+1 = 1 − α. Otherwise,
XTk+1 = XTk

− s(XTk
) = 2XTk

− 1 < 1 − � and the gamblers lose bets Tk + 2, . . . , Tk+1 − 1,
so Nk+1 = 1. By Lemma 5 and the strong Markov property,

E[Zk+1 1A3,k
| FTk

] = α−Bk E[Nk+1WTk+1 | FTk
] 1A3,k

≤ α−BkWTk
1A3,k

= Zk 1A3,k
. (11)

Finally, if A4,k occurs then Tk+1 = Tk . Therefore, Nk+1 = Nk and WTk+1 = WTk
. Since

XTk
> 1−�, we also have Bk+1 = Bk and, thus, Zk+1 = Zk . Therefore, E[Zk+1 1A4,k

| FTk
] =

Zk 1A4,k
. This fact, combined with (9)–(11), gives E[Zk+1 | FTk

] ≤ Zk . Hence, (Zk)
∞
k=0 is a

supermartingale with respect to the filtration (FTk
)∞k=0.

To complete the proof, note that clearly Tk+1 ≤ Tk + L + 2 if A1,k or A4,k occurs. The
strong Markov property, combined with Lemmas 4 and 5, implies that Tk+1 ≤ Tk + L + 2 if
A2,k or A3,k occurs.

We now use Proposition 2 to establish an upper bound on Q(f ) − Q(f − ε) when f /∈ S.
We will need one more lemma.

Lemma 6. Fix f /∈ S and let N be a positive integer. Then there exist a positive integer M

and a positive real number δ such that if f1 = f and f2 = f − ε, where 0 < ε < δ, then the
following statements hold.

(i) If Xk ≥ 1 − � and Yk < 1 − � then k > M(L + 2), where L = 
1 + (1 − 2�)/��.

(ii) Let Dk = 	{j ∈ {0, 1, . . . , k − 1} : XTj
< 1 − � or XTj

= 1}. Then DM ≥ N .

Proof. Let R′
k be the set of all possible values of Xk , and let Rk = ⋃k

j=0 R′
j . Note that Rk

is a finite set because there are only 2k possible outcomes for the first k bets. For all g ∈ [0, 1),
let v(g) be the number of consecutive bets that a gambler whose fortune is g must lose for the
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fortune to drop below 1− �. That is, v(g) = 0 when 0 ≤ g < 1− � and, for positive integers k,
v(g) = k when 1 − 2−k+1� ≤ g < 1 − 2−k�. Let Vk = max{v(g), g ∈ Rk}. Let M0 = 0.
Let Mi+1 = Mi + VMi(L+2) + 1, i ≥ 0, and let M = MN . Choose θ > 0 small enough that
RM(L+2) ∩ (1 − �, 1 − � + θ) = ∅. Let δ = 2−M(L+2)θ . We will show that the two conditions
of Lemma 6 are satisfied for these choices of M and δ.

Suppose that k ≤ M(L + 2). If Xk ≥ 1 − � then Xk ≥ 1 − � + θ , since f /∈ S and
R′

k ∩ (1 − �, 1 − � + θ) = ∅. By Remark 1, we have Xk − Yk ≤ 2kε < 2M(L+2)δ = θ .
Therefore, Yk ≥ 1 − �. This proves the first part of the lemma.

To prove the second part we claim that, for i = 0, 1, . . . , N − 1,

DMi+VMi (L+2)+1 ≥ DMi
+ 1. (12)

To see how (12) implies the second part of the lemma, first note that DM0 = D0 = 0. Suppose
that DMi

≥ i for some i ≥ 0. Then DMi+1 = DMi+VMi (L+2)+1 ≥ DMi
+ 1 ≥ i + 1 by (12).

Hence, by induction, (12) implies that DM ≥ N . Thus, we need only to prove (12). First,
suppose that either XTMi

< 1 − � or XTMi
= 1. Then DMi+1 = DMi

+ 1. Since (Di)
∞
i=0 is a

nonincreasing sequence and VMi(L+2) ≥ 0, we have (12).
Thus, it remains only to prove (12) when 1 − � ≤ XTMi

< 1. Write v for v(XTMi
). Note

that v ≤ VTMi
, and TMi

≤ Mi(L + 2) by Proposition 2. Therefore,

TMi
+ v ≤ TMi

+ VTMi

≤ Mi(L + 2) + VMi(L+2)

≤ (Mi + VMi(L+2))(L + 2)

≤ M(L + 2). (13)

We now consider two cases. First, suppose that the gamblers lose the bets TMi
+1, . . . , TMi

+v.
Then Xj ≥ 1 − � for TMi

≤ j ≤ TMi+v−1 and XTMi
+v < 1 − �. Also, by (13) and the first part

of the lemma, we have Yj ≥ 1 − � for TMi
≤ j ≤ TMi+v−1. Therefore, by the definition of the

sequence (Tj )
∞
j=0, we have TMi+k = TMi

+ k for 1 ≤ k ≤ v. It follows that XTMi+v
< 1 − �,

which means that DMi+v+1 = DMi
+1. Thus, DMi+VMi (L+2)+1 ≥ DMi+v+1 = DMi

+1, which
is (12). Finally, we consider the case in which, for some j ∈ {1, . . . , v}, the gamblers lose the
bets TMi

+ 1, . . . , TMi
+ j − 1 but win the bet TMi

+ j . Then, XTMi
+j = XTMi+j

= 1 and
DMi+j+1 = DMi

+ 1. Hence, DMi+VMi (L+2)+1 ≥ DMi
+ 1, which is (12).

Proof of Proposition 1(ii). Fix C > 0 and f /∈ S. Since 0 < α < 1, there exists a positive
integer N such that

α−N(1 − α)(1 − w)− log(�/2) ≥ C−1.

Define M and δ as in Lemma 6 and fix ε ∈ (0, δ). Define (Tk)
∞
k=0 and (Zk)

∞
k=0 as in

Proposition 2, with f1 = f and f2 = f − ε.
By Remark 3, there exist random variables L1 and L2 such that Xk → L1 a.s. and Yk → L2

a.s. as k → ∞, and Q(f ) − Q(f − ε) = P(L1 = 1 and L2 = 0). Let A be the event that
L1 = 1 and L2 = 0. Then there is an integer-valued random variable K such that, on the
event A, we have XTK

≥ 1 − �/2 and YTK
< 1 − �. By Lemma 6(i), in the event A, we

have TK > M(L + 2) and, thus, K ≥ M . It also follows from Lemma 6(i) that if XTj
= 1

for j ≤ M then YTj
= 1 and, therefore, L2 = 1. Consequently, in the event A, we can see

from the definitions of (Bi)
∞
i=0 and (Di)

∞
i=0 that BM = DM and, thus, using Lemma 6(ii),

BK ≥ BM = DM ≥ N .
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Since (Zk)
∞
k=0 is a nonnegative supermartingale, it follows from the martingale convergence

theorem (see [9, Corollary 4.2.11]) that there exists a random variable Z such that Zk → Z

a.s. and E[Z] ≤ E[Z0]. On the event A, if j > K then Tj = TK and, thus, Zj = ZK = Z.
Hence, using (5),

Z 1A = ZK 1A

= α−BK NK(1 − w)− log(XTK
−YTK

) 1A

≥ α−N(1 − α)(1 − w)− log(l/2) 1A

≥ C−1 1A .

It follows that E[Z] ≥ C−1 P(A). Thus, Q(f ) − Q(f − ε) = P(A) ≤ C E[Z] ≤ C E[Z0] =
C(1 − w)− log ε, as claimed.

2.4. Proof of Proposition 1(iii)

Let D1 = S ∩ [0, l] and D2 = S ∩ [1 − �, 1]. Define a sequence of stopping times (τk)
∞
k=0

by τ0 = 0 and τk+1 = inf{n > τk : Xn ∈ [0, �] ∪ [1 − �, 1]}, for all k ≥ 0. Then define

Dk = {f : P(Xτj
= 1 − l for some j ≤ k | X0 = f ) > 0}.

Let D1
k = Dk ∩[0, �] and D2

k = Dk ∩[1−�, �]. Note that D1 = ⋃∞
k=0 D1

k and D2 = ⋃∞
k=0 D2

k .
We have D1

0 = ∅ and D2
0 = {1 − �}. For k ≥ 1,

D1
k = {f ∈ [0, �] : P(Xτ1 ∈ Dk−1 | X0 = f ) > 0} ∪ D1

k−1,

D2
k = {f ∈ [1 − �, 1] : P(Xτ1 ∈ Dk−1 | X0 = f ) > 0} ∪ D2

k−1.

Suppose that X0 = f . If f ∈ (�, 1 − �) then s(f ) = � for all k < τ1. Therefore,
Xτ1 = f + n� for some n ∈ Z. If, instead, f ∈ [0, �] then s(f ) = f , in which case either
X1 = Xτ1 = 0 or X1 = 2f . If X1 = 2f then Xτ1 = 2f + n� for some n ∈ Z, where n = 0 if
2f ∈ [0, l] ∪ [1 − �, 1]. Likewise, suppose that f ∈ [1 − �, �]. Then s(f ) = 1 − f , so either
X1 = Xτ1 = 1 or X1 = 2f − 1. If X1 = 2f − 1 then Xτ1(f ) = 2f − 1 + n� for some n ∈ Z,
where n = 0 if 2f − 1 ∈ [0, �] ∪ [1 − �, 1].

We claim that if f ∈ D1 ∪D2 then there exist integers a, b, and c such that f = 2−c(a+b�).
Furthermore, we claim that if f �= 1 − � then we can choose a, b, and c such that c ≥ 1, a ≥ 1,
a or b is odd, and a ≥ 2 if f ∈ D2. We will prove these claims by induction on k. Note that
D0 = {1 − �} so, for f ∈ D0, we can take a = 1, b = −1, and c = 0. Now, suppose that our
claims hold when f ∈ Dk−1, where k ≥ 1. To show that our claims hold when f ∈ Dk , we
consider two cases.

First, suppose that f ∈ D1
k \ Dk−1. Then P(Xτ1 = g | X0 = f ) > 0 for some g ∈ Dk−1.

Since 0 /∈ S, we must have 2f + n� = g or, equivalently, f = (g − n�)/2 for some n ∈ Z

and g ∈ Dk−1. If g = 1 − � then f = (1 − (n + 1)�)/2, so f = 2−c(a + b�), where a = 1,
b = −(n + 1), and c = 1. If g �= 1 − � then g = 2−c(a + b�), where c ≥ 1, a ≥ 1, and a or b

is odd. Then f = 2−(c+1)(a + b� − 2cn�) = 2−(c+1)(a + (b − 2cn)�). Note that c + 1 ≥ 1,
a ≥ 1, and b − 2cn is odd if b is odd, so a or b − 2cn is odd.

Next, suppose that f ∈ D2
k \ Dk−1. Then P(Xτ1 = g | X0 = f ) > 0 for some g ∈ Dk−1.

Since 1 /∈ S, we have 2f −1+n� = g or, equivalently, f = (1+g−n�)/2 for some n ∈ Z and
g ∈ Dk−1. If g = 1−� then f = (2− (n+1)�)/2. If n+1 were even then f = 1−m� would
hold for some positive integer m; since D2 ⊆ [1−�, 1], we would have f ∈ {1−�, 1}, which is
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a contradiction because 1 /∈ D2
k and 1−� ∈ Dk−1. Therefore, n+1 is odd, so f = 2−c(a+b�),

where c = 1, a = 2, and b is odd. If, instead, g �= 1 − � then g = 2−c(a + b�), where c ≥ 1,
a ≥ 1, and a or b is odd. Then f = 2−(c+1)(2c+a+b�−2cn�) = 2−(c+1)[(2c+a)+(b−2cn)�].
Note that c+1 ≥ 1, 2c +a ≥ 2, and either 2c +a or b−2cn is odd because 2c and 2cn are even
and either a or b is odd. It now follows, by induction, that our claims hold for all f ∈ D1 ∪D2.

Since � < 1
2 , we can choose a positive integer m such that 1 − m� ∈ (�, 2�]. We can

then choose positive integers d and n such that 2−d(1 − m�) < 1 − 2� and 2−d(1 − �) +
n� ∈ (1 − 2�, 1 − �). Let f = 2−d(1 − m�) + n�. Note that f ∈ (�, 1 − �) and that
f − � = 2−d(1 − m�) + (n − 1)�. Suppose that a gambler who starts with a fortune of f − �

loses the first n−1 bets, then wins the next d +m−1 bets. After the n−1 losses, the gambler’s
fortune will be 2−d(1 − m�). Then, after d wins, the fortune will be 1 − m�. After m − 1
additional wins, the gambler’s fortune will be 1 − �. Consequently,

P(Xn+m+d−2 = 1 − � | X0 = f − �) > 0,

which means that f −� ∈ S. We now show by contradiction that f +� /∈ S, which will complete
the proof. Suppose that f + � ∈ S. Since f + � > 1 − �, there exist integers a, b, and c such
that a ≥ 2, c ≥ 1, a or b is odd, and f + � = 2−c(a + b�). We also have f + � =
2−d(1 + (2d(n + 1) − m)�). Therefore, 2d(a + b�) = 2c(1 + (2d(n + 1) − m)�) and, so,
2da − 2c = (2c(2d(n + 1) − m) − 2db)�. Since � is irrational, we must have 2da − 2c =
2c(2d(n + 1) − m) − 2db = 0. Thus, 2da = 2c and, since a ≥ 2, it follows that a is even and
c > d. Therefore, b is odd and b = 2c−d(2d(n + 1) − m), which is a contradiction.

2.5. Obtaining Theorem 1 from Proposition 1

Suppose that � is irrational. By Proposition 1(iii), there exists an f0 ∈ (�, 1 − �) such that
f0 − � ∈ S and f0 + � /∈ S. Let f = f0 − ε, where 0 < ε < � and ε is small enough that
f ∈ (�, 1 − �). We will show that, for sufficiently small ε, we have

wQ(f + � − ε) + (1 − w)Q(f − � + ε) > Q(f ), (14)

which implies Theorem 1 because s(f ) = �. Note that

wQ(f + � − ε) + (1 − w)Q(f − � + ε) = wQ(f0 + � − 2ε) + (1 − w)Q(f0 − �). (15)

Since f �→ Q(f ) is nondecreasing, we have

Q(f ) = wQ(f + �) + (1 − w)Q(f − �) ≤ wQ(f0 + �) + (1 − w)Q(f0 − � − ε). (16)

Since f0 − � ∈ S, it follows from Proposition 1(i) that there exists a constant C > 0 such that

Q(f0 − �) − Q(f0 − � − ε) ≥ C(1 − w)− log ε. (17)

Let C0 = C(1 − w). Since f0 + � /∈ S, Proposition 1(ii) implies that, for sufficiently small ε,
we have

Q(f0 + �) − Q(f0 + � − 2ε) ≤ C0(1 − w)− log 2ε = C(1 − w)− log ε. (18)

Let B = C(1 − w)− log ε. Equations (15)–(18) imply that

wQ(f + � − ε) + (1 − w)Q(f − � + ε) − Q(f ) ≥ −wB + (1 − w)B = (1 − 2w)B > 0,

for sufficiently small ε, which gives (14).
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