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ON THE CONNECTEDNESS OF CERTAIN
SETS IN SUMMABILITY THEORY

BY
MANGALAM R. PARAMESWARAN

ABSTRACT. This note considers the question of the connectedness
of the set of limit points of the A-transforms of a sequence, where
A is a conservative Hausdorff, quasi-Hausdorff or Meyer-Konig-
Ramanujan type of matrix. New proofs of some known results, as
well as some new results are obtained.

§1

Given a conservative matrix A and a sequence s, let L(A}; s) denote the set
of all limit points of the A-transform of s (if it exists). Several authors have
dealt with the question: “When is L(A, s) connected for all s e(m), the space
of bounded sequences?”’ and considered the cases where A was Hausdorff or
was quasi-Hausdorff. (See [1], [2], [3], [8] and also [4].) In the present paper
we deal with the same question, and to certain refinements of it; we consider
not only Hausdorff and quasi-Hausdorff matrices but also the Meyer-Konig-
Ramanujan type of matrices (S*, u) introduced by Ramanujan [7]; we adopt a
unified and somewhat novel approach which enables us to deal with matrices
A=(H, ) or (H*, u) or (S* w) more or less simultaneously. The results
obtained include and often improve the results obtained by the earlier authors,
or are new.

We follow mainly the notation and definitions of Ramanujan [7] and
Parameswaran [5], [6]. The proofs of our theorems are based on the following
lemmas.

Lemma 1. If s={s,} is a bounded sequence and a,=s,—s,_;=0(l), then
L(I, s) is connected. (I = identity.) (Barone [1].)

LeEmMma 2. (See Parameswaran [5], pp. 52, 56 and 60; Cf. Ramanujan [7], pp.
205, 207 and 211.) Let A=(H, u), (H* ) or (S*, u) be conservative. Then
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there exists a function ge BV[0, 1] such that

(1) u, = le 5) dg(0) = ( j of + j ) agt

where u={u,}=As, and {F,(t,s)} denotes the Euler-transform {E,(t,s)}, of
order t, of s or the ‘Taylor-transform’ {T,(t, s)} of s and s, = O(1) or the ‘Meyer-
Koénig-transform {L,(t,s)} of s and s,= O(1), according as A=(H,u) or
(H*, ) or (S*, w), respectively; further, if A= (H*, u) or (S*, n), the function
g(t) can be chosen so as to be continuous at t = 0.

LemMa 3. Let A be a conservative Hausdorff or quasi-Hausdorff matrix. Then
there exists a function g€ BVI[0, 1] such that, with the notation u = As,

(2) (i) u,=ALg(0+)—g(0)]so+ €[g(1-0)—g(0+)]+s,[8(1) — g(1-0)]+0(1)

for all bounded sequences s Borel-summable to €, and with A =1 or 0 according
as A is Hausdorff or not;

(3) (i) wu, —u,—y = €(u, —lim p,) + (s, — s, ;) lim g, + 0(1)

if A is Hausdorff and {s, —s,_,} is bounded and Borel-summable to €, or if
s, = O(1) and A is Hausdorff or quasi-Hausdorff and then indeed (3) holds with
¢=0.

Lemma 3 is essentially contained in [5]; a proof is sketched below for
completeness. Part (i) is proved by letting n—o° in the righthand side of (1);
note that under the conditions stated, |F,(t, s)|= K <o uniformly in n and f,
lim,_., F,(t,s)=¢ (0<t<1),

lim F,(t,s)=As, and lim F,(t, s)=s,.

t—0+ t—1-0

For part (ii) of Lemma 3, we see that by Lemma 2,

(4) un_unvlz’l‘ [Fn(t’ S)_Fn*l(t; S)] dg(l)

(] + [+ e

where (a) if A is Hausdorff and {a,}={s,—s,_,} is bounded and Borel-
summable to ¢, the integrand in (4) reduces to tE,_,(t;a), is uniformly
bounded in 0=t=1, tends to ¢t for 0<t<1 as n—o0, and for fixed n, tends to
a, as t—1-0 and to 0 as t—0+; and (b) if s, = O(1), the integrand in (4) is
uniformly bounded in 0=t=1, tends to 0 as n— for 0 <t<1 and, for fixed
n, tends to Asy as t—0+ and to s, —s,_; as t—1—0. Then, in each of the cases
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(a) and (b), we get the desired result upon letting n—o° in the righthand side of

(4).
§2

In this section the symbol A may denote equally a conservative Hausdorff
matrix (H, p,) or a conservative quasi-Hausdorff matrix (H*, u,) except when
explicitly specified.

Tueorem 1. (a) If se(B)(m) [i.e. s is a Borel-summable bounded sequence],
then L(A, s) is connected if L(I, s) is connected.

(b) If se(B)(m) and L(A,s) is connected for some A with lim u,# 0, then
L(I, s) is connected.

(¢ If s¢(B)(m), then L(A,s) is connected for some A with
lim w, # 0> L(I, s) is connected.

(¢c)'. In (c) above we may replace the phrase lim w,# 0 by lim u, =0.

(d) lim w, # 0& L(A, s) is connected for (only) almost no sequence of 0’s and
1's&©L(A, s) is not connected when s, =3[1+(-=1)"].

Proof. Parts (a) and (b) follow from Lemmas 1 and 3(i). Part (c) is proved by
the example given in Remark (iii) below; (c)’ is a consequence of the fact that if
lim w,, =0 then L(A, s) is connected for all s € (m), a known result which is also
included in each of Theorems 2 and 3 below. Part (d) follows from parts (a)
and (b), since almost all sequences of 0’s and 1’s, and in particular {3+3(—1)"},
are Borel-summable.

RemaRrks. (i) Theorems 1(a), 1(b) may be compared with earlier results of
Ramanujan ([17], Theorems 5, 7) and of the author ([6], theorem 2(i), (ii)) and
Theorem 1(d) with another result of the author ([5], Theorem 10) which deal
with the A-summability of s, i.e. the case when L(A, s) has a unique element.
(See also the remark under Theorem 4 below.)

(i) Theorem 1 (a) has non-trivial content. For, it is known that if we take
any function F(n)# o(n""?) with F(n) | 0, e.g. F(n)=n""*, then there exist
Borel-summable bounded divergent sequences s with s,~s,_;= O(F(n))=
o(1). By Lemma 1, L(I, s) is connected, and hence so is L(A, s) by Theorem
1(a). Thus there are Borel-summable bounded divergent sequences s for which
L(A, s) is connected for every conservative A =(H, u) or (H*, u). (See also
the corollary to Theorem 3 below.)

(iii) Theorem 1(c) shows that Theorem 1(b) is a best possible one. Theorem
1(d) is also a best possible result in the sense that there exists even a regular
Hausdorft matrix A = (H, u,) with lim w, # 0 and a divergent sequence s of 0’s
and 1’s such that L(A, s) is connected, and there exists also a regular quasi-
Hausdorff matrix G = (H*, v,) with lim v, # 0 and a divergent sequence ¢ of 0’s
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and 1’s such that L(G,t) is connected, while obviously, neither L(I, s) nor
L(I,t) is connected.

To see this we take A =4(I+ C,), where C,, is the Cesaro matrix, and s to be
a sequence consisting of alternating bunches of 0’s and 1’s as follows: s, =1,
Sy =0(ny <N =nypyy), Sp=1(Nppsy <N=n,,,), where {n.} is a sequence of
positive integers which increases so rapidly that L(A, s) consists of the interval
[0, 1]; for instance, we may take n, =exp 10(2%).

For the quasi-Hausdorff case, we take G =3(I+ C%), where C%=(H*, u,)
with w, = 1/(n+2). It is then not difficult to see that there exists a divergent
sequence t of 0’s and 1’s such that L(G, t) is the interval [0, 1].

(iv) Leviatan and Lorch [3] raised the following question: Do the limit
points of equivalent transforms of bounded sequences have the same connec-
tedness properties? The matrix A =3(I+ C,;) considered above is equivalent to
I for all sequences, and since L(A, s) is connected while L(I, s) is not (where s
is as defined in (iii) above), it is seen that the question is answered in the
negative for Hausdorff matrices; similarly, for quasi-Hausdorff matrices, the
matrices G and I and the sequence t mentioned in (iii) above again provide an
answer in the negative.

(v) The examples u= As and v = Gt, where A, G, s and ¢t are as in Remark
(iii) above, provide yet other proofs of the known fact that the converse of
Lemma 1 is not true.

THEOREM 2. The following statements are equivalent:

(a) lim y, = 0;
(b) L(A, s) is connected for some Borel-summable divergent sequences of 0’s
and 1’s;

(c) L(A,s) is connected for all bounded sequences s;

(d) A sums a Borel-summable bounded divergent sequence;

(e) A sums all Borel-summable bounded sequences.

If A is Hausdorff, then each of the following is also equivalent to (a):

(f) L(A,s) is connected for all sequence s={s,} for which Ase(m), s,=
o(n'? and s, —s, = O(1);

(g) L(A,s) is connected for all sequences s={s,} for which Ase(m) and
{8, — $,._1} is bounded and Borel-summable to 0.

Proof. it is well-known that (a)&(d)< (e) (Parameswaran [6], Theorem 2);
(c)=>(b), trivially; (b)=>(a) by Theorem 1(b), and the implication (a)=>(c)
follows from Lemmas 1 and 3(i).

If A is Hausdorff, then (2)= (g)= (f) by Lemmas 1 and 3(ii) and the fact that
if s, = o(n'?) then {s, —s,_,} is Borel-summable to 0; since (f)= (c) trivially, it
follows, from the equivalences already proved that all of (a)-(g) are equivalent.
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Remarks. (i) For regular Hausdorff methods, the relation (a)& (c) was given
by Wells [8] and Erdos and Piranian [2]; Leviatan and Lorch [3] showed that
the relation (c)=>(a) holds for multiplicative Hausdorff matrices, and that
(c)¢ (a) for conservative quasi-Hausdoff matrices. (ii) The examples considered
in Remark (iii) under Theorem 1 show that if the word ‘“Borel-summable” is
dropped from the statement (b) of Theorem 2 then the theorem will be true
neither for Hausdorff nor for quasi-Hausdorff matrices. (iii) See also the
concluding remarks at the end of the paper.

The next two theorems follow readily from Lemmas 1 and 3(ii) and yield
conditions that are sufficient in order that L(A, s) be connected for a given pair
A and s.

THEOREM 3. Let se(m) and A be given. Then L(A,s) is connected if
K@ = (8, — 5,-1) = 0(1).

CoroLLARY. There exist bounded divergent sequences s which are not Borel-
summable and such that L(A, s) is connected for every conservative A = (H, )
or (H*, w). (Cf. Remark (ii) under Theorem 1.)

For, we can take any bounded sequence {s,} which is not Borel-summable and
for which s, —s,_;=0(1).

THEOREM 4. Let A =(H, u) be conservative Hausdorff and {s,} a sequence
that As €(m) and {a,}={s, —s,._1} is bounded and Borel-summable to €. Then
L(A, s) will be connected if any one of the following conditions holds:

@) a,=o0(1);

(ii) a,—¢€ and p,=0;

(i) w,—€=0;

(iv) p,—>p1=0.

ReMARK. The example of A and s given in Remark (iii) under Theorem 1
show that none of the conditions given in Theorems 3 or 4 is necessary for
L(A, s) to be connected. However, Theorem 3 is best possible in the sense that
we cannot replace the small o by a large O, as is seen from Theorem 1(d).

§3

In an earlier paper (Parameswaran [5], Theorem 8) it is proved that a
conservative matrix A =(S*, u) of the Meyer-Konig-Ramanujan type sums all
Borel-summable bounded sequences, irrespective of whether lim w,, is O or not.
The contrast with the Hausdorff and quasi-Hausdorff matrices is reflected also
in the following result.

THEOREM 5. If A =(S¥*, u) is conservative, then L(A, s) is connected for all
bounded sequences s.
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Proof. If u = As where A, s are as in the theorem, then

5) u,,j TLa(, 5) dg(0)+ solg (1)~ g(1—-0)]
0

+

by (1), since lim,_,;_o L,(t, s) = s; hence

©) o — Uy 1 = leO[Lna, )= L 1(t, $)]= o(1)
0

"
since the integrand is uniformly bounded and tends to 0 as n— for 0 <t<1;

(these are given in [5], p. 60 and p. 51 respectively). The theorem now follows
from Lemma 1.

CoNCLUDING REMARKS. The Authors thanks the referee for drawing his
attention to Liu and Rhoades [4] which appeared after the first version of the
present paper was submitted. Liu and Rhoades consider the regular
‘generalized’ Hausdorff and quasi-Hausdorff matrices (A, w,)=(H, w,) or
(H*® u,) for a=0. However each conservative generalized matrix A,
whether it is a matrix of one of the above two types or is a ’generalized’ Meyer-
Konig-Ramanujan matrix (S*®, u,) is absolutely equivalent for bounded
sequences to an ordinary matrix of the same kind. (This result and some others
on the (A, w)-matrices will appear elsewhere.) The theorems of the present
paper are therefore true also for the generalized matrices A =(H“, u) or
(H**, ) or (§*“, u), @ =0; thus they include, and extend, the results of Liu
and Rhoades [4].

Finally, the author thanks the referee for many comments which improved
the presentation of the results.
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